Academic literature on the topic 'Time-Scales calculus'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Time-Scales calculus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Time-Scales calculus"

1

Khan, A. R., F. Mehmood та M. A. Shaikh. "Обобщение неравенств Островского на временных шкалах". Владикавказский математический журнал 25, № 3 (2023): 98–110. http://dx.doi.org/10.46698/q4172-3323-1923-j.

Full text
Abstract:
The idea of time scales calculus’ theory was initiated and introduced by Hilger (1988) in his PhD thesis order to unify discret and continuous analysis and to expend the discrete and continous theories to cases ``in between''. Since then, mathematical research in this field has exceeded more than 1000 publications and a lot of applications in the fields of science, i.e., operations research, economics, physics, engineering, statistics, finance and biology. Ostrowski proved an inequality to estimate the absolute deviation of a differentiable function from its integral mean. This result was obta
APA, Harvard, Vancouver, ISO, and other styles
2

Torrest, Delfim F. M. "The variational calculus on time scales." International Journal for Simulation and Multidisciplinary Design Optimization 4, no. 1 (2010): 11–25. http://dx.doi.org/10.1051/ijsmdo/2010003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yaslan, İsmail. "Beta-Fractional Calculus on Time Scales." Journal of Fractional Calculus and Nonlinear Systems 4, no. 2 (2023): 48–60. http://dx.doi.org/10.48185/jfcns.v4i2.877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sahir, Muhammad Jibril Shahab. "Uniformity of dynamic inequalities constituted on time Scales." Engineering and Applied Science Letters 3, no. 4 (2020): 19–27. http://dx.doi.org/10.30538/psrp-easl2020.0048.

Full text
Abstract:
In this article, we present extensions of some well-known inequalities such as Young's inequality and Qi's inequality on fractional calculus of time scales. To find generalizations of such types of dynamic inequalities, we apply the time scale Riemann-Liouville type fractional integrals. We investigate dynamic inequalities on delta calculus and their symmetric nabla results. The theory of time scales is utilized to combine versions in one comprehensive form. The calculus of time scales unifies and extends some continuous forms and their discrete and quantum inequalities. By applying the calcul
APA, Harvard, Vancouver, ISO, and other styles
5

Malinowska, Agnieszka B., and Natália Martins. "The Second Noether Theorem on Time Scales." Abstract and Applied Analysis 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/675127.

Full text
Abstract:
We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for theh-calculus and the second Noether theorem for theq-calculus.
APA, Harvard, Vancouver, ISO, and other styles
6

Sahir, Muhammad Jibril Shahab. "Coordination of Classical and Dynamic Inequalities Complying on Time Scales." European Journal of Mathematical Analysis 3 (February 3, 2023): 12. http://dx.doi.org/10.28924/ada/ma.3.12.

Full text
Abstract:
In this research article, we present extensions of some classical inequalities such as Schweitzer, Pólya–Szegö, Kantorovich and Greub–Rheinboldt inequalities of fractional calculus on time scales. To investigate generalizations of such types of classical inequalities, we use the time scales Riemann–Liouville type fractional integrals. We explore dynamic inequalities on delta calculus and their symmetric nabla versions. A time scale is an arbitrary nonempty closed subset of the real numbers. The theory of time scales is applied to combine results in one comprehensive form. The calculus of time
APA, Harvard, Vancouver, ISO, and other styles
7

Ganie, Javid Ahmad, and Renu Jain. "THE SUMUDU TRANSFORM ON DISCRETE TIME SCALES." Jnanabha 51, no. 02 (2021): 58–67. http://dx.doi.org/10.58250/jnanabha.2021.51208.

Full text
Abstract:
The study of dynamic equations on time scale is an area of mathematics that has recently received a lot of attention. This type of calculus has been created in order to unify the study of discrete and continuous analysis. Integral transforms play a crucial role in analysis in solving differential and difference equations. In this paper, we introduce the Sumudu transform on two different time scales by using the theory of time scale calculus. Finally, we employ these definitions to derive the results like, convolution, delay(shift) and inversion on these discrete time scales. Further, these res
APA, Harvard, Vancouver, ISO, and other styles
8

Sahir, M. J. S. "Объединение классических и динамических неравенств, возникающих при анализе временных масштабов". Вестник КРАУНЦ. Физико-математические науки, № 4 (29 грудня 2020): 26–36. http://dx.doi.org/10.26117/2079-6641-2020-33-4-26-36.

Full text
Abstract:
In this paper, we present an extension of dynamic Renyi’s inequality on time scales by using the time scale Riemann–Liouville type fractional integral. Furthermore, we find generalizations of the well–known Lyapunov’s inequality and Radon’s inequality on time scales by using the time scale Riemann–Liouville type fractional integrals. Our investigations unify and extend some continuous inequalities and their corresponding discrete analogues. В этой статье мы представляем расширение динамического неравенства Реньи на шкалы времени с помощью дробного интеграла типа Римана-Лиувилля. Кроме того, мы
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Dafang, and Tongxing Li. "On conformable delta fractional calculus on time scales." Journal of Mathematics and Computer Science 16, no. 03 (2016): 324–35. http://dx.doi.org/10.22436/jmcs.016.03.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seiffertt, John. "Adaptive Resonance Theory in the time scales calculus." Neural Networks 120 (December 2019): 32–39. http://dx.doi.org/10.1016/j.neunet.2019.08.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Time-Scales calculus"

1

Ferreira, Rui Alexandre Cardoso. "Calculus of variations on time scales and discrete fractional calculus." Doctoral thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/2921.

Full text
Abstract:
Doutoramento em Matemática<br>Estudamos problemas do cálculo das variações e controlo óptimo no contexto das escalas temporais. Especificamente, obtemos condições necessárias de optimalidade do tipo de Euler–Lagrange tanto para lagrangianos dependendo de derivadas delta de ordem superior como para problemas isoperimétricos. Desenvolvemos também alguns métodos directos que permitem resolver determinadas classes de problemas variacionais através de desigualdades em escalas temporais. No último capítulo apresentamos operadores de diferença fraccionários e propomos um novo cálculo das variações fr
APA, Harvard, Vancouver, ISO, and other styles
2

Dryl, Monika. "Calculus of variations on time scales and applications to economics." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/12869.

Full text
Abstract:
Doutoramento em Matemática<br>We consider some problems of the calculus of variations on time scales. On the beginning our attention is paid on two inverse extremal problems on arbitrary time scales. Firstly, using the Euler-Lagrange equation and the strengthened Legendre condition, we derive a general form for a variation functional that attains a local minimum at a given point of the vector space. Furthermore, we prove a necessary condition for a dynamic integro-differential equation to be an Euler-Lagrange equation. New and interesting results for the discrete and quantum calculus ar
APA, Harvard, Vancouver, ISO, and other styles
3

Bastos, Nuno Rafael de Oliveira. "Fractional calculus on time scales - Cálculo fraccional em escalas temporais." Doctoral thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/8566.

Full text
Abstract:
Doutoramento em Matemática<br>Introduzimos um cálculo das variações fraccional nas escalas temporais ℤ e (hℤ)!. Estabelecemos a primeira e a segunda condição necessária de optimalidade. São dados alguns exemplos numéricos que ilustram o uso quer da nova condição de Euler–Lagrange quer da nova condição do tipo de Legendre. Introduzimos também novas definições de derivada fraccional e de integral fraccional numa escala temporal com recurso à transformada inversa generalizada de Laplace.<br>We introduce a discrete-time fractional calculus of variations on the time scales ℤ and (ℎℤ)!. First a
APA, Harvard, Vancouver, ISO, and other styles
4

McMahon, Chris. "Calculus of Variations on Time Scales and Its Applications to Economics." TopSCHOLAR®, 2008. http://digitalcommons.wku.edu/theses/370.

Full text
Abstract:
The goal of time scale research is to progress the development of a harmonized theory that is all encompassing of the more commonly known specialized forms. The main results of this paper is the presentation of the Ramsey model which can be written using both the A and V operators, and solved using the two separate theories of the calculus of variations on time scales. The next presentation will be of the solution of an adjustment model, for a specific form of a time scale, whose functional can only be optimized, using the existing theory, when written with the A operator. We will also develop
APA, Harvard, Vancouver, ISO, and other styles
5

Hariz, Belgacem Khader. "Higher-order Embedding Formalism, Noether’s Theorem on Time Scales and Eringen’s Nonlocal Elastica." Electronic Thesis or Diss., Pau, 2022. https://theses.hal.science/tel-03981833.

Full text
Abstract:
En mathématiques, le calcul des variations est un ensemble de méthodes permettant la détermination de solutions à des problèmes d'optimisation des quantités traduites en termes de fonctionnelle. De nombreuses applications existent, notamment dans la recherche de courbes ou de surfaces minimales. Les systèmes dynamiques considérés sont de natures diverses (équations différentielles, intégrales ou stochastiques) et modélisent des problèmes d'origines multiples : aérospatiale, automobile, biologie, économie, médecine, etc. Le théorème de Noether présente un fort intérêt puisqu'il propose une loi
APA, Harvard, Vancouver, ISO, and other styles
6

Arslan, Aykut. "Discrete Fractional Hermite-Hadamard Inequality." TopSCHOLAR®, 2017. http://digitalcommons.wku.edu/theses/1940.

Full text
Abstract:
This thesis is comprised of three main parts: The Hermite-Hadamard inequality on discrete time scales, the fractional Hermite-Hadamard inequality, and Karush-Kuhn- Tucker conditions on higher dimensional discrete domains. In the first part of the thesis, Chapters 2 & 3, we define a convex function on a special time scale T where all the time points are not uniformly distributed on a time line. With the use of the substitution rules of integration we prove the Hermite-Hadamard inequality for convex functions defined on T. In the fourth chapter, we introduce fractional order Hermite-Hadamard ine
APA, Harvard, Vancouver, ISO, and other styles
7

Kisela, Tomáš. "Basics of Qualitative Theory of Linear Fractional Difference Equations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-234025.

Full text
Abstract:
Tato doktorská práce se zabývá zlomkovým kalkulem na diskrétních množinách, přesněji v rámci takzvaného (q,h)-kalkulu a jeho speciálního případu h-kalkulu. Nejprve jsou položeny základy teorie lineárních zlomkových diferenčních rovnic v (q,h)-kalkulu. Jsou diskutovány některé jejich základní vlastnosti, jako např. existence, jednoznačnost a struktura řešení, a je zavedena diskrétní analogie Mittag-Lefflerovy funkce jako vlastní funkce operátoru zlomkové diference. Dále je v rámci h-kalkulu provedena kvalitativní analýza skalární a vektorové testovací zlomkové diferenční rovnice. Výsledky analý
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Time-Scales calculus"

1

Bohner, Martin, and Svetlin G. Georgiev. Multivariable Dynamic Calculus on Time Scales. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Georgiev, Svetlin G. Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73954-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Variational Calculus on Time Scales. Nova Science Publishers, Incorporated, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Georgiev, Svetlin G. Variational Calculus on Time Scales. Nova Science Publishers, Incorporated, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bohner, Martin, and Svetlin G. Georgiev. Multivariable Dynamic Calculus on Time Scales. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bohner, Martin, and Svetlin G. Georgiev. Multivariable Dynamic Calculus on Time Scales. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bohner, Martin, and Svetlin G. Georgiev. Multivariable Dynamic Calculus on Time Scales. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hardy Type Inequalities on Time Scales. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

O'Regan, Donal, Ravi P. Agarwal, and Samir H. Saker. Hardy Type Inequalities on Time Scales. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

O'Regan, Donal, Ravi P. Agarwal, and Samir H. Saker. Hardy Type Inequalities on Time Scales. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Time-Scales calculus"

1

Bohner, Martin, and Svetlin G. Georgiev. "Time Scales." In Multivariable Dynamic Calculus on Time Scales. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Seiffertt, John, and Donald C. Wunsch. "The Time Scales Calculus." In Evolutionary Learning and Optimization. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-03180-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Georgiev, Svetlin G. "Calculus on Time Scales." In Functional Dynamic Equations on Time Scales. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15420-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bohner, Martin, and Allan Peterson. "The Time Scales Calculus." In Dynamic Equations on Time Scales. Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0201-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goodrich, Christopher, and Allan C. Peterson. "Calculus on Mixed Time Scales." In Discrete Fractional Calculus. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25562-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Georgiev, Svetlin G. "Elements of the Time Scale Calculus." In Integral Equations on Time Scales. Atlantis Press, 2016. http://dx.doi.org/10.2991/978-94-6239-228-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bohner, Martin, and Svetlin G. Georgiev. "Partial Differentiation on Time Scales." In Multivariable Dynamic Calculus on Time Scales. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bohner, Martin, and Svetlin G. Georgiev. "Multiple Integration on Time Scales." In Multivariable Dynamic Calculus on Time Scales. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47620-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bohner, Martin, Gusein Guseinov, and Allan Peterson. "Introduction to the Time Scales Calculus." In Advances in Dynamic Equations on Time Scales. Birkhäuser Boston, 2003. http://dx.doi.org/10.1007/978-0-8176-8230-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Georgiev, Svetlin G. "Convolution on Time Scales." In Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73954-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Time-Scales calculus"

1

Kapcak, Sinan, and Ünal Ufuktepe. "Multivariable Calculus on Time Scales." In 2011 International Conference on Computational Science and Its Applications (ICCSA). IEEE, 2011. http://dx.doi.org/10.1109/iccsa.2011.28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Girejko, Ewa, Agnieszka B. Malinowska, and Delfim F. M. Torres. "A unified approach to the calculus of variations on time scales." In 2010 Chinese Control and Decision Conference (CCDC). IEEE, 2010. http://dx.doi.org/10.1109/ccdc.2010.5498972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Niu, Haoyu, YangQuan Chen, Lihong Guo, and Bruce J. West. "A New Triangle: Fractional Calculus, Renormalization Group, and Machine Learning." In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-70505.

Full text
Abstract:
Abstract The emergence of the systematic study of complexity as a science has resulted from the growing recognition that the fundamental assumptions upon which Newtonian physics is based are not satisfied throughout most of science, e.g., time is not necessarily uniformly flowing in one direction, nor is space homogeneous. Herein we discuss how the fractional calculus (FC), renormalization group (RG) theory and machine learning (ML) have each developed independently in the study of distinct phenomena in which one or more of the underlying assumptions of Newtonian formalism is violated. FC has
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!