Academic literature on the topic 'TIME QUANTUM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TIME QUANTUM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "TIME QUANTUM"
Zhu, Gaoyan, Lei Xiao, Bingzi Huo, and Peng Xue. "Photonic discrete-time quantum walks [Invited]." Chinese Optics Letters 18, no. 5 (2020): 052701. http://dx.doi.org/10.3788/col202018.052701.
Full textAGLIARI, ELENA, OLIVER MÜLKEN, and ALEXANDER BLUMEN. "CONTINUOUS-TIME QUANTUM WALKS AND TRAPPING." International Journal of Bifurcation and Chaos 20, no. 02 (February 2010): 271–79. http://dx.doi.org/10.1142/s0218127410025715.
Full textGóźdź, Andrzej, Marek Góźdź, and Aleksandra Pȩdrak. "Quantum Time and Quantum Evolution." Universe 9, no. 6 (May 26, 2023): 256. http://dx.doi.org/10.3390/universe9060256.
Full textSkulimowski, Marcin. "Quantum World with Quantum Time." Foundations of Physics Letters 19, no. 2 (April 2006): 127–41. http://dx.doi.org/10.1007/s10702-006-0371-4.
Full textBojowald, Martin, Golam Mortuza Hossain, Mikhail Kagan, and Casey Tomlin. "Quantum Matter in Quantum Space-Time." Quantum Matter 2, no. 6 (December 1, 2013): 436–43. http://dx.doi.org/10.1166/qm.2013.1078.
Full textNassar, Antônio B. "Quantum traversal time." Physical Review A 38, no. 2 (July 1, 1988): 683–87. http://dx.doi.org/10.1103/physreva.38.683.
Full textDavies, P. C. W. "Quantum tunneling time." American Journal of Physics 73, no. 1 (January 2005): 23–27. http://dx.doi.org/10.1119/1.1810153.
Full textHoriuchi, Noriaki. "Quantum time lens." Nature Photonics 11, no. 5 (May 2017): 267. http://dx.doi.org/10.1038/nphoton.2017.70.
Full textLoveridge, Leon, and Takayuki Miyadera. "Relative Quantum Time." Foundations of Physics 49, no. 6 (May 31, 2019): 549–60. http://dx.doi.org/10.1007/s10701-019-00268-w.
Full textKiefer, Claus, and Patrick Peter. "Time in Quantum Cosmology." Universe 8, no. 1 (January 8, 2022): 36. http://dx.doi.org/10.3390/universe8010036.
Full textDissertations / Theses on the topic "TIME QUANTUM"
Oppenheim, Jonathan A. "Quantum time." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ48689.pdf.
Full textLaflamme, Raymond. "Time and quantum cosmology." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278123.
Full textCramer, Claes Richard. "Quantum aspects of time-machines." Thesis, University of York, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265661.
Full textVona, Nicola. "On time in quantum mechanics." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-166201.
Full textObwohl Zeitmessungen tagtäglich in vielen Laboren durchgeführt werden, ist ihre theoretische Beschreibung noch unklar. Gleichermaßen sind Gültigkeit und Bedeutung der Energie-Zeit-Unschärfe ungeklärt. Der erste Teil dieser Arbeit diskutiert die Notwendigkeit von positive operator valued measures (POVM) zur Beschreibung von allen Quantenexperimenten, sowie die bedeutende Rolle des Wahrscheinlichkeitsstroms in Zeitmessungen. Außerdem, wird gezeigt, dass kein POVM existiert, der den Wahrscheinlichkeitsstrom jeder Wellenfunktion in einer natürlichen Menge annähert. Die Wahl dieser Menge ist aber entscheidend, und auf beschränkten Mengen ist der Wahrscheinlichkeitsstrom eine gute Vorhersage für Zeitmessungen. Einige Ideen sind diskutiert, wie man Zeitexperimente durchführen kann, um Quanteneffekten zu detektieren. Der zweite Teil dieser Arbeit beschäftigt sich mit der Energie-Zeit-Unschärfe, insbesondere für ein Modell von Alpha-Zerfall, wobei man die Energievarianz explizit berechnen kann, und die Zeitvarianz abschätzt. Diese Abschätzung ist für Systeme mit langen Lebensdauern gut, und in diesem Fall wird gezeigt, dass die Energie-Zeit-Unschärfe gilt. Ebenso wird gezeigt, dass die linewidth-lifetime relation gilt. Im allgemein wird angenommen, dass diese zwei Relationen dieselben sind. Im Gegensatz dazu, wird in der Dissertation aber gezeigt, dass sie sich unabhängig voneinander verhalten. Für diese Resultate, braucht man quantitative Streuabschätzungen. Zu diesem Zweck werden Schranken in der Form $\|\1_Re^{-iHt}\psi\|_2^2 \leq C t^{-3}$ in der Dissertation gezeigt, wo $\psi$ der Anfangszustand ist, $H$ der Hamiltonoperator, $R$ eine positive Konstante, und $C$ explizit bekannt ist. Als Zwischenschritt werden Schranken für die Ableitungen der $S$-Matrix in der Form $\|\1_K S^{(n)}\|_\infty \leq C_{n,K} $ bewiesen, wobei $n=1,2,3$, und die Konstanten $C_{n,K}$ explizit bekannt sind.
Poulios, Konstantinos. "Integrated photonic continuous-time quantum walks." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633256.
Full textRodgers, Peter A. "Time-dependent pulses in quantum optics." Thesis, Queen's University Belfast, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356924.
Full textChilds, Andrew MacGregor 1977. "Quantum information processing in continuous time." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/16663.
Full textIncludes bibliographical references (p. 127-138) and index.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Quantum mechanical computers can solve certain problems asymptotically faster than any classical computing device. Several fast quantum algorithms are known, but the nature of quantum speedup is not well understood, and inventing new quantum algorithms seems to be difficult. In this thesis, we explore two approaches to designing quantum algorithms based on continuous-time Hamiltonian dynamics. In quantum computation by adiabatic evolution, the computer is prepared in the known ground state of a simple Hamiltonian, which is slowly modified so that its ground state encodes the solution to a problem. We argue that this approach should be inherently robust against low-temperature thermal noise and certain control errors, and we support this claim using simulations. We then show that any adiabatic algorithm can be implemented in a different way, using only a sequence of measurements of the Hamiltonian. We illustrate how this approach can achieve quadratic speedup for the unstructured search problem. We also demonstrate two examples of quantum speedup by quantum walk, a quantum mechanical analog of random walk. First, we consider the problem of searching a region of space for a marked item. Whereas a classical algorithm for this problem requires time proportional to the number of items regardless of the geometry, we show that a simple quantum walk algorithm can find the marked item quadratically faster for a lattice of dimension greater than four, and almost quadratically faster for a four-dimensional lattice. We also show that by endowing the walk with spin degrees of freedom, the critical dimension can be lowered to two. Second, we construct an oracular problem that a quantum walk can solve exponentially faster than any classical algorithm.
(cont.) This constitutes the only known example of exponential quantum speedup not based on the quantum Fourier transform. Finally, we consider bipartite Hamiltonians as a model of quantum channels and study their ability to process information given perfect local control. We show that any interaction can simulate any other at a nonzero rate, and that tensor product Hamiltonians can simulate each other reversibly. We also calculate the optimal asymptotic rate at which certain Hamiltonians can generate entanglement.
by Andrew MacGregor Childs.
Ph.D.
Tomasevic, Marija. "Quantum Aspects of Space and Time." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/672688.
Full textComo es propio de toda teoría clásica, la Relatividad General no puede aspirar a ser más que una teoría efectiva, cuyo campo de estudio se reduce al de fenómenos emergentes de estructuras más elementales. Sin embargo, se trata de una teoría dificil de tratar al poseer propiedades no compartidas por el resto de teorías clásicas: una descripción holográfica. A pesar de no haber proporcionado todas las respuestas que buscábamos acerca de la naturaleza del espacio y del tiempo, la holografía ha jugado un papel fundamental; en especial mostrándonos una conexión entre nociones tan dispares como la información cuántica y la geometría, similar a la conexión que Gibbons y Hawking [1] dieron a conocer entre el área y la entropía. Esta tesis tiene como objetivo el estudio de casos en los que esta relación se vuelve manifiesta, usando el régimen semiclásico de gravedad. El primer capítulo profundiza en la conexión entre área y entropía y algunas de las consecuencias que esta implica: la formulación semiclásica de la Desigualdad de Penrose y las posibles intepretaciones relativas al interior de los agujeros negros. El segundo capítulo se adentra en el estudio de escenarios prohibidos por la Relatividad General pero que resultan accesibles, y naturales, al considerar efectos cuánticos. Se centra en los agujeros de gusano y su relación con el entrelazamiento cuántico (a través de la dualidad “gauge/gravity”), así como en la imposibilidad de transformarse en máquinas del tiempo. El capítulo tercero es el que más avanza hacia el régimen cuántico de la gravedad, explorando el problema de las singularidades desnudas y la Hipótesis de la Censura Cósmica. Se muestra cómo la versión fuerte sale reforzada tras un análisis semiclásico, mientras que la versión débil requiere de nuevas reinterpretaciones para su adaptación a la nueva realidad cuántica. Finalmente se ofrece un resumen junto con una discusión adicional sobre la naturaleza de las singularidades desnudas, con un pequeño repaso sobre los avances en este campo y las posibles rutas que tomar, haciendo hincapié en el papel del colapso crítico gravitatorio y proponiendo una línea de investigación más allá de esta tesis. Bibliografía: [1] G. W. Gibbons and S. W. Hawking, “Action integrals and partition functions in quantum gravity,” Phys. Rev. D 15 (May, 1977) 2752–2756. https://link.aps.org/doi/10.1103/PhysRevD.15.2752.
Yearsley, James M. "Aspects of time in quantum theory." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9115.
Full textMosley, Shaun. "Real time dynamics." Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240232.
Full textBooks on the topic "TIME QUANTUM"
’t Hooft, Gerard, Arthur Jaffe, Gerhard Mack, Pronob K. Mitter, and Raymond Stora, eds. Quantum Fields and Quantum Space Time. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1801-7.
Full text't, Hooft G., North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Quantum Fields and Quantum Space Time (1996 : Cargèse, France), eds. Quantum fields and quantum space time. New York: Plenum Press, 1997.
Find full textMuga, J. G., R. Sala Mayato, and Í. L. Egusquiza, eds. Time in Quantum Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73473-4.
Full textCastell, Lutz, and Otfried Ischebeck, eds. Time, Quantum and Information. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10557-3.
Full textMuga, J. G., R. Sala Mayato, and I. L. Egusquiza, eds. Time in Quantum Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45846-8.
Full text1961-, Muga J. G., Sala Mayato R. 1965-, and Egusquiza I. L. 1965-, eds. Time in quantum mechanics. 2nd ed. Berlin: Springer, 2008.
Find full textC, Althorpe Stuart, Soldán Pavel, Balint-Kurti Gabriel G, Daresbury Laboratory, and Collaborative Computational Project on Molecular Quantum Dynamics., eds. Time-dependent quantum dynamics. Warrington: Daresbury Laboratory, Collaborative Computational Project on Molecular Quantum Dynamics, 2001.
Find full textQuantum processes. Singapore: World Scientific, 2011.
Find full textBayfield, James E. Quantum evolution: An introduction to time-dependent quantum mechanics. New York: John Wiley, 1999.
Find full textMuga, Gonzalo, Andreas Ruschhaupt, and Adolfo Campo, eds. Time in Quantum Mechanics II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03174-8.
Full textBook chapters on the topic "TIME QUANTUM"
Allday, Jonathan. "Quantum Considerations." In Space-time, 317–42. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9781315165141-14.
Full textSchwabl, Franz. "Time Dependent Phenomena." In Quantum Mechanics, 281–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02703-5_16.
Full textBusch, Paul, Pekka Lahti, Juha-Pekka Pellonpää, and Kari Ylinen. "Time and Energy." In Quantum Measurement, 389–403. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43389-9_17.
Full textSchwabl, Franz. "Time Dependent Phenomena." In Quantum Mechanics, 287–310. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04840-5_16.
Full textSchwabl, Franz. "Time Dependent Phenomena." In Quantum Mechanics, 287–310. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03170-4_16.
Full textPohl, Martin. "Quantum fields." In Particles, Fields, Space-Time, 127–46. Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429331107-7.
Full textLock, Maximilian P. E., and Ivette Fuentes. "Relativistic Quantum Clocks." In Time in Physics, 51–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68655-4_5.
Full textCramer, John G. "Reversing Time." In The Quantum Handshake, 47–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24642-0_4.
Full textRaju, C. K. "Quantum-Mechanical Time." In Time: Towards a Consistent Theory, 161–89. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8376-3_10.
Full textSiddiqui, Shabnam. "Time-Dependent Perturbation Theory." In Quantum Mechanics, 189–207. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22074-7.
Full textConference papers on the topic "TIME QUANTUM"
Oppenheim, Jonathan. "Quantum time." In GENERAL RELATIVITY AND RELATIVISTIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1301593.
Full textZehra, Syedah Sadaf, John Costello, Peirgiorgio Nicolosi, and Paddy Hayden. "Time-integrated and time-resolved VUV LIBS: a comparative study." In Quantum Technologies, edited by Andrew J. Shields, Jürgen Stuhler, and Miles J. Padgett. SPIE, 2018. http://dx.doi.org/10.1117/12.2306459.
Full textAHARONOV, YAKIR, Jeeva ANANDAN, and Lev VAIDMAN. "QUANTUM TIME MACHINE." In Proceedings of the International Conference on Fundamental Aspects of Quantum Theory — to Celebrate 30 Years of the Aharonov-Bohm-Effect. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814439251_0029.
Full textHua, Yuanyuan, Konstantinos Bantounos, Ian Underwood, Robert Henderson, and Danial Chitnis. "A Portable and Cost-effective Time-of-Flight System for Time-Domain Near-Infrared Spectroscopy." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/quantum.2023.qth2a.32.
Full textMunro, William J., Yanbao Zhang, Hsin-Pin Lo, Alan Mink, Takuya Ikuta, Toshimori Honjo, and Hiroki Takesue. "A real-time low-latency certifiable QRNG." In Quantum Communications and Quantum Imaging XIX, edited by Keith S. Deacon and Ronald E. Meyers. SPIE, 2021. http://dx.doi.org/10.1117/12.2593285.
Full textRahmouni, Anouar, Samprity Saha, Oliver Slattery, and Thomas Gerrits. "Hyperspectral photon-counting optical time domain reflectometry." In Quantum Communications and Quantum Imaging XX, edited by Keith S. Deacon and Ronald E. Meyers. SPIE, 2022. http://dx.doi.org/10.1117/12.2633451.
Full textDavis, Samantha I., Chang Li, Rahaf Youssef, Neil Sinclair, Raju Valivarthi, and Maria Spiropulu. "Generation of Time-bin GHZ States." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/quantum.2023.qth4a.7.
Full textNowakowski, Marcin. "Quantum entanglement in time." In QUANTUM RETROCAUSATION III. Author(s), 2017. http://dx.doi.org/10.1063/1.4982771.
Full textJafarizadeh, Saber. "Continuous time quantum consensus & quantum synchronisation." In 2016 Australian Control Conference (AuCC). IEEE, 2016. http://dx.doi.org/10.1109/aucc.2016.7868219.
Full textGrübl, Gebhard. "Arrival time and backflow effect." In QUANTUM MECHANICS: Are There Quantum Jumps? - and On the Present Status of Quantum Mechanics. AIP, 2006. http://dx.doi.org/10.1063/1.2219361.
Full textReports on the topic "TIME QUANTUM"
Bush, Stephen. TIME-SENSITIVE QUANTUM KEY DISTRIBUTION. Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1870109.
Full textChew, G. F. Space and time from quantum mechanics. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10163929.
Full textChew, G. F. Space and time from quantum mechanics. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6077034.
Full textLu, Chao. Simulation of Quantum Time-Frequency Transform Algorithms. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada435027.
Full textSvetlichny, George Svetlichny. Quantum Information and the Problem of Time. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-9-2007-67-74.
Full textLeburton, Jean-Pierre. Quantum Transport and Scattering Time Engineering in Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada413484.
Full textCao, Jianshu, and Gregory A. Voth. Semiclassical Approximations to Quantum Dynamical Time Correlation Functions. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada300432.
Full textCao, Jianshu, and Gregory A. Voth. A New Perspective on Quantum Time Correlation Functions. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada272579.
Full textPan, Wei, John Reno, and Julien Tranchida. Enhance coherence time in intensely driven quantum systems. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1670245.
Full textDanos, Michael. Chaos, dissipation, arrow of time, in quantum physics. Gaithersburg, MD: National Bureau of Standards, 1993. http://dx.doi.org/10.6028/nist.tn.1403.
Full text