Academic literature on the topic 'Timing jitter'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Timing jitter.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Timing jitter"
Chin, J., and A. Cantoni. "Phase jitter/spl equiv/timing jitter?" IEEE Communications Letters 2, no. 2 (February 1998): 54–56. http://dx.doi.org/10.1109/4234.660802.
Full textHoriuchi, Noriaki. "Ultralow timing jitter." Nature Photonics 6, no. 2 (February 2012): 71. http://dx.doi.org/10.1038/nphoton.2012.17.
Full textWang, Jiaqi, and Ping Qiu. "Photodetection-induced relative timing jitter in synchronized time-lens source for coherent Raman scattering microscopy." Journal of Innovative Optical Health Sciences 10, no. 05 (September 2017): 1743003. http://dx.doi.org/10.1142/s1793545817430039.
Full textFeng, Jia Mei, Yuan Cheng Yao, and Ming Wei Qin. "An Improved Timing Recovery Algorithm Design." Applied Mechanics and Materials 130-134 (October 2011): 2997–3000. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2997.
Full textMiyauchi, Kazuhiro, Isamu Wakabayashi, and Hiroki Shibayama. "Analysis of timing jitter in digital transmission systems." Electronics and Communications in Japan (Part I: Communications) 84, no. 8 (April 10, 2001): 1–13. http://dx.doi.org/10.1002/ecja.1027.
Full textShi, Cheng, Zhi-Kang Ni, Jun Pan, Zhijie Zheng, Shengbo Ye, and Guangyou Fang. "A Method for Reducing Timing Jitter’s Impact in Through-Wall Human Detection by Ultra-Wideband Impulse Radar." Remote Sensing 13, no. 18 (September 8, 2021): 3577. http://dx.doi.org/10.3390/rs13183577.
Full textTaylor, Gregor G., Ewan N. MacKenzie, Boris Korzh, Dmitry V. Morozov, Bruce Bumble, Andrew D. Beyer, Jason P. Allmaras, Matthew D. Shaw, and Robert H. Hadfield. "Mid-infrared timing jitter of superconducting nanowire single-photon detectors." Applied Physics Letters 121, no. 21 (November 21, 2022): 214001. http://dx.doi.org/10.1063/5.0128129.
Full textXu, Hao, Haitao Wu, Dong Hou, Haoyuan Lu, Zhaolong Li, and Jianye Zhao. "Yoctosecond Timing Jitter Sensitivity in Tightly Synchronized Mode-Locked Ti:Sapphire Lasers." Photonics 9, no. 8 (August 12, 2022): 569. http://dx.doi.org/10.3390/photonics9080569.
Full textZhou, Gengji, Ming Xin, Franz X. Kaertner, and Guoqing Chang. "Timing jitter of Raman solitons." Optics Letters 40, no. 21 (October 30, 2015): 5105. http://dx.doi.org/10.1364/ol.40.005105.
Full textCitrin, D. S. "Fibonacci signals with timing jitter." Mathematics in Engineering 5, no. 4 (2023): 1–13. http://dx.doi.org/10.3934/mine.2023076.
Full textDissertations / Theses on the topic "Timing jitter"
Oulmane, Mourad. "Integrated solutions for timing jitter measurement." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104524.
Full textDans cette thèse, nous présentons deux solutions intégrées pour mesurer les fluctuations dans le timing des signaux numériques, communément appelé “jitter”, et ce dans les systèmes sur puce et les systèmes d'acquisition de données (principalement les CANs). Ces techniques sont aussi employables dans toutes autres applications métrologiques dont le principe de fonctionnement est basé sur la mesure du temps.La première méthode est basée sur l'amplification de la différence de temps à mesurer à l'aide d'un amplificateur de temps (TAMP). Le résultat de l'amplification est ensuite numérisé en utilisant un convertisseur temps-numérique. La conception de l'amplificateur est basé sur le principe de partage virtuel de charge qui permet une courbe de transfert de temps continue, monotone et symétrique. Compte tenu de sa nature analogique, l'amplificateur est limité en termes de linéarité en plus d'être sensible aux variations de température et de processus. Pour résoudre ce problème, une méthode de mesure et d'étalonnage qui consiste en une configuration double-TAMP est utilisée pour déduire les quantités mesurées sans connaissance préalable du gain des amplificateurs utilisés. Aussi, nous présentons une technique empirique pour calibrer un système de mesure comprenant un seul amplificateur. Dans cette thèse, nous implémentons un amplificateur avec un gain mesuré de 228 s/s alimentant un convertisseur temps-numérique de 78 ps de résolution. Effectivement, ceci résulte en un système de mesure de temps d'une résolution nominale de 342,1 fs.La seconde méthode pour mesurer le jitter consiste en une technique de mesure basée sur un CAN à échantillonnage ou le signal dont le jitter est à mesurer assume le rôle d'horloge. La particularité fondamentale de cette technique est qu'elle admet des signaux analogiques arbitraires à l'entrée du CAN. Le système de mesure proposé comprend, en plus du CAN, un bloc digital entièrement indépendant du CAN pour extraire l'erreur de timing associée à chaque échantillon à la sortie du CAN. Une caractéristique très importante de ce bloc est qu'il calcule d'abords l'erreur dans le code de chaque échantillon à la sortie du CAN induite par le jitter avant d'en déduire l'erreur de timing. Dans cette étude, les caractéristiques du jitter de l'horloge d'échantillonnage sont extraites avec une grande précision. Expérimentalement parlant, même pour une bande d'entrée aussi basse que 4,61 MHz, la distribution du jitter d'une horloge d'échantillonnage de 12,5 MHz est extraite avec une précision de l'ordre de 3.25 ps.
Onunkwo, Uzoma Anaso. "Timing Jitter in Ultra-Wideband (UWB) Systems." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10465.
Full textSickler, Jason William 1978. "Timing jitter studies in modelocked fiber lasers." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/87855.
Full textAlso issued in pages.
Includes bibliographical references (p. 107-109).
by Jason William Sickler.
S.M.
Tomlin, Toby-Daniel. "Analysis and modelling of jitter and phase noise in electronic systems : phase noise in RF amplifiers and jitter in timing recovery circuits." University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2004. http://theses.library.uwa.edu.au/adt-WU2004.0021.
Full textHaghighat, Afshin. "Low-jitter symbol timing recovery for M-ary QAM and PAM signals." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0002/MQ39476.pdf.
Full textLi, Duo Ph D. Massachusetts Institute of Technology. "Attosecond timing jitter modelocked lasers and ultralow phase noise photonic microwave oscillators." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/87930.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 111-119).
Photonic microwave oscillator based on optical frequency comb and ultrastable optical reference cavity represents the state-of-the-art solution to generate X-band microwaves of ultralow phase noise. Such high-quality microwave source enables a range of applications in which frequency stability and timing accuracy are essential to performance. Wide use of this technology, however, requires compact system architecture, low-term stability and low energy consumption, which drive the needs to develop high repetition-rate femtosecond lasers alternative to Ti:sapphire technology, and to explore a feasible means to achieve integrated photonic microwave oscillators. Ultrafast Cr:LiSAF lasers can be directly pumped with low-cost red laser diodes, and the electrical-to-optical conversion efficiency is as high as 10%. High repetition-rate femtosecond Cr:LiSAF lasers are developed with the help of semiconductor saturable absorber technology, efficient dispersion compensation mirror design algorithms, and heat management of the saturable absorber. The I-GHz Cr:LiSAF oscillator generates 55-fs pulses with 110 pJ pulse energy, which represents almost two orders of magnitude improvement in the output peak power over previous results. Timing jitter of 1 00-MHz Cr:LiSAF lasers is measured with a single-crystal balanced optical cross-correlator to be -30 as from 10 kHz to 50 MHz. Pump intensity noise coupled into phase noise through the self-steepening effect proves to be the major noise source. The most recent advance in silicon photonics and wafer-scale three-dimensional integration technology illuminates a pathway toward on-chip photonic microwave oscillators. Phase noise model of the proposed Erbium Silicon Photonics Integrated OscillatoR (ESPIOR) suggests that it is possible to achieve comparable noise performance with the Ti:sapphire-based system, without the need of carrier-envelope-offset frequency detection. A demonstration using fiber-optic components further indicates that it is practicable to realize optical frequency division and microwave readout in the proposed architecture. With the advancement of heterogeneous electronic-photonic integration, it would pave the way for an ultralow-noise microwave source fully integrated in a hybrid photonic-electronic chip on a silicon substrate.
by Duo Li.
Ph. D.
Sidorova, Mariia. "Timing Jitter and Electron-Phonon Interaction in Superconducting Nanowire Single-Photon Detectors (SNSPDs)." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22296.
Full textThis Ph.D. thesis is based on the experimental study of two mutually interconnected phenomena: intrinsic timing jitter in superconducting nanowire single-photon detectors (SNSPDs) and relaxation of the electron energy in superconducting films. Microscopically, a building element of any SNSPD device, a superconducting nanowire on top of a dielectric substrate, represents a complex object for both experimental and theoretical studies. The complexity arises because, in practice, the SNSPD utilizes strongly disordered and ultrathin superconducting films, which acoustically mismatch with the underlying substrate, and implies a non-equilibrium state. This thesis addresses the complexity of the most conventional superconducting material used in SNSPD technology, niobium nitride (NbN), by applying several distinct experimental techniques. As an emerging application of the SNSPD technology, we demonstrate a prototype of the dispersive Raman spectrometer with single-photon sensitivity.
Morse, Jonathan Lee. "Femtosecond fiber lasers at 1550 nm for high repetition rates and low timing jitter." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82363.
Full textCataloged from PDF version of thesis.
Includes bibliographical references.
Femtosecond fiber lasers have become an important enabling technology for advances in many areas including: frequency combs, precise timing distribution, optical arbitrary waveform generation, and high bit rate sampling for analog to digital conversion. Experiments and applications like these put demanding requirements on the source laser oscillator; such as operating near 1550 nm in wavelength, multi-gigahertz repetition rates, sub 100 femtosecond pulse widths, and sub 10 femtosecond timing jitters. This thesis describes the design, fabrication, and characterization of three different iterations of mode-locked laser sources utilizing erbium doped fibers and semiconductor saturable absorbing mirrors to form pulse trains in the 1550 nm wavelength band. The first systems took advantage of a highly doped erbium fiber in a sigma cavity configuration to generate 100 fs pulses at up to a 300 MHz repetition rate through polarization additive pulse mode-locking. At the time, this was the highest fundamental repetition rate to be reported for a fiber cavity in a ring configuration. The next two systems are variations on a linear cavity fiber laser design. In the first, the fiber coupling was achieved through free space optics and the saturable absorbing mirror was also imaged through lenses. Once mode-locked, repetition rates of just beyond 1 GHz were demonstrated with this design; however the laser output was relatively low power. The second version coupled the input and output light through fiber components and coupled the fiber directly to the saturable absorbing mirror. This laser mode-locked in several different states and a study to characterize and understand these states was undertaken. Ultimately, it was understood which conditions minimized the cavity noise and pulse widths thus allowing for the achievement of a 1550 nm, 1 GHz, sub 10 fs jitter, femtosecond fiber laser. This laser is more compact than competing technologies and could be constructed with relatively low cost.
by Jonathan Lee Morse.
Ph.D.
Sidorova, Mariia [Verfasser]. "Timing Jitter and Electron-Phonon Interaction in Superconducting Nanowire Single-Photon Detectors (SNSPDs) / Mariia Sidorova." Berlin : Humboldt-Universität zu Berlin, 2021. http://d-nb.info/1226153380/34.
Full textDocherty, Andrew Engineering UNSW. "Collision induced timing shifts in wavelength-division-multiplexed optical fiber communications systems." Awarded by:University of New South Wales. Engineering, 2004. http://handle.unsw.edu.au/1959.4/19337.
Full textBooks on the topic "Timing jitter"
Anthonys, Gehan. Timing Jitter in Time-of-Flight Range Imaging Cameras. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94159-8.
Full textMaichen, Wolfgang. Digital Timing Measurements: From Scopes and Probes to Timing and Jitter. Springer, 2006.
Find full textMaichen, Wolfgang. Digital Timing Measurements: From Scopes and Probes to Timing and Jitter. Springer, 2010.
Find full textWright, A. G. Timing with PMTs. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199565092.003.0008.
Full textAnthonys, Gehan. Timing Jitter in Time-Of-Flight Range Imaging Cameras. Springer International Publishing AG, 2022.
Find full textDigital Timing Measurements: From Scopes and Probes to Timing and Jitter (Frontiers in Electronic Testing). Springer, 2006.
Find full textHajimiri, Ali. Jitter: Understanding Timing Uncertainty in Communication Circuits and Systems (Information and Communication Technology Series,). Wiley-Interscience, 2008.
Find full textBook chapters on the topic "Timing jitter"
Anthonys, Gehan. "Jitter and Measurement of Jitter." In Timing Jitter in Time-of-Flight Range Imaging Cameras, 55–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-94159-8_4.
Full textDai, Liang, and Ramesh Harjani. "Phase Noise and Timing Jitter." In Design of High-Performance CMOS Voltage-Controlled Oscillators, 27–37. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-1145-8_3.
Full textAnthonys, Gehan. "Influence of Random Jitter." In Timing Jitter in Time-of-Flight Range Imaging Cameras, 219–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-94159-8_10.
Full textAnthonys, Gehan. "Influence of Periodic Jitter." In Timing Jitter in Time-of-Flight Range Imaging Cameras, 165–217. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-94159-8_9.
Full textMeinecke, Stefan. "Timing Jitter in Mode-Locked Lasers." In Spatio-Temporal Modeling and Device Optimization of Passively Mode-Locked Semiconductor Lasers, 49–80. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96248-7_3.
Full textAnthonys, Gehan. "Proposed Methodology for Jitter Measurement." In Timing Jitter in Time-of-Flight Range Imaging Cameras, 77–96. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-94159-8_5.
Full textAnthonys, Gehan. "Jitter Extraction in ToF Cameras." In Timing Jitter in Time-of-Flight Range Imaging Cameras, 115–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-94159-8_7.
Full textJaurigue, Lina. "Timing Jitter of the Mode-Locked Laser." In Springer Theses, 119–59. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58874-2_4.
Full textAnthonys, Gehan. "Software-Defined Radio Technology for Jitter Extraction." In Timing Jitter in Time-of-Flight Range Imaging Cameras, 143–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-94159-8_8.
Full textKeller, Ursula. "Intensity Noise and Timing Jitter of Modelocked Lasers." In Ultrafast Lasers, 589–637. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82532-4_11.
Full textConference papers on the topic "Timing jitter"
Yang, Suwen, Mark R. Greenstreet, and Jihong Ren. "A Jitter Attenuating Timing Chain." In 13th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC'07). IEEE, 2007. http://dx.doi.org/10.1109/async.2007.8.
Full textYuan, Ruixi, and Henry F. Taylor. "Timing Jitter in Repetitively Pulsed Semiconductor Lasers." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/peo.1989.ds258.
Full textHarvey, G. T., M. S. Heutmaker, P. R. Smith, J. A. Valdmanis, and M. C. Nuss. "Timing Jitter of Colliding Pulse Mode-Locked Lasers." In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/peo.1989.hsmt48.
Full textWang, Wenting, Hao Liu, Tristan Melton, Jinghui Yang, Abhinav Kumar Vinod, Jinkang Lim, Yoon-Soo Jang, et al. "Sampling timing jitter in dispersion-managed frequency microcombs via a fiber interferometer." In CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.stu1c.4.
Full textPinto, Armando Nolasco. "Timing Jitter in Optical Communication Systems." In Frontiers in Optics. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/fio.2006.fmd5.
Full textFerreira, Mario F. S., and Margarida M. V. Facao. "Timing jitter of ultrashort optical solitons." In Optoelectronics and High-Power Lasers & Applications, edited by Metin S. Mangir. SPIE, 1998. http://dx.doi.org/10.1117/12.308360.
Full textŞafak, Kemal, Ming Xin, Qing Zhang, Shih-Hsuan Chia, Oliver D. Mücke, and Franz X. Kärtner. "Jitter Analysis of Timing Distribution Systems." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/cleo_si.2017.sth4l.1.
Full textSteve Hung-Lung Tu and Hsueh-Hao Chen. "A low timing-jitter coupled oscillator." In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2010. http://dx.doi.org/10.1109/icsict.2010.5667283.
Full textYang, Weiguo. "Spectral Characterization of Clock Timing Jitter." In SoutheastCon 2024. IEEE, 2024. http://dx.doi.org/10.1109/southeastcon52093.2024.10500170.
Full textBosco Leung. "Timing jitter of contemporary CMOS ring oscillators." In 2008 IEEE Radio and Wireless Symposium. IEEE, 2008. http://dx.doi.org/10.1109/rws.2008.4463457.
Full text