Academic literature on the topic 'Time series'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Time series.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Time series"
Cipra, Tomáš. "Asymmetric recursive methods for time series." Applications of Mathematics 39, no. 3 (1994): 203–14. http://dx.doi.org/10.21136/am.1994.134253.
Full textRatinger, Tomáš. "Seasonal time series with missing observations." Applications of Mathematics 41, no. 1 (1996): 41–55. http://dx.doi.org/10.21136/am.1996.134312.
Full textCIUIU, Daniel. "STRICT STATIONARY TIME SERIES AND AUTOCOPULA." Review of the Air Force Academy 16, no. 2 (October 31, 2018): 53–58. http://dx.doi.org/10.19062/1842-9238.2018.16.2.6.
Full textRay, W. D., Maurice Kendall, and J. K. Ord. "Time Series." Journal of the Royal Statistical Society. Series A (Statistics in Society) 157, no. 2 (1994): 308. http://dx.doi.org/10.2307/2983371.
Full textBooth, David E., Maurice Kendall, and J. Keith Ord. "Time Series." Technometrics 34, no. 1 (February 1992): 118. http://dx.doi.org/10.2307/1269585.
Full textKK, Maurice Kendall, and J. Keith Ord. "Time Series." Journal of the American Statistical Association 90, no. 432 (December 1995): 1492. http://dx.doi.org/10.2307/2291552.
Full textKK and Andrew Harvey. "Time Series." Journal of the American Statistical Association 90, no. 432 (December 1995): 1493. http://dx.doi.org/10.2307/2291556.
Full textZiegel, Eric R. "Time Series." Technometrics 44, no. 4 (November 2002): 408. http://dx.doi.org/10.1198/tech.2002.s95.
Full textHolmes, William M. "Time Series." International Journal of Forecasting 7, no. 4 (March 1992): 532–33. http://dx.doi.org/10.1016/0169-2070(92)90037-a.
Full textLounds, W. S., M. Kendall, and J. K. Ord. "Time Series." Statistician 43, no. 3 (1994): 461. http://dx.doi.org/10.2307/2348592.
Full textDissertations / Theses on the topic "Time series"
Rajan, Jebu Jacob. "Time series classification." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339538.
Full textPope, Kenneth James. "Time series analysis." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318445.
Full textYin, Jiang Ling. "Financial time series analysis." Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2492929.
Full textGore, Christopher Mark. "A time series classifier." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Gore_09007dcc804e6461.pdf.
Full textVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed April 29, 2008) Includes bibliographical references (p. 53-55).
NETO, ANSELMO CHAVES. "BOOTSTRAP IN TIME SERIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1991. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8324@1.
Full textThe bootstrap of B. Efron, what should not be imagined without fast andcheaper computation, can solve several problems free from assumption that the data conform to a bell-shaped curve. This work has the aim to present this computer-intensive technics in the context of Time Series - Box and Jenkins´s Methodology. As we know this methodology own some asymptotic results. Then in the identification stage of the structure of the model it may present some troubles on regions of the parametric space, as we show later on the bootstrap is proposed as an aption and a comparative simulation study is pointed out. We build up the bootstrap distribution of the sample autocorrelation and sample partial autocorrelation, and yet a bootstrap distribution to the non-linear LS estimator of the coefficients to the ARMA (p,q) model. As a consequence we get the non- parametric measure of the accuracy of the estimates. The study of simulation wich takes into account the non-linear LS estimato to the coefficients, actually focalize the borden of the stationarity and invertibility region.
AGUIAR, JOSE LUIZ DO NASCIMENTO DE. "TIME SERIES SYMILARITY MEASURES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=27789@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Atualmente, uma tarefa muito importante na mineração de dados é compreender como extrair os dados mais informativos dentre um número muito grande de dados. Uma vez que todos os campos de conhecimento apresentam uma grande quantidade de dados que precisam ser reduzidas até as informações mais representativas, a abordagem das séries temporais é definitivamente um método muito forte para representar e extrair estas informações. No entanto nós precisamos ter uma ferramenta apropriada para inferir os dados mais significativos destas séries temporais, e para nos ajudar, podemos utilizar alguns métodos de medida de similaridade para saber o grau de igualdade entre duas séries temporais, e nesta pesquisa nós vamos realizar um estudo utilizando alguns métodos de similaridade baseados em medidas de distância e aplicar estes métodos em alguns algoritmos de clusterização para fazer uma avaliação de se existe uma combinação (método de similaridade baseado em distância / algoritmo de clusterização) que apresenta uma performance melhor em relação a todos os outros utilizados neste estudo, ou se existe um método de similaridade baseado em distância que mostra um desempenho melhor que os demais.
Nowadays a very important task in data mining is to understand how to collect the most informative data in a very amount of data. Once every single field of knowledge have lots of data to summarize in the most representative information, the time series approach is definitely a very strong way to represent and collect this information from it (12, 22). On other hand we need to have an appropriate tool to extract the most significant data from this time series. To help us we can use some similarity methods to know how similar is one time series from another In this work we will perform a research using some distance-based similarity methods and apply it in some clustering algorithms to do an assessment to see if there is a combination (distance-based similarity methods / clustering algorithm) that present a better performance in relation with all the others used in this work or if there exists one distancebased similarity method that shows a better performance between the others.
Yin, Yong. "Outliers in Time Series /." Connect to resource, 1995. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1262638388.
Full textRana, Md Mashud. "Energy time series prediction." Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/11745.
Full textGrubb, Howard John. "Multivariate time series modelling." Thesis, University of Bath, 1990. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280803.
Full textAhsan, Ramoza. "Time Series Data Analytics." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/529.
Full textBooks on the topic "Time series"
Kendall, Maurice G. Time series. 3rd ed. Seven Oaks, Kent: E. Arnold, 1990.
Find full textMaurice, Kendall. Time series. 3rd ed. Sevenoaks: Edward Arnold, 1993.
Find full textC, Harvey A., ed. Time series. Aldershot, Hants, England: E. Elgar, 1994.
Find full textChan, Ngai Hang. Time Series. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9781118032466.
Full textMadsen, Henrik. Time series analysis. Boca Raton: Chapman & Hall/CRC, 2008.
Find full textOstrom, Charles. Time Series Analysis. 2455 Teller Road, Thousand Oaks California 91320 United States of America: SAGE Publications, Inc., 1990. http://dx.doi.org/10.4135/9781412986366.
Full textDeistler, Manfred, and Wolfgang Scherrer. Time Series Models. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13213-1.
Full textMaoz, Dan, Amiel Sternberg, and Elia M. Leibowitz, eds. Astronomical Time Series. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8941-3.
Full textPowell, Thomas M., and John H. Steele, eds. Ecological Time Series. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-6881-0.
Full textPowell, Thomas M., and John H. Steele, eds. Ecological Time Series. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1769-6.
Full textBook chapters on the topic "Time series"
Marin, Jean-Michel, and Christian P. Robert. "Time Series." In Springer Texts in Statistics, 209–50. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8687-9_7.
Full textVenables, W. N., and B. D. Ripley. "Time Series." In Modern Applied Statistics with S-Plus, 349–82. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4899-2819-1_14.
Full textManly, Bryan F. J. "Time series." In Randomization and Monte Carlo Methods in Biology, 164–204. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2995-2_9.
Full textKass, Robert E., Uri T. Eden, and Emery N. Brown. "Time Series." In Springer Series in Statistics, 513–61. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9602-1_18.
Full textVenables, W. N., and B. D. Ripley. "Time Series." In Statistics and Computing, 431–68. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4757-2719-7_15.
Full textRouan, Daniel. "Time Series." In Encyclopedia of Astrobiology, 1675. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1593.
Full textGooch, Jan W. "Time Series." In Encyclopedic Dictionary of Polymers, 999. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15403.
Full textHull, Isaiah. "Time Series." In Machine Learning for Economics and Finance in TensorFlow 2, 249–79. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6373-0_7.
Full textMukhopadhyay, Sayan. "Time Series." In Advanced Data Analytics Using Python, 121–43. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3450-1_6.
Full textKenny, Peter. "Time Series." In Better Business Decisions from Data, 197–203. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4842-0184-8_19.
Full textConference papers on the topic "Time series"
Østergaard, Jan. "Directed Redundancy in Time Series." In 2024 IEEE International Symposium on Information Theory (ISIT), 1973–78. IEEE, 2024. http://dx.doi.org/10.1109/isit57864.2024.10619644.
Full textGunopulos, Dimitrios, and Gautam Das. "Time series similarity measures and time series indexing." In the 2001 ACM SIGMOD international conference. New York, New York, USA: ACM Press, 2001. http://dx.doi.org/10.1145/375663.375808.
Full textde Carvalho, Osmar Abilio, Renato Fontes Guimaraes, Roberto Arnaldo Trancoso Gomes, and Nilton Correia da Silva. "Time series interpolation." In 2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2007. http://dx.doi.org/10.1109/igarss.2007.4423211.
Full textYe, Lexiang, and Eamonn Keogh. "Time series shapelets." In the 15th ACM SIGKDD international conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1557019.1557122.
Full textFrancke, Marc. "Time Series Econometrics." In 25th Annual European Real Estate Society Conference. European Real Estate Society, 2016. http://dx.doi.org/10.15396/eres2016_380.
Full textCombes, Florian, Ricardo Fraiman, and Badih Ghattas. "Time Series Sampling." In ITISE 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/engproc2022018032.
Full textYe, Yufeng, Qichao He, Peng Zhang, Jie Xiao, and Zhao Li. "Multivariate Time Series Anomaly Detection with Fourier Time Series Transformer." In 2023 IEEE 12th International Conference on Cloud Networking (CloudNet). IEEE, 2023. http://dx.doi.org/10.1109/cloudnet59005.2023.10490086.
Full textRakthanmanon, Thanawin, Eamonn J. Keogh, Stefano Lonardi, and Scott Evans. "Time Series Epenthesis: Clustering Time Series Streams Requires Ignoring Some Data." In 2011 IEEE 11th International Conference on Data Mining (ICDM). IEEE, 2011. http://dx.doi.org/10.1109/icdm.2011.146.
Full textZhu, Yan, Makoto Imamura, Daniel Nikovski, and Eamonn Keogh. "Time Series Chains: A Novel Tool for Time Series Data Mining." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/764.
Full textMei, Xu, and Huang Chao. "Financial time series difference analysis based on symbolic time series method." In 2011 International Conference on E-Business and E-Government (ICEE). IEEE, 2011. http://dx.doi.org/10.1109/icebeg.2011.5882598.
Full textReports on the topic "Time series"
Broemeling, Lyle. Changing Time Series. Fort Belvoir, VA: Defense Technical Information Center, August 1986. http://dx.doi.org/10.21236/ada178030.
Full textAdler, Robert J., Raisa E. Feldman, and Colin Gallagher. Analysing Stable Time Series. Fort Belvoir, VA: Defense Technical Information Center, January 1997. http://dx.doi.org/10.21236/ada336964.
Full textRamos, Ernesto. Resampling Methods for Time Series. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada198942.
Full textWilliamson, M. A. Benchmarking of energy time series. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6990845.
Full textTichomirova, T. M., and A. G. Sukiasyan. Test bank «Time Series Models». Ailamazyan Program Systems Institute of Russian Academy of Sciences, November 2023. http://dx.doi.org/10.12731/ofernio.2023.25215.
Full textLai, Eric, Daniel Moyer, Baichuan Yuan, Eric Fox, Blake Hunter, Andrea L. Bertozzi, and Jeffrey Brantingham. Topic Time Series Analysis of Microblogs. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada610278.
Full textGlynn, P. W., and D. L. Iglehart. The Theory of Standardized Time Series. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada158383.
Full textFriedman, Avner, Jr Miller, and Willard. Radar/Sonar and Time Series Analysis. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada238496.
Full textJääskeläinen, Emmihenna. Construction of reliable albedo time series. Finnish Meteorological Institute, September 2023. http://dx.doi.org/10.35614/isbn.9789523361782.
Full textDeSmet, Chance, Michael Girard, Elizabeth Coda, and Yijing Watkins. Universal Fourier Attack for Time Series. Office of Scientific and Technical Information (OSTI), September 2023. http://dx.doi.org/10.2172/2338170.
Full text