Journal articles on the topic 'Time-Scales calculus'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Time-Scales calculus.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Khan, A. R., F. Mehmood, and M. A. Shaikh. "Обобщение неравенств Островского на временных шкалах." Владикавказский математический журнал 25, no. 3 (September 25, 2023): 98–110. http://dx.doi.org/10.46698/q4172-3323-1923-j.
Full textTorrest, Delfim F. M. "The variational calculus on time scales." International Journal for Simulation and Multidisciplinary Design Optimization 4, no. 1 (January 2010): 11–25. http://dx.doi.org/10.1051/ijsmdo/2010003.
Full textYaslan, İsmail. "Beta-Fractional Calculus on Time Scales." Journal of Fractional Calculus and Nonlinear Systems 4, no. 2 (December 27, 2023): 48–60. http://dx.doi.org/10.48185/jfcns.v4i2.877.
Full textSahir, Muhammad Jibril Shahab. "Uniformity of dynamic inequalities constituted on time Scales." Engineering and Applied Science Letters 3, no. 4 (October 24, 2020): 19–27. http://dx.doi.org/10.30538/psrp-easl2020.0048.
Full textMalinowska, Agnieszka B., and Natália Martins. "The Second Noether Theorem on Time Scales." Abstract and Applied Analysis 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/675127.
Full textSahir, Muhammad Jibril Shahab. "Coordination of Classical and Dynamic Inequalities Complying on Time Scales." European Journal of Mathematical Analysis 3 (February 3, 2023): 12. http://dx.doi.org/10.28924/ada/ma.3.12.
Full textGanie, Javid Ahmad, and Renu Jain. "THE SUMUDU TRANSFORM ON DISCRETE TIME SCALES." Jnanabha 51, no. 02 (2021): 58–67. http://dx.doi.org/10.58250/jnanabha.2021.51208.
Full textSahir, M. J. S. "Объединение классических и динамических неравенств, возникающих при анализе временных масштабов." Вестник КРАУНЦ. Физико-математические науки, no. 4 (December 29, 2020): 26–36. http://dx.doi.org/10.26117/2079-6641-2020-33-4-26-36.
Full textZhao, Dafang, and Tongxing Li. "On conformable delta fractional calculus on time scales." Journal of Mathematics and Computer Science 16, no. 03 (September 15, 2016): 324–35. http://dx.doi.org/10.22436/jmcs.016.03.03.
Full textSeiffertt, John. "Adaptive Resonance Theory in the time scales calculus." Neural Networks 120 (December 2019): 32–39. http://dx.doi.org/10.1016/j.neunet.2019.08.010.
Full textBenkhettou, Nadia, Salima Hassani, and Delfim F. M. Torres. "A conformable fractional calculus on arbitrary time scales." Journal of King Saud University - Science 28, no. 1 (January 2016): 93–98. http://dx.doi.org/10.1016/j.jksus.2015.05.003.
Full textFard, Omid Solaymani, and Tayebeh A. Bidgoli. "Calculus of fuzzy functions on time scales (I)." Soft Computing 19, no. 2 (March 12, 2014): 293–305. http://dx.doi.org/10.1007/s00500-014-1252-6.
Full textBohner, Martin, and Gusein Sh Guseinov. "Double integral calculus of variations on time scales." Computers & Mathematics with Applications 54, no. 1 (July 2007): 45–57. http://dx.doi.org/10.1016/j.camwa.2006.10.032.
Full textUfuktepe, Ünal, and Sinan Kapçak. "Unification of calculus on Time Scales with mathematica." Applied Mathematics and Computation 218, no. 3 (October 2011): 1102–6. http://dx.doi.org/10.1016/j.amc.2011.03.030.
Full textRezk, Haytham M., Mahmoud I. Mohammed, Oluwafemi Samson Balogun, and Ahmed I. Saied. "Exploring Generalized Hardy-Type Inequalities via Nabla Calculus on Time Scales." Symmetry 15, no. 9 (August 27, 2023): 1656. http://dx.doi.org/10.3390/sym15091656.
Full textZakarya, Mohammed, A. I. Saied, Maha Ali, Haytham M. Rezk, and Mohammed R. Kenawy. "Novel Integral Inequalities on Nabla Time Scales with C-Monotonic Functions." Symmetry 15, no. 6 (June 12, 2023): 1248. http://dx.doi.org/10.3390/sym15061248.
Full textNosheen, Ammara, Aneeqa Aslam, Khuram Ali Khan, Khalid Mahmood Awan, and Hamid Reza Moradi. "Multivariate Dynamic Sneak-Out Inequalities on Time Scales." Journal of Mathematics 2021 (May 26, 2021): 1–17. http://dx.doi.org/10.1155/2021/9978050.
Full textMartins, Natália, and Delfim F. M. Torres. "Calculus of variations on time scales with nabla derivatives." Nonlinear Analysis: Theory, Methods & Applications 71, no. 12 (December 2009): e763-e773. http://dx.doi.org/10.1016/j.na.2008.11.035.
Full textSeiffertt, J., and D. C. Wunsch. "Backpropagation and Ordered Derivatives in the Time Scales Calculus." IEEE Transactions on Neural Networks 21, no. 8 (August 2010): 1262–69. http://dx.doi.org/10.1109/tnn.2010.2050332.
Full textSmoljak Kalamir, Ksenija. "New Diamond-α Steffensen-Type Inequalities for Convex Functions over General Time Scale Measure Spaces." Axioms 11, no. 7 (July 1, 2022): 323. http://dx.doi.org/10.3390/axioms11070323.
Full textGogoi, Bikash, Utpal Kumar Saha, Bipan Hazarika, Delfim F. M. Torres, and Hijaz Ahmad. "Nabla Fractional Derivative and Fractional Integral on Time Scales." Axioms 10, no. 4 (November 24, 2021): 317. http://dx.doi.org/10.3390/axioms10040317.
Full textKaymakçalan, Billur. "Lyapunov stability theory for dynamic systems on time scales." Journal of Applied Mathematics and Stochastic Analysis 5, no. 3 (January 1, 1992): 275–81. http://dx.doi.org/10.1155/s1048953392000224.
Full textEl-Deeb, Ahmed A., Samer D. Makharesh, and Barakah Almarri. "Some New Inverse Hilbert Inequalities on Time Scales." Symmetry 14, no. 11 (October 25, 2022): 2234. http://dx.doi.org/10.3390/sym14112234.
Full textZakarya, Mohammed, Ghada AlNemer, Ahmed I. Saied, Roqia Butush, Omar Bazighifan, and Haytham M. Rezk. "Generalized Inequalities of Hilbert-Type on Time Scales Nabla Calculus." Symmetry 14, no. 8 (July 24, 2022): 1512. http://dx.doi.org/10.3390/sym14081512.
Full textAly, Elkhateeb S., Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, and Wael W. Mohammed. "Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus." AIMS Mathematics 9, no. 2 (2024): 5147–70. http://dx.doi.org/10.3934/math.2024250.
Full textPELEN, Neslihan Nesliye, and Zeynep KAYAR. "Falling Body Motion in Time Scale Calculus." Gazi University Journal of Science Part A: Engineering and Innovation 11, no. 1 (March 21, 2024): 210–24. http://dx.doi.org/10.54287/gujsa.1427944.
Full textZakarya, Mohammed, Mohamed Altanji, Ghada AlNemer, Hoda A. Abd El-Hamid, Clemente Cesarano, and Haytham M. Rezk. "Fractional Reverse Coposn’s Inequalities via Conformable Calculus on Time Scales." Symmetry 13, no. 4 (March 25, 2021): 542. http://dx.doi.org/10.3390/sym13040542.
Full textAkgandüller, Ömer, and Sibel Paşalı Atmaca. "Discrete Normal Vector Field Approximation via Time Scale Calculus." Applied Mathematics and Nonlinear Sciences 5, no. 1 (March 31, 2020): 349–60. http://dx.doi.org/10.2478/amns.2020.1.00033.
Full textShen, Jian-Mei, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, and Yu-Ming Chu. "Certain novel estimates within fractional calculus theory on time scales." AIMS Mathematics 5, no. 6 (2020): 6073–86. http://dx.doi.org/10.3934/math.2020390.
Full textÖzkan, Umut Mutlu, and Billûr Kaymakçalan. "Basics of diamond-α partial dynamic calculus on time scales." Mathematical and Computer Modelling 50, no. 9-10 (November 2009): 1253–61. http://dx.doi.org/10.1016/j.mcm.2009.01.007.
Full textAnastassiou, George A. "Principles of delta fractional calculus on time scales and inequalities." Mathematical and Computer Modelling 52, no. 3-4 (August 2010): 556–66. http://dx.doi.org/10.1016/j.mcm.2010.03.055.
Full textAgarwal, Ravi P., and Martin Bohner. "Basic Calculus on Time Scales and some of its Applications." Results in Mathematics 35, no. 1-2 (March 1999): 3–22. http://dx.doi.org/10.1007/bf03322019.
Full textAnastassiou, George A. "Foundations of nabla fractional calculus on time scales and inequalities." Computers & Mathematics with Applications 59, no. 12 (June 2010): 3750–62. http://dx.doi.org/10.1016/j.camwa.2010.03.072.
Full textBourdin, Loïc. "Nonshifted calculus of variations on time scales with ∇-differentiable σ." Journal of Mathematical Analysis and Applications 411, no. 2 (March 2014): 543–54. http://dx.doi.org/10.1016/j.jmaa.2013.10.013.
Full textCheng, Quanxin, and Jinde Cao. "Global Synchronization of Complex Networks with Discrete Time Delays on Time Scales." Discrete Dynamics in Nature and Society 2011 (2011): 1–19. http://dx.doi.org/10.1155/2011/287670.
Full textLi, Yongkun, and Chao Wang. "Almost Periodic Functions on Time Scales and Applications." Discrete Dynamics in Nature and Society 2011 (2011): 1–20. http://dx.doi.org/10.1155/2011/727068.
Full textRezk, Haytham M., Ahmed I. Saied, Maha Ali, Belal A. Glalah, and Mohammed Zakarya. "Novel Hardy-Type Inequalities with Submultiplicative Functions on Time Scales Using Delta Calculus." Axioms 12, no. 8 (August 16, 2023): 791. http://dx.doi.org/10.3390/axioms12080791.
Full textDryl, Monika, and Delfim F. M. Torres. "Necessary Condition for an Euler-Lagrange Equation on Time Scales." Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/631281.
Full textMEHMOOD, FARAZ, and AKHMADJON SOLEEV. "NEW GENERALIZATION OF OSTROWSKI-GRÜSS LIKE INEQUALITY ON TIME SCALES." 2022-yil 3-son (133/1) ANIQ FANLAR SERIYASI 1, no. 1 (February 14, 2023): 1–8. http://dx.doi.org/10.59251/2181-1296.v1.1.1.
Full textM E H M O O D, F. A. R. A. Z., and A. K. H. M. A. D. J. O. N. S O L E E V. "NEW GENERALIZATION OF OSTROWSKI-GRÜSS LIKE INEQUALITY ON TIME SCALES." 2022-yil, 3-son (133/1) ANIQ FANLAR SERIYASI 1, no. 1 (February 20, 2023): 1–11. http://dx.doi.org/10.59251/2181-1296.v1.1.1894.
Full textM E H M O O D, F. A. R. A. Z., and A. K. H. M. A. D. J. O. N. S O L E E V. "NEW GENERALIZATION OF OSTROWSKI-GRÜSS LIKE INEQUALITY ON TIME SCALES." 2022-yil, 3-son (133/1) ANIQ FANLAR SERIYASI 1, no. 1 (February 20, 2023): 1–11. http://dx.doi.org/10.59251/2181-1296.2023.v1.1.1894.
Full textYan, Wu, and Fu Jing-Li. "Noether’s theorems of variable mass systems on time scales." Applied Mathematics and Nonlinear Sciences 3, no. 1 (May 29, 2018): 229–40. http://dx.doi.org/10.21042/amns.2018.1.00017.
Full textCai, Jinxiang, Zhenkun Huang, and Honghua Bin. "Exponential Stability of Periodic Solution to Wilson-Cowan Networks with Time-Varying Delays on Time Scales." Advances in Artificial Neural Systems 2014 (April 2, 2014): 1–10. http://dx.doi.org/10.1155/2014/750532.
Full textEl-Deeb, Ahmed A., Dumitru Baleanu, and Jan Awrejcewicz. "(γ,a)-Nabla Reverse Hardy–Hilbert-Type Inequalities on Time Scales." Symmetry 14, no. 8 (August 17, 2022): 1714. http://dx.doi.org/10.3390/sym14081714.
Full textHanif, Usama, Ammara Nosheen, Rabia Bibi, Khuram Ali Khan, and Hamid Reza Moradi. "Some Hardy-Type Inequalities for Superquadratic Functions via Delta Fractional Integrals." Mathematical Problems in Engineering 2021 (May 28, 2021): 1–14. http://dx.doi.org/10.1155/2021/9939468.
Full textHu, Meng, and Lili Wang. "Unique Existence Theorem of Solution of Almost Periodic Differential Equations on Time Scales." Discrete Dynamics in Nature and Society 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/240735.
Full textRezk, Haytham M., Juan E. Nápoles Valdés, Maha Ali, Ahmed I. Saied, and Mohammed Zakarya. "Delta Calculus on Time Scale Formulas That Are Similar to Hilbert-Type Inequalities." Mathematics 12, no. 1 (December 28, 2023): 104. http://dx.doi.org/10.3390/math12010104.
Full textNosheen, Ammara, Huma Akbar, Maroof Ahmad Sultan, Jae Dong Chung, and Nehad Ali Shah. "Hardy–Leindler, Yang and Hwang Inequalities for Functions of Several Variables via Time Scale Calculus." Symmetry 14, no. 4 (April 12, 2022): 802. http://dx.doi.org/10.3390/sym14040802.
Full textEl-Deeb, A. A., H. A. Elsennary, and Eze R. Nwaeze. "Generalized Weighted Ostrowski, Trapezoid and Grüss Type Inequalities on Time Scales." Fasciculi Mathematici 60, no. 1 (June 1, 2018): 123–44. http://dx.doi.org/10.1515/fascmath-2018-0008.
Full textAhmed, Ahmed M., Ahmed I. Saied, Maha Ali, Mohammed Zakarya, and Haytham M. Rezk. "Generalized Dynamic Inequalities of Copson Type on Time Scales." Symmetry 16, no. 3 (March 1, 2024): 288. http://dx.doi.org/10.3390/sym16030288.
Full text