Dissertations / Theses on the topic 'Time series data management'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Time series data management.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Matus, Castillejos Abel, and n/a. "Management of Time Series Data." University of Canberra. Information Sciences & Engineering, 2006. http://erl.canberra.edu.au./public/adt-AUC20070111.095300.
Full textSiwela, Blessing. "Web-based management of time-series raster data." Master's thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/6441.
Full textMousavi, Bamdad. "Scalable Stream Processing and Management for Time Series Data." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42295.
Full textRomanazzi, Stefano. "Water Supply Network Management: Sensor Analysis using Google Cloud Dataflow." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Find full textAlvidrez, Carlos. "A systematic framework for preparing and enhancing structured data sets for time series analysis." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100367.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 216-217).
This thesis proposes a framework to systematically prepare and enhance structured data for time series analysis. It suggests the production of intermediate derived calculations, which aid in the analysis and rationalization of variation over time, to enhance the consistency and the efficiency of data analysis. This thesis was developed with the cooperation of a major international financial firm. The use of their actual historical financial credit risk data sets significantly aided this work by providing genuine feedback, validating specific results, and confirming the usefulness of the method. While illustrated through the use of credit risk data sets, the methodology this thesis presents is designed to be applied easily and transparently to structured data sets used for time series analysis.
by Carlos Alvidrez.
S.M. in Engineering and Management
Battaglia, Bruno. "Studio e valutazione di database management system per la gestione di serie temporali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17270/.
Full textGogolou, Anna. "Iterative and Expressive Querying for Big Data Series." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS415.
Full textTime series are becoming ubiquitous in modern life, and given their sizes, their analysis is becoming increasingly challenging. Time series analysis involves tasks such as pattern matching, anomaly detection, frequent pattern identification, and time series clustering or classification. These tasks rely on the notion of time series similarity. The data-mining community has proposed several techniques, including many similarity measures (or distance measure algorithms), for calculating the distance between two time series, as well as corresponding indexing techniques and algorithms, in order to address the scalability challenges during similarity search.To effectively support their tasks, analysts need interactive visual analytics systems that combine extremely fast computation, expressive querying interfaces, and powerful visualization tools. We identified two main challenges when considering the creation of such systems: (1) similarity perception and (2) progressive similarity search. The former deals with how people perceive similar patterns and what the role of visualization is in time series similarity perception. The latter is about how fast we can give back to users updates of progressive similarity search results and how good they are, when system response times are long and do not support real-time analytics in large data series collections. The goal of this thesis, that lies at the intersection of Databases and Human-Computer Interaction, is to answer and give solutions to the above challenges.In the first part of the thesis, we studied whether different visual representations (Line Charts, Horizon Graphs, and Color Fields) alter time series similarity perception. We tried to understand if automatic similarity search results are perceived in a similar manner, irrespective of the visualization technique; and if what people perceive as similar with each visualization aligns with different automatic similarity measures and their similarity constraints. Our findings indicate that Horizon Graphs promote as invariant local variations in temporal position or speed, and as a result they align with measures that allow variations in temporal shifting or scaling (i.e., dynamic time warping). On the other hand, Horizon Graphs do not align with measures that allow amplitude and y-offset variations (i.e., measures based on z-normalization), because they exaggerate these differences, while the inverse seems to be the case for Line Charts and Color Fields. Overall, our work indicates that the choice of visualization affects what temporal patterns humans consider as similar, i.e., the notion of similarity in time series is visualization-dependent.In the second part of the thesis, we focused on progressive similarity search in large data series collections. We investigated how fast first approximate and then updates of progressive answers are detected, while we execute similarity search queries. Our findings indicate that there is a gap between the time the final answer is found and the time when the search algorithm terminates, resulting in inflated waiting times without any improvement. Computing probabilistic estimates of the final answer could help users decide when to stop the search process. We developed and experimentally evaluated using benchmarks, a new probabilistic learning-based method that computes quality guarantees (error bounds) for progressive k-Nearest Neighbour (k-NN) similarity search results. Our approach learns from a set of queries and builds prediction models based on two observations: (i) similar queries have similar answers; and (ii) progressive best-so-far (bsf) answers returned by the state-of-the-art data series indexes are good predictors of the final k-NN answer. We provide both initial and incrementally improved estimates of the final answer
Waitayangkoon, Chalermpol. "Factors Affecting the Efficient Performance of the Thai State Railway Authority: a Time-Series Data Analysis." Thesis, University of North Texas, 1988. https://digital.library.unt.edu/ark:/67531/metadc330635/.
Full textWinn, David. "An analysis of neural networks and time series techniques for demand forecasting." Thesis, Rhodes University, 2007. http://hdl.handle.net/10962/d1004362.
Full textJin, Chao. "Methodology on Exact Extraction of Time Series Features for Robust Prognostics and Health Monitoring." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1504795992214385.
Full textLi, Yang. "The time-series approaches in forecasting one-step-ahead cash-flow data of mining companies listed on the Johannesburg Stock Exchange." Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1552_1254470577.
Full textPrevious research pertaining to the financial aspect of the mining industry has focused predominantly on mining products' values and the companies' sensitivity to exchange rates. There has been very little empirical research carries out in the field of the statistical behaviour of mning companies' cash flow data. This paper aimed to study the time-series behaviour of the cash flow data series of JSE listed mining companies.
Zeng, Chunqiu. "Large Scale Data Mining for IT Service Management." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/3051.
Full textMuhammad, Fuad Muhammad Marwan. "Similarity Search in High-dimensional Spaces with Applications to Time Series Data Mining and Information Retrieval." Phd thesis, Université de Bretagne Sud, 2011. http://tel.archives-ouvertes.fr/tel-00619953.
Full textDalderop, Jeroen Wilhelmus Paulus. "Essays on nonparametric estimation of asset pricing models." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277966.
Full textVander, Elst Harry-Paul. "Measuring, Modeling, and Forecasting Volatility and Correlations from High-Frequency Data." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/228960.
Full textDoctorat en Sciences économiques et de gestion
info:eu-repo/semantics/nonPublished
Kilborn, Joshua Paul. "Investigating Marine Resources in the Gulf of Mexico at Multiple Spatial and Temporal Scales of Inquiry." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/7046.
Full textElmäng, Niclas. "Sequence classification on gamified behavior data from a learning management system : Predicting student outcome using neural networks and Markov chain." Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-18654.
Full textMousheimish, Raef. "Combinaison de l’Internet des objets, du traitement d’évènements complexes et de la classification de séries temporelles pour une gestion proactive de processus métier." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV073/document.
Full textInternet of things is at the core ofsmart industrial processes thanks to its capacityof event detection from data conveyed bysensors. However, much remains to be done tomake the most out of this recent technologyand make it scale. This thesis aims at filling thegap between the massive data flow collected bysensors and their effective exploitation inbusiness process management. It proposes aglobal approach, which combines stream dataprocessing, supervised learning and/or use ofcomplex event processing rules allowing topredict (and thereby avoid) undesirable events,and finally business process managementextended to these complex rules. The scientificcontributions of this thesis lie in several topics:making the business process more intelligentand more dynamic; automation of complexevent processing by learning the rules; and lastand not least, in datamining for multivariatetime series by early prediction of risks. Thetarget application of this thesis is theinstrumented transportation of artworks
Ahsan, Ramoza. "Time Series Data Analytics." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/529.
Full textFischer, Ulrike. "Forecasting in Database Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-133281.
Full textChinipardaz, Rahim. "Discrimination of time series data." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481472.
Full textVALENTIM, CAIO DIAS. "DATA STRUCTURES FOR TIME SERIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21522@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Séries temporais são ferramentas importantes para análise de eventos que ocorrem em diferentes domínios do conhecimento humano, como medicina, física, meteorologia e finanças. Uma tarefa comum na análise de séries temporais é a busca por eventos pouco frequentes que refletem fatos de interesse sobre o domínio de origem da série. Neste trabalho, buscamos desenvolver técnicas para detecção de eventos raros em séries temporais. Formalmente, uma série temporal A igual a (a1, a2,..., an) é uma sequência de valores reais indexados por números inteiros de 1 a n. Dados dois números, um inteiro t e um real d, dizemos que um par de índices i e j formam um evento-(t, d) em A se, e somente se, 0 menor que j - i menor ou igual a t e aj - ai maior ou igual a d. Nesse caso, i é o início do evento e j o fim. Os parâmetros t e d servem para controlar, respectivamente, a janela de tempo em que o evento pode ocorrer e a magnitude da variação na série. Assim, nos concentramos em dois tipos de perguntas relacionadas aos eventos-(t, d), são elas: - Quais são os eventos-(t, d) em uma série A? - Quais são os índices da série A que participam como inícios de ao menos um evento-(t, d)? Ao longo desse trabalho estudamos, do ponto de vista prático e teórico, diversas estruturas de dados e algoritmos para responder às duas perguntas listadas.
Time series are important tools for the anaylsis of events that occur in different fields of human knowledge such as medicine, physics, meteorology and finance. A common task in analysing time series is to try to find events that happen infrequently as these events usually reflect facts of interest about the domain of the series. In this study, we develop techniques for the detection of rare events in time series. Technically, a time series A equal to (a1, a2,..., an) is a sequence of real values indexed by integer numbers from 1 to n. Given an integer t and a real number d, we say that a pair of time indexes i and j is a (t, d)-event in A, if and only if 0 less than j - i less than or equal to t and aj - ai greater than or equal to d. In this case, i is said to be the beginning of the event and j is its end. The parameters t and d control, respectively, the time window in which the event can occur and magnitude of the variation in the series. Thus, we focus on two types of queries related to the (t, d)-events, which are: - What are the (t, d)-events in a series A? - What are the indexes in the series A which are the beginning of at least one (t, d)-event? Throughout this study we discuss, from both theoretical and practical points of view, several data structures and algorithms to answer the two queries mentioned above.
Matam, Basava R. "Watermarking biomedical time series data." Thesis, Aston University, 2009. http://publications.aston.ac.uk/15351/.
Full textMazel, David S. "Fractal modeling of time-series data." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/13916.
Full textBrunsdon, T. M. "Time series analysis of compositional data." Thesis, University of Southampton, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378257.
Full textTang, Fengzhen. "Kernel methods for time series data." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5929/.
Full textGranberg, Patrick. "Churn prediction using time series data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-294206.
Full textKundbortfall är problematiskt för företag som försöker expandera sin kundbas. Förvärvandet av nya kunder för att ersätta förlorade kunder är associerat med extra kostnader, medan vidtagandet av åtgärder för att behålla kunder kan visa sig mer lönsamt. Som så är det av intresse att för varje kund ha pålitliga tidsestimat till en potentiell uppsägning kan tänkas inträffa så att förebyggande åtgärder kan vidtas. Applicerandet av djupinlärning och maskininlärning på denna typ av problem som involverar tidsseriedata är relativt nytt och det finns mycket ny forskning kring ämnet. Denna uppsats är baserad på antagandet att tidiga tecken på kundbortfall kan upptäckas genom kunders användarmönster över tid. Reccurent neural networks och mer specifikt long short-term memory (LSTM) och gated recurrent unit (GRU) är lämpliga modellval eftersom de är designade att ta hänsyn till den sekventiella tidsaspekten i tidsseriedata. Random forest (RF) och stochastic vector machine (SVM) är maskininlärningsmodeller som ofta används i relaterad forskning. Problemet löses genom en klassificeringsapproach, och en jämförelse utförs med implementationer av LSTM, GRU, RF och SVM. Resultaten visar att LSTM och GRU presterar likvärdigt samtidigt som de presterar bättre än RF och SVM på problemet om att förutspå kunder som kommer att säga upp sig inom det kommande halvåret, och att samtliga modeller potentiellt kan leda till kostnadsbesparingar enligt simuleringar (som använder icke-officiella men rimliga kostnader associerat till varje utfall). Att förutspå tid till en kunduppsägning är ett svårare problem och ingen av de framtagna modellerna kan ge pålitliga tidsestimat, men alla är signifikant bättre än slumpvisa gissningar.
Svensson, Martin. "Unsupervised Segmentation of Time Series Data." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176519.
Full textGuthrey, Delparde Raleigh. "Time series analysis of ozone data." CSUSB ScholarWorks, 1998. https://scholarworks.lib.csusb.edu/etd-project/1788.
Full textMacDonald, Iain L. "Time series models for discrete data." Doctoral thesis, University of Cape Town, 1992. http://hdl.handle.net/11427/26105.
Full textDamle, Chaitanya. "Flood forecasting using time series data mining." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001038.
Full textChintalapani, Gouthami. "Temporal treemaps for visualizing time series data." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1459.
Full textThesis research directed by: Dept. of Computer Science. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Xia, Betty Bin. "Similarity search in time series data sets." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq24275.pdf.
Full textClarke, Liam. "Nonlinear time series analysis of data streams." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401147.
Full textHills, Jonathan F. F. "Mining time-series data using discriminative subsequences." Thesis, University of East Anglia, 2014. https://ueaeprints.uea.ac.uk/53397/.
Full textBorella, Margherita. "Time series analyses of consumption grouped data." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271818.
Full textHempel, Sabrina. "Deciphering gene regulation from time series data." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2012. http://dx.doi.org/10.18452/16602.
Full textMy thesis is about reconstructing gene regulatory networks in order to better understand the functionality of organisms and their reactions to various external influences. In this context, the analysis of short, time-resolved measurements with association measures can yield crucial insights into possible interactions. In an extensive comparison study, I examine the efficiency of different measures and scoring schemes for solving the network reconstruction problem. Furthermore, I introduce IOTA (inner composition alignment), a novel asymmetric, permutation-based association measure, as an efficent tool for reconstructing directed networks without the application of additional scoring schemes. In my thesis, I analyze the properties of various modifications of the measure. Moreover, I show that IOTA is valuable to study significant, directed, nonlinear couplings in several time series (autoregressive processes, Michaelis-Menten kinetics and chaotic oscillators in different dynamical regimes) , as well as autoregulation. In addition, IOTA, similar to correlation measures, permits to identify the type of regulation (activation or repression). Hence, it is the only measure that can determine all necessay characteristics when reconstruction regulatory networks. Finally, I apply the novel association measure IOTA to infer a gene regulatory network for the green algae Chlamydomas reinhardtii under carbon deprivation from experimally obtained data.
Ferreira, Leonardo Nascimento. "Time series data mining using complex networks." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-01022018-144118/.
Full textSéries temporais são conjuntos de dados ordenados no tempo. Devido à ubiquidade desses dados, seu estudo é interessante para muitos campos da ciência. A mineração de dados temporais é uma área de pesquisa que tem como objetivo extrair informações desses dados relacionados no tempo. Para isso, modelos são usados para descrever as séries e buscar por padrões. Uma forma de modelar séries temporais é por meio de redes complexas. Nessa modelagem, um mapeamento é feito do espaço temporal para o espaço topológico, o que permite avaliar dados temporais usando técnicas de redes. Nesta tese, apresentamos soluções para tarefas de mineração de dados de séries temporais usando redes complexas. O objetivo principal foi avaliar os benefícios do uso da teoria de redes para extrair informações de dados temporais. Concentramo-nos em três tarefas de mineração. (1) Na tarefa de agrupamento, cada série temporal é representada por um vértice e as arestas são criadas entre as séries de acordo com sua similaridade. Os algoritmos de detecção de comunidades podem ser usados para agrupar séries semelhantes. Os resultados mostram que esta abordagem apresenta melhores resultados do que os resultados de agrupamento tradicional. (2) Na tarefa de classificação, cada série temporal rotulada em um banco de dados é mapeada para um gráfico de visibilidade. A classificação é realizada transformando uma série temporal não marcada em um gráfico de visibilidade e comparando-a com os gráficos rotulados usando uma função de distância. O novo rótulo é dado pelo rótulo mais frequente nos k grafos mais próximos. (3) Na tarefa de detecção de periodicidade, uma série temporal é primeiramente transformada em um gráfico de visibilidade. Máximos locais em uma série temporal geralmente são mapeados para vértices altamente conectados que ligam duas comunidades. O método proposto utiliza a estrutura de comunidades para realizar a detecção de períodos em séries temporais. Este método é robusto para dados ruidosos e não requer parâmetros. Com os métodos e resultados apresentados nesta tese, concluímos que a teoria da redes complexas é benéfica para a mineração de dados em séries temporais. Além disso, esta abordagem pode proporcionar melhores resultados do que os métodos tradicionais e é uma nova forma de extrair informações de séries temporais que pode ser facilmente estendida para outras tarefas.
Sperl, Ryan E. "Hierarchical Anomaly Detection for Time Series Data." Wright State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=wright1590709752916657.
Full textMitchell, F. "Painless knowledge acquisition for time series data." Thesis, University of Aberdeen, 1997. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU100889.
Full textTapinos, Avraam. "Time series data mining in systems biology." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/time-series-data-mining-in-systems-biology(5b538723-503b-4b82-959b-d4567e8d4658).html.
Full textMatsubara, Yasuko. "Statistical Data Mining for Time-series Datasets." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157475.
Full text丁嘉慧 and Ka-wai Ting. "Time sequences: data mining." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31226760.
Full text謝永然 and Wing-yin Tse. "Time series analysis in inventory management." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31977510.
Full textPradhan, Shameer Kumar. "Investigation of Event-Prediction in Time-Series Data : How to organize and process time-series data for event prediction?" Thesis, Högskolan Kristianstad, Fakulteten för naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-19416.
Full textRekdal, Espen Ekornes. "Metric Indexing in Time Series." Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10487.
Full textJiang, Chunyu. "DATA MINING AND ANALYSIS ON MULTIPLE TIME SERIES OBJECT DATA." Wright State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=wright1177959264.
Full textMorrill, Jeffrey P., and Jonathan Delatizky. "REAL-TIME RECOGNITION OF TIME-SERIES PATTERNS." International Foundation for Telemetering, 1993. http://hdl.handle.net/10150/608854.
Full textThis paper describes a real-time implementation of the pattern recognition technology originally developed by BBN [Delatizky et al] for post-processing of time-sampled telemetry data. This makes it possible to monitor a data stream for a characteristic shape, such as an arrhythmic heartbeat or a step-response whose overshoot is unacceptably large. Once programmed to recognize patterns of interest, it generates a symbolic description of a time-series signal in intuitive, object-oriented terms. The basic technique is to decompose the signal into a hierarchy of simpler components using rules of grammar, analogous to the process of decomposing a sentence into phrases and words. This paper describes the basic technique used for pattern recognition of time-series signals and the problems that must be solved to apply the techniques in real time. We present experimental results for an unoptimized prototype demonstrating that 4000 samples per second can be handled easily on conventional hardware.
Milton, Robert. "Time-series in distributed real-time databases." Thesis, University of Skövde, Department of Computer Science, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-827.
Full textIn a distributed real-time environment where it is imperative to make correct decisions it is important to have all facts available to make the most accurate decision in a certain situation. An example of such an environment is an Unmanned Aerial Vehicle (UAV) system where several UAVs cooperate to carry out a certain task and the data recorded is analyzed after the completion of the mission. This project aims to define and implement a time series architecture for use together with a distributed real-time database for the ability to store temporal data. The result from this project is a time series (TS) architecture that uses DeeDS, a distributed real-time database, for storage. The TS architecture is used by an application modelled from a UAV scenario for storing temporal data. The temporal data is produced by a simulator. The TS architecture solves the problem of storing temporal data for applications using DeeDS. The TS architecture is also useful as a foundation for integrating time series in DeeDS since it is designed for space efficiency and real-time requirements.
Thornlow, Robert Timothy. "Spectrum estimation using extrapolated time series." Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA246554.
Full textThesis Advisor(s): Hippenstiel, Ralph. Second Reader: Tummala, Murali. "December 1990." Description based on title screen as viewed on March 30, 2010. DTIC Descriptor(s): Frequency, Density, Data Management, Models, Signal To Noise Ratio, Theses, Power Spectra, Sequences, Estimates, Short Range(Time), Spectra, Sampling, Fast Fourier Transforms, Extrapolation, Data Processing. DTIC Identifier(s): Power Spectra, Estimates, Time Series Analysis, Extrapolation, Density, Theses, Fast Fourier Transforms, Eigenvectors, Mathematical Prediction. Author(s) subject terms: Data Extrapolation, Periodogram, AR spectral estimates. Includes bibliographical references (p. 94). Also available in print.