Academic literature on the topic 'Time series outlier detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Time series outlier detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Time series outlier detection"
Twumasi-Ankrah, Sampson, Simon Kojo Appiah, Doris Arthur, Wilhemina Adoma Pels, Jonathan Kwaku Afriyie, and Danielson Nartey. "Comparison of outlier detection techniques in non-stationary time series data." Global Journal of Pure and Applied Sciences 27, no. 1 (March 5, 2021): 55–60. http://dx.doi.org/10.4314/gjpas.v27i1.7.
Full textJi, Yanjie, Dounan Tang, Weihong Guo, Phil T. Blythe, and Gang Ren. "Detection of Outliers in a Time Series of Available Parking Spaces." Mathematical Problems in Engineering 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/416267.
Full textChoi, Jeong In, In Ok Um, and Hyung Jun Choa. "Outlier detection in time series data." Korean Journal of Applied Statistics 29, no. 5 (August 31, 2016): 907–20. http://dx.doi.org/10.5351/kjas.2016.29.5.907.
Full textChoy, Kokyo. "Outlier detection for stationary time series." Journal of Statistical Planning and Inference 99, no. 2 (December 2001): 111–27. http://dx.doi.org/10.1016/s0378-3758(01)00081-7.
Full textAbraham, Bovas, and Alice Chuang. "Outlier Detection and Time Series Modeling." Technometrics 31, no. 2 (May 1989): 241–48. http://dx.doi.org/10.1080/00401706.1989.10488517.
Full textLjung, Greta M. "On Outlier Detection in Time Series." Journal of the Royal Statistical Society: Series B (Methodological) 55, no. 2 (January 1993): 559–67. http://dx.doi.org/10.1111/j.2517-6161.1993.tb01924.x.
Full textTran, Trong Dinh, Toan Duy Dao, Tung So Vu, Dung Ngoc Luong, Chieu Dinh Vu, Son Ngoc Bui, and Hang Thi Ha. "Outlier detection in GNSS position time series." Science and Technology Development Journal 19, no. 2 (June 30, 2016): 43–50. http://dx.doi.org/10.32508/stdj.v19i2.665.
Full textOlewuezi, N. P., B. Onoghojobi, and A. O. Aduobi. "OUTLIER DETECTION IN UNIVARIATE TIME SERIES DATA." Far East Journal of Theoretical Statistics 50, no. 2 (June 9, 2015): 143–51. http://dx.doi.org/10.17654/fjtsmar2015_143_151.
Full textVorotnikov, I., A. Rozanov, M. Sidelnikova, S. Tkachev, and L. Volochuk. "Outlier Detection of the Agricultural Time Series." IOP Conference Series: Earth and Environmental Science 723, no. 4 (March 1, 2021): 042070. http://dx.doi.org/10.1088/1755-1315/723/4/042070.
Full textBlázquez-García, Ane, Angel Conde, Usue Mori, and Jose A. Lozano. "A Review on Outlier/Anomaly Detection in Time Series Data." ACM Computing Surveys 54, no. 3 (June 2021): 1–33. http://dx.doi.org/10.1145/3444690.
Full textDissertations / Theses on the topic "Time series outlier detection"
Sedman, Robin. "Online Outlier Detection in Financial Time Series." Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-228069.
Full textI detta examensarbete undersöks olika modeller för outlierdetektering i finansiella tidsserier. De finansiella tidsserierna är prisserier som indexpriser eller tillgångspriser. Outliers är i detta examensarbete definierade som extrema och falska punkter, men denna definition undersöks och revideras också. Två olika tidsseriemodeller undersöks: en autoregressiv (AR) och en generel au-toregressiv betingad heteroskedasticitet1 (GARCH) tidsseriemodell, samt en hypotesprövning2 baserad på GARCH-modellen. Dessutom undersöks en icke-parametrisk modell, vilken använder sig utav uppskattning av täthetsfunktionen med hjälp av kärnfunktioner3 för att detektera out-liers. Modellerna utvärderas utifrån hur väl de upptäcker outliers, hur ofta de kategoriserar icke-outliers som outliers samt modellens körtid. Det är konstaterat att alla modeller ungefär presterar lika bra, baserat på den data som används och de simuleringar som gjorts, i form av hur väl outliers är detekterade, förutom metoden baserad på hypotesprövning som fungerar sämre än de andra. Vidare är det uppenbart att definitionen av en outlier är väldigt avgörande för hur bra en modell detekterar outliers. För tillämpningen av detta examensarbete, så är körtid en viktig faktor, och med detta i åtanke är en autoregressiv modell med Students t-brusfördelning funnen att vara den bästa modellen, både med avseende på hur väl den detekterar outliers, felaktigt detekterar inliers som outliers och modellens körtid.
Wang, Dan Tong. "Outlier detection with data stream mining approach in high-dimenional time series data." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691091.
Full textBergamelli, Michele. "Structural breaks and outliers detection in time-series econometrics : methods and applications." Thesis, City University London, 2015. http://openaccess.city.ac.uk/14868/.
Full textEghbalian, Amirmohammad. "Data mining techniques for modeling the operating behaviors of smart building control valve systems." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20102.
Full textSlávik, Ľuboš. "Dynamická faktorová analýza časových řad." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445469.
Full textAllab, Nedjmeddine. "Détection d'anomalies et de ruptures dans les séries temporelles. Applications à la gestion de production de l'électricité." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066658.
Full textContinental is the main tool that edf uses for the long-term management of electricity. It elaborates the strategy exploitation of the electrical parc made up by power plants distributed all over europe. the tool simulates for each zone and each scenario several variables, such as the electricity demand, the generated quantity as well as the related costs. our works aim to provide methods to analyse the data of electricity production in order to ease their discovery and synthesis. we get a set of problmatics from the users of continental that we tent to solve through techniques of outliers and changepoints detection in time series
Ribeiro, Joana Patrícia Bordonhos. "Outlier identification in multivariate time series." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22200.
Full textCom o desenvolvimento tecnológico, existe uma cada vez maior disponibilidade de dados. Geralmente representativos de situações do dia-a-dia, a existência de grandes quantidades de informação tem o seu interesse quando permite a extração de valor para o mercado. Além disso, surge importância em analisar não só os valores disponíveis mas também a sua associação com o tempo. A existência de valores anormais é inevitável. Geralmente denotados como outliers, a procura por estes valores é realizada comummente com o intuito de fazer a sua exclusão do estudo. No entanto, os outliers representam muitas vezes um objetivo de estudo. Por exemplo, no caso de deteção de fraudes bancárias ou no diagnóstico de doenças, o objetivo central é identificar situações anormais. Ao longo desta dissertação é apresentada uma metodologia que permite detetar outliers em séries temporais multivariadas, após aplicação de métodos de classificação. A abordagem escolhida é depois aplicada a um conjunto de dados real, representativo do funcionamento de caldeiras. O principal objetivo é identificar as suas falhas. Consequentemente, pretende-se melhorar os componentes do equipamento e portanto diminuir as suas falhas. Os algoritmos implementados permitem identificar não só as falhas do aparelho mas também o seu funcionamento normal. Pretende-se que as metodologias escolhidas sejam também aplicadas nos aparelhos futuros, permitindo melhorar a identificação em tempo real das falhas.
With the technological development, there is an increasing availability of data. Usually representative of day-to-day actions, the existence of large amounts of information has its own interest when it allows to extract value to the market. In addition, it is important to analyze not only the available values but also their association with time. The existence of abnormal values is inevitable. Usually denoted as outliers, the search for these values is commonly made in order to exclude them from the study. However, outliers often represent a goal of study. For example, in the case of bank fraud detection or disease diagnosis, the central objective is to identify the abnormal situations. Throughout this dissertation we present a methodology that allows the detection of outliers in multivariate time series, after application of classification methods. The chosen approach is then applied to a real data set, representative of boiler operation. The main goal is to identify faults. It is intended to improve boiler components and, hence, reduce the faults. The implemented algorithms allow to identify not only the boiler faults but also their normal operation cycles. We aim that the chosen methodologies will also be applied in future devices, allowing to improve real-time fault identification.
Åkerström, Emelie. "Real-time Outlier Detection using Unbounded Data Streaming and Machine Learning." Thesis, Luleå tekniska universitet, Datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80044.
Full textSánchez, Enríquez Heider Ysaías. "Anomaly detection in streaming multivariate time series." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/149078.
Full textEste trabajo de tesis presenta soluciones para al problema de detección de anomalı́as en flujo de datos multivariantes. Dado una subsequencia de serie temporal (una pequeña parte de la serie original) como entrada, uno quiere conocer si este corresponde a una observación normal o es una anomalı́a, con respecto a la información histórica. Pueden surgir dificultades debido principalmente a que los tipos de anomalı́a son desconocidos. Además, la detección se convierte en una tarea costosa debido a la gran cantidad de datos y a la existencia de variables de dominios heterogéneos. En este contexto, se propone un enfoque de detección de anomalı́as basado en Discord Discovery, que asocia la anomalı́a con la subsecuencia más inusual utilizando medidas de similitud. Tı́picamente, los métodos de reducción de la dimensionalidad y de indexación son elaborados para restringir el problema resolviéndolo eficientemente. Adicionalmente, se propone técnicas para generar modelos representativos y consisos a partir de los datos crudos con el fin de encontrar los patrones inusuales. Estas técnicas también mejoran la eficiencia en la búsqueda mediante la reducción de la dimensionalidad. Se aborda las series multivariantes usando técnicas de representación sobre subsequencias no- normalizadas, y se propone nuevas técnicas de discord discovery basados en ı́ndices métricos. El enfoque propuesto es comparado con técnicas del estado del arte. Los resultados ex- perimentales demuestran que aplicando la transformación de translación y representación de series temporales pueden contribuir a mejorar la eficacia en la detección. Además, los métodos de indexación métrica y las heurı́sticas de discord discovery pueden resolver eficien- temente la detección de anomalı́as en modo offline y online en flujos de series temporales multivariantes.
Este trabajo ha sido financiado por beca CONICYT - CHILE / Doctorado para Extranjeros, y apoyada parcialmente por el Proyecto FONDEF D09I1185 y el Programa de Becas de NIC Chile
Tinawi, Ihssan. "Machine learning for time series anomaly detection." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123129.
Full textThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (page 55).
In this thesis, I explored machine learning and other statistical techniques for anomaly detection on time series data obtained from Internet-of-Things sensors. The data, obtained from satellite telemetry signals, were used to train models to forecast a signal based on its historic patterns. When the prediction passed a dynamic error threshold, then that point was flagged as anomalous. I used multiple models such as Long Short-Term Memory (LSTM), autoregression, Multi-Layer Perceptron, and Encoder-Decoder LSTM. I used the "Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding" paper as a basis for my analysis, and was able to beat their performance on anomaly detection by obtaining an F0.5 score of 76%, an improvement over their 69% score.
by Ihssan Tinawi.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Books on the topic "Time series outlier detection"
Olympia, Hadjiliadis, ed. Quickest detection. Cambridge: Cambridge University Press, 2009.
Find full textCédric, Demeure, ed. Statistical signal processing: Detection, estimation, and time series analysis. Reading, Mass: Addison-Wesley Pub. Co., 1991.
Find full textRiazuddin, Riaz. Detection and forecasting of Islamic calendar effects in Time Series Data. Karachi: State Bank of Pakistan, 2002.
Find full textTime-frequency analysis and synthesis of linear signal spaces: Time-frequency filters, signal detection and estimation, and range-Doppler estimation. Boston: Kluwer Academic Publishers, 1998.
Find full textHlawatsch, F. Time-Frequency Analysis and Synthesis of Linear Signal Spaces: Time-Frequency Filters, Signal Detection and Estimation, and Range-Doppler Estimation. Boston, MA: Springer US, 1998.
Find full textRadzeijewski, Maciej. Development, use and application of the Hydrospect data analysis system for the detection of changes in hydrological time series for use in WCP-water and national hydrological services. Poznań, Poland: World Meteorological Organization, 2004.
Find full textPanova, Anna. Tourism statistics. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1046178.
Full textAn Influence method for outlier detection applied to time series traffic data. Institute for Transport Studies, University of Leeds, 1992.
Find full textRobust Regression and Outlier Detection (Wiley Series in Probability and Statistics). Wiley-Interscience, 2003.
Find full textDijk, Dick van, Andri Lucas, and Philip H. Franses. Outlier Robust Analysis of Economic Time Series (Advanced Texts in Econometrics). Oxford University Press, USA, 2005.
Find full textBook chapters on the topic "Time series outlier detection"
Aggarwal, Charu C. "Time Series and Multidimensional Streaming Outlier Detection." In Outlier Analysis, 273–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47578-3_9.
Full textAggarwal, Charu C. "Time Series and Multidimensional Streaming Outlier Detection." In Outlier Analysis, 225–65. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-6396-2_8.
Full textWang, Xiaochun, Xiali Wang, and Mitch Wilkes. "Unsupervised Fraud Detection in Environmental Time Series Data." In New Developments in Unsupervised Outlier Detection, 257–77. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9519-6_10.
Full textLandauer, Max, Markus Wurzenberger, Florian Skopik, Giuseppe Settanni, and Peter Filzmoser. "Time Series Analysis: Unsupervised Anomaly Detection Beyond Outlier Detection." In Information Security Practice and Experience, 19–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99807-7_2.
Full textKarioti, Vassiliki, and Polychronis Economou. "Detection of Outlier in Time Series Count Data." In Contributions to Statistics, 209–21. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55789-2_15.
Full textGołaszewski, Grzegorz. "Similarity-Based Outlier Detection in Multiple Time Series." In Advances in Intelligent Systems and Computing, 116–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18058-4_10.
Full textvan de Wiel, L., D. M. van Es, and A. J. Feelders. "Real-Time Outlier Detection in Time Series Data of Water Sensors." In Advanced Analytics and Learning on Temporal Data, 155–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65742-0_11.
Full textKhoshrou, Abdolrahman, and Eric J. Pauwels. "Data-Driven Pattern Identification and Outlier Detection in Time Series." In Advances in Intelligent Systems and Computing, 471–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01174-1_35.
Full textAmarbayasgalan, Tsatsral, Heon Gyu Lee, Pham Van Huy, and Keun Ho Ryu. "Deep Reconstruction Error Based Unsupervised Outlier Detection in Time-Series." In Intelligent Information and Database Systems, 312–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42058-1_26.
Full textKha, Nguyen Huy, and Duong Tuan Anh. "From Cluster-Based Outlier Detection to Time Series Discord Discovery." In Lecture Notes in Computer Science, 16–28. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25660-3_2.
Full textConference papers on the topic "Time series outlier detection"
Akouemo, Hermine N., and Richard J. Povinelli. "Time series outlier detection and imputation." In 2014 IEEE Power & Energy Society General Meeting. IEEE, 2014. http://dx.doi.org/10.1109/pesgm.2014.6939802.
Full textZwilling, Chris E., and Michelle Yongmei Wang. "Multivariate voronoi outlier detection for time series." In 2014 Health Innovations and POCT. IEEE, 2014. http://dx.doi.org/10.1109/hic.2014.7038934.
Full textFerdousi, Z., and A. Maeda. "Unsupervised Outlier Detection in Time Series Data." In 22nd International Conference on Data Engineering Workshops (ICDEW'06). IEEE, 2006. http://dx.doi.org/10.1109/icdew.2006.157.
Full textKieu, Tung, Bin Yang, Chenjuan Guo, and Christian S. Jensen. "Outlier Detection for Time Series with Recurrent Autoencoder Ensembles." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/378.
Full textWang, Xin. "Two-phase outlier detection in multivariate time series." In 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2011). IEEE, 2011. http://dx.doi.org/10.1109/fskd.2011.6019794.
Full text"A Deep Autoencoder based Outlier Detection for Time Series." In 2018 3rd International Conference on Computer Science and Information Engineering. Clausius Scientific Press, 2018. http://dx.doi.org/10.23977/iccsie.2018.1038.
Full textSmith, Gavin, and James Goulding. "A novel symbolization technique for time-series outlier detection." In 2015 IEEE International Conference on Big Data (Big Data). IEEE, 2015. http://dx.doi.org/10.1109/bigdata.2015.7364037.
Full textMehrang, Saeed, Elina Helander, Misha Pavel, Angela Chieh, and Ilkka Korhonen. "Outlier detection in weight time series of connected scales." In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2015. http://dx.doi.org/10.1109/bibm.2015.7359896.
Full textMacEachern, Leonard, and Ghazaleh Vazhbakht. "Configurable FPGA-Based Outlier Detection for Time Series Data." In 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2020. http://dx.doi.org/10.1109/mwscas48704.2020.9184548.
Full textWang, Jin, Fang Miao, Lei You, and Wenjie Fan. "A Deep Autoencoder Based Outlier Detection for Time Series." In 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). IEEE, 2020. http://dx.doi.org/10.1109/icpics50287.2020.9202041.
Full textReports on the topic "Time series outlier detection"
Grosskopf, Michael John. Aligning Time Series for Cyber-Physical Network Intrusion Detection. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1212612.
Full textChen, Z., and S. E. Grasby. Detection of decadal and interdecadal oscillations and temporal trend analysis of climate and hydrological time series, Canadian Prairies. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2009. http://dx.doi.org/10.4095/248138.
Full textRose-Pehrsson, Susan, Sean J. Hart, Mark H. Hammond, Daniel T. Gottuk, and Mark T. Wright. Real-Time Probabilistic Neural Network Performance and Optimization for Fire Detection and Nuisance Alarm Rejection: Test Series 2 Results. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada383627.
Full textBerney, Ernest, Naveen Ganesh, Andrew Ward, J. Newman, and John Rushing. Methodology for remote assessment of pavement distresses from point cloud analysis. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40401.
Full text