Academic literature on the topic 'TIME QUANTUM'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'TIME QUANTUM.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "TIME QUANTUM"

1

Zhu, Gaoyan, Lei Xiao, Bingzi Huo, and Peng Xue. "Photonic discrete-time quantum walks [Invited]." Chinese Optics Letters 18, no. 5 (2020): 052701. http://dx.doi.org/10.3788/col202018.052701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

AGLIARI, ELENA, OLIVER MÜLKEN, and ALEXANDER BLUMEN. "CONTINUOUS-TIME QUANTUM WALKS AND TRAPPING." International Journal of Bifurcation and Chaos 20, no. 02 (February 2010): 271–79. http://dx.doi.org/10.1142/s0218127410025715.

Full text
Abstract:
Recent findings suggest that processes such as the excitonic energy transfer through the photosynthetic antenna display quantal features, aspects known from the dynamics of charge carriers along polymer backbones. Hence, in modeling energy transfer one has to leave the classical, master-equation-type formalism and advance towards an increasingly quantum-mechanical picture, while still retaining a local description of the complex network of molecules involved in the transport, say through a tight-binding approach. Interestingly, the continuous time random walk (CTRW) picture, widely employed in describing transport in random environments, can be mathematically reformulated to yield a quantum-mechanical Hamiltonian of tight-binding type; the procedure uses the mathematical analogies between time-evolution operators in statistical and in quantum mechanics: The result are continuous-time quantum walks (CTQWs). However, beyond these formal analogies, CTRWs and CTQWs display vastly different physical properties. In particular, here we focus on trapping processes on a ring and show, both analytically and numerically, that distinct configurations of traps (ranging from periodical to random) yield strongly different behaviors for the quantal mean survival probability, while classically (under ordered conditions) we always find an exponential decay at long times.
APA, Harvard, Vancouver, ISO, and other styles
3

Góźdź, Andrzej, Marek Góźdź, and Aleksandra Pȩdrak. "Quantum Time and Quantum Evolution." Universe 9, no. 6 (May 26, 2023): 256. http://dx.doi.org/10.3390/universe9060256.

Full text
Abstract:
The problem of quantum time and evolution of quantum systems, where time is not a parameter, is considered. In our model, following some earlier works, time is represented by a quantum operator. In this paper, similarly to the position operators in the Schrödinger representation of quantum mechanics, this operator is a multiplication-type operator. It can be also represented by an appropriate positive operator-valued measure (POVM) which together with the 3D position operators/measures provide a quantum observable giving a position in the quantum spacetime. The quantum evolution itself is a stochastic process based on Lüder’s projection postulate. In fact, it is a generalization of the unitary evolution. This allows to treat time and generally the spacetime position as a quantum observable, in a consistent and observer-independent way.
APA, Harvard, Vancouver, ISO, and other styles
4

Skulimowski, Marcin. "Quantum World with Quantum Time." Foundations of Physics Letters 19, no. 2 (April 2006): 127–41. http://dx.doi.org/10.1007/s10702-006-0371-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bojowald, Martin, Golam Mortuza Hossain, Mikhail Kagan, and Casey Tomlin. "Quantum Matter in Quantum Space-Time." Quantum Matter 2, no. 6 (December 1, 2013): 436–43. http://dx.doi.org/10.1166/qm.2013.1078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nassar, Antônio B. "Quantum traversal time." Physical Review A 38, no. 2 (July 1, 1988): 683–87. http://dx.doi.org/10.1103/physreva.38.683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davies, P. C. W. "Quantum tunneling time." American Journal of Physics 73, no. 1 (January 2005): 23–27. http://dx.doi.org/10.1119/1.1810153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Horiuchi, Noriaki. "Quantum time lens." Nature Photonics 11, no. 5 (May 2017): 267. http://dx.doi.org/10.1038/nphoton.2017.70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Loveridge, Leon, and Takayuki Miyadera. "Relative Quantum Time." Foundations of Physics 49, no. 6 (May 31, 2019): 549–60. http://dx.doi.org/10.1007/s10701-019-00268-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kiefer, Claus, and Patrick Peter. "Time in Quantum Cosmology." Universe 8, no. 1 (January 8, 2022): 36. http://dx.doi.org/10.3390/universe8010036.

Full text
Abstract:
Time in quantum gravity is not a well-defined notion despite its central role in the very definition of dynamics. Using the formalism of quantum geometrodynamics, we briefly review the problem and illustrate it with two proposed solutions. Our main application is quantum cosmology—the application of quantum gravity to the Universe as a whole.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "TIME QUANTUM"

1

Oppenheim, Jonathan A. "Quantum time." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ48689.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Laflamme, Raymond. "Time and quantum cosmology." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cramer, Claes Richard. "Quantum aspects of time-machines." Thesis, University of York, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vona, Nicola. "On time in quantum mechanics." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-166201.

Full text
Abstract:
Although time measurements are routinely performed in laboratories, their theoretical description is still an open problem. Similarly, also the validity and the status of the energy-time uncertainty relation is unsettled. In the first part of this work the necessity of positive operator valued measures (POVM) as descriptions of every quantum experiment is reviewed, as well as the suggestive role played by the probability current in time measurements. Furthermore, it is shown that no POVM exists, which approximately agrees with the probability current on a very natural set of wave functions; nevertheless, the choice of the set is crucial, and on more restrictive sets the probability current does provide a good arrival time prediction. Some ideas to experimentally detect quantum effects in time measurements are discussed. In the second part of the work the energy-time uncertainty relation is considered, in particular for a model of alpha decay for which the variance of the energy can be calculated explicitly, and the variance of time can be estimated. This estimate is tight for systems with long lifetimes, in which case the uncertainty relation is shown to be satisfied. Also the linewidth-lifetime relation is shown to hold, but contrary to the common expectation, it is found that the two relations behave independently, and therefore it is not possible to interpret one as a consequence of the other. To perform the mentioned analysis quantitative scattering estimates are necessary. To this end, bounds of the form $\|\1_Re^{-iHt}\psi\|_2^2 \leq C t^{-3}$ have been derived, where $\psi$ denotes the initial state, $H$ the Hamiltonian, $R$ a positive constant, and $C$ is explicitly known. As intermediate step, bounds on the derivatives of the $S$-matrix in the form $\|\1_K S^{(n)}\|_\infty \leq C_{n,K} $ have been established, with $n=1,2,3$, and the constants $C_{n,K}$ explicitly known.
Obwohl Zeitmessungen tagtäglich in vielen Laboren durchgeführt werden, ist ihre theoretische Beschreibung noch unklar. Gleichermaßen sind Gültigkeit und Bedeutung der Energie-Zeit-Unschärfe ungeklärt. Der erste Teil dieser Arbeit diskutiert die Notwendigkeit von positive operator valued measures (POVM) zur Beschreibung von allen Quantenexperimenten, sowie die bedeutende Rolle des Wahrscheinlichkeitsstroms in Zeitmessungen. Außerdem, wird gezeigt, dass kein POVM existiert, der den Wahrscheinlichkeitsstrom jeder Wellenfunktion in einer natürlichen Menge annähert. Die Wahl dieser Menge ist aber entscheidend, und auf beschränkten Mengen ist der Wahrscheinlichkeitsstrom eine gute Vorhersage für Zeitmessungen. Einige Ideen sind diskutiert, wie man Zeitexperimente durchführen kann, um Quanteneffekten zu detektieren. Der zweite Teil dieser Arbeit beschäftigt sich mit der Energie-Zeit-Unschärfe, insbesondere für ein Modell von Alpha-Zerfall, wobei man die Energievarianz explizit berechnen kann, und die Zeitvarianz abschätzt. Diese Abschätzung ist für Systeme mit langen Lebensdauern gut, und in diesem Fall wird gezeigt, dass die Energie-Zeit-Unschärfe gilt. Ebenso wird gezeigt, dass die linewidth-lifetime relation gilt. Im allgemein wird angenommen, dass diese zwei Relationen dieselben sind. Im Gegensatz dazu, wird in der Dissertation aber gezeigt, dass sie sich unabhängig voneinander verhalten. Für diese Resultate, braucht man quantitative Streuabschätzungen. Zu diesem Zweck werden Schranken in der Form $\|\1_Re^{-iHt}\psi\|_2^2 \leq C t^{-3}$ in der Dissertation gezeigt, wo $\psi$ der Anfangszustand ist, $H$ der Hamiltonoperator, $R$ eine positive Konstante, und $C$ explizit bekannt ist. Als Zwischenschritt werden Schranken für die Ableitungen der $S$-Matrix in der Form $\|\1_K S^{(n)}\|_\infty \leq C_{n,K} $ bewiesen, wobei $n=1,2,3$, und die Konstanten $C_{n,K}$ explizit bekannt sind.
APA, Harvard, Vancouver, ISO, and other styles
5

Poulios, Konstantinos. "Integrated photonic continuous-time quantum walks." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633256.

Full text
Abstract:
The present thesis describes experimental work on non-classical interference of photons in integrated quantum photonic circuits. This non-classical interference of indistinguishable photons serves as the basis for implementing photonic quantum technologies and its demonstration on integrated platforms sparked a plethora of experimental research. The viability of multi-mode interference (MMI) devices is investigated as an alternative building block for quantum waveguide circuits. The visibility function for non-classical interference of two photons injected into a MMI device is derived theoretically, predicting near unit visibility for compact SiOxNy (SiON) devices. Theoretical results are complemented by experimental demonstration of very high visibilities in 2x2 MMI devices without the requirement of narrow-band photons . Taking advantage of the low de coherence properties of the photons and the inherent stability of integrated waveguide arrays, quantum walks (QWs) of correlated photons are experimentally demonstrated. Non-classical correlated detection events are observed for two photon QWs in an array of 21 evanescently coupled waveguides in a SiON chip. These correlations depend on the input state of the photons and violate a classical limit.
APA, Harvard, Vancouver, ISO, and other styles
6

Rodgers, Peter A. "Time-dependent pulses in quantum optics." Thesis, Queen's University Belfast, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Childs, Andrew MacGregor 1977. "Quantum information processing in continuous time." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/16663.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2004.
Includes bibliographical references (p. 127-138) and index.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Quantum mechanical computers can solve certain problems asymptotically faster than any classical computing device. Several fast quantum algorithms are known, but the nature of quantum speedup is not well understood, and inventing new quantum algorithms seems to be difficult. In this thesis, we explore two approaches to designing quantum algorithms based on continuous-time Hamiltonian dynamics. In quantum computation by adiabatic evolution, the computer is prepared in the known ground state of a simple Hamiltonian, which is slowly modified so that its ground state encodes the solution to a problem. We argue that this approach should be inherently robust against low-temperature thermal noise and certain control errors, and we support this claim using simulations. We then show that any adiabatic algorithm can be implemented in a different way, using only a sequence of measurements of the Hamiltonian. We illustrate how this approach can achieve quadratic speedup for the unstructured search problem. We also demonstrate two examples of quantum speedup by quantum walk, a quantum mechanical analog of random walk. First, we consider the problem of searching a region of space for a marked item. Whereas a classical algorithm for this problem requires time proportional to the number of items regardless of the geometry, we show that a simple quantum walk algorithm can find the marked item quadratically faster for a lattice of dimension greater than four, and almost quadratically faster for a four-dimensional lattice. We also show that by endowing the walk with spin degrees of freedom, the critical dimension can be lowered to two. Second, we construct an oracular problem that a quantum walk can solve exponentially faster than any classical algorithm.
(cont.) This constitutes the only known example of exponential quantum speedup not based on the quantum Fourier transform. Finally, we consider bipartite Hamiltonians as a model of quantum channels and study their ability to process information given perfect local control. We show that any interaction can simulate any other at a nonzero rate, and that tensor product Hamiltonians can simulate each other reversibly. We also calculate the optimal asymptotic rate at which certain Hamiltonians can generate entanglement.
by Andrew MacGregor Childs.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
8

Tomasevic, Marija. "Quantum Aspects of Space and Time." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/672688.

Full text
Abstract:
In this thesis, we explore different ways in which spacetime exhibits peculiar properties when subjected to the rules of quantum mechanics. These rules are naturally implemented at the level of semiclassical physics, where the dynamical nature of the spacetime metric is neglected. In particular, we explore how quantum effects modify some of the fundamental statements of General Relativity, ranging from different possible solutions, such as traversable wormholes and time machines, to some of the more foundational conjectures, with an emphasis to the one of cosmic censorship. Chapter One takes a deeper look into the connection between geometry and entropy. We revisit the original reasoning leading to their entwinement, and we clarify the different notions of entropy that play a role in it. We emphasize the recurring theme and the pattern in such a relationship: how the union between area and entropy makes sense when put together on the same footing, hinting towards a deeper meaning in a complete theory of quantum gravity. This seemingly simple unification is then shown to lead to incredible results, ranging from improved conjectures about quantum gravity, to illuminating one of the most critical problems of modern theoretical physics - the black hole information paradox. In particular, we mainly focus on one example of semiclassical statements, the (quantum) Penrose inequality, and we show in detail the difficulties one has to overcome for a meaningful conjecture to hold. Furthermore, we revise the basic arguments underlying the recent progress regarding the black hole interior and lay out the possible paths to the interpretation of these striking results. Chapter Two explores different solutions that classical General Relativity forbade, but quantum physics advanced. A number of no-go theorems get circumvented, and configurations previously thought of as impossible become available, and even natural. This is especially clear for solutions such as traversable wormholes and their inherent use in studies of entanglement structures. Indeed, such connections will be relevant in gauge/gravity duality for a fuller understanding of the holographic dictionary. But we can also see the way in which other no-go theorems become easier to infer. In essence, the creation of closed causal curves was understood as a problem of quantum gravity due to the incredibly high energies one seems to need for their demise. However, we show how simple, low-energy arguments are enough to shatter the fiction of time machines. The final Chapter Three perhaps comes closer to the study of quantum gravity than the previous ones. We undertake the problem of naked singularities in gravity, and we see how including quantum effects solidifies some foundational statements while completely fragmenting other ones. In a nutshell, the strong cosmic censorship conjecture is shown to be on much firmer ground than previously thought. Quantum physics is used to destabilize the relevant Cauchy horizon once and for all. However, including quantum effects necessarily means we must abandon our na¨ıve understanding of the weak cosmic censorship and embark on a much stranger path towards a meaningful statement about naked singularities. In doing so, we discuss the purpose of cosmic censorship and its interpretation in the realm of quantum gravity. We finish the dissertation with a summary and a further discussion on the nature of naked sin- gularities, providing a framework in which these questions can be meaningfully posed. After a brief overview of recent developments in this research line, we discuss the possible ways in which we can tackle such a perplexing problem. Namely, the role of critical phenomena in gravitational collapse is emphasized, and a proposal for a future study is outlined.
Como es propio de toda teoría clásica, la Relatividad General no puede aspirar a ser más que una teoría efectiva, cuyo campo de estudio se reduce al de fenómenos emergentes de estructuras más elementales. Sin embargo, se trata de una teoría dificil de tratar al poseer propiedades no compartidas por el resto de teorías clásicas: una descripción holográfica. A pesar de no haber proporcionado todas las respuestas que buscábamos acerca de la naturaleza del espacio y del tiempo, la holografía ha jugado un papel fundamental; en especial mostrándonos una conexión entre nociones tan dispares como la información cuántica y la geometría, similar a la conexión que Gibbons y Hawking [1] dieron a conocer entre el área y la entropía. Esta tesis tiene como objetivo el estudio de casos en los que esta relación se vuelve manifiesta, usando el régimen semiclásico de gravedad. El primer capítulo profundiza en la conexión entre área y entropía y algunas de las consecuencias que esta implica: la formulación semiclásica de la Desigualdad de Penrose y las posibles intepretaciones relativas al interior de los agujeros negros. El segundo capítulo se adentra en el estudio de escenarios prohibidos por la Relatividad General pero que resultan accesibles, y naturales, al considerar efectos cuánticos. Se centra en los agujeros de gusano y su relación con el entrelazamiento cuántico (a través de la dualidad “gauge/gravity”), así como en la imposibilidad de transformarse en máquinas del tiempo. El capítulo tercero es el que más avanza hacia el régimen cuántico de la gravedad, explorando el problema de las singularidades desnudas y la Hipótesis de la Censura Cósmica. Se muestra cómo la versión fuerte sale reforzada tras un análisis semiclásico, mientras que la versión débil requiere de nuevas reinterpretaciones para su adaptación a la nueva realidad cuántica. Finalmente se ofrece un resumen junto con una discusión adicional sobre la naturaleza de las singularidades desnudas, con un pequeño repaso sobre los avances en este campo y las posibles rutas que tomar, haciendo hincapié en el papel del colapso crítico gravitatorio y proponiendo una línea de investigación más allá de esta tesis. Bibliografía: [1] G. W. Gibbons and S. W. Hawking, “Action integrals and partition functions in quantum gravity,” Phys. Rev. D 15 (May, 1977) 2752–2756. https://link.aps.org/doi/10.1103/PhysRevD.15.2752.
APA, Harvard, Vancouver, ISO, and other styles
9

Yearsley, James M. "Aspects of time in quantum theory." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9115.

Full text
Abstract:
We consider a number of aspects of the problem of defining time observables in quantum theory. Time observables are interesting quantities in quantum theory because they often cannot be associated with self-adjoint operators. Their definition therefore touches on foundational issues in quantum theory. Various operational approaches to defining time observables have been proposed in the past. Two of the most common are those based on pulsed measurements in the form of strings of projection operators and continuous measurements in the form of complex potentials. One of the major achievements of this thesis is to prove that these two operational approaches are equivalent. However operational approaches are somewhat unsatisfying by themselves. To provide a definition of time observables which is not linked to a particular measurement scheme we employ the decoherent, or consistent, histories approach to quantum theory. We focus on the arrival time, one particular example of a time observable, and we use the relationship between pulsed and continuous measurements to relate the decoherent histories approach to one based on complex potentials. This lets us compute the arrival time probability distribution in decoherent histories and we show that it agrees with semiclassical expectations in the right limit. We do this both for a free particle and for a particle coupled to an environment. Finally, we consider how the results discussed in this thesis relate to those derived by coupling a particle to a model clock. We show that for a general class of clock models the probabilities thus measured can be simply related to the ideal ones computed via decoherent histories.
APA, Harvard, Vancouver, ISO, and other styles
10

Mosley, Shaun. "Real time dynamics." Thesis, University of Nottingham, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240232.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "TIME QUANTUM"

1

’t Hooft, Gerard, Arthur Jaffe, Gerhard Mack, Pronob K. Mitter, and Raymond Stora, eds. Quantum Fields and Quantum Space Time. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1801-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

't, Hooft G., North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Study Institute on Quantum Fields and Quantum Space Time (1996 : Cargèse, France), eds. Quantum fields and quantum space time. New York: Plenum Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Muga, J. G., R. Sala Mayato, and Í. L. Egusquiza, eds. Time in Quantum Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-73473-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Castell, Lutz, and Otfried Ischebeck, eds. Time, Quantum and Information. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10557-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muga, J. G., R. Sala Mayato, and I. L. Egusquiza, eds. Time in Quantum Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45846-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

1961-, Muga J. G., Sala Mayato R. 1965-, and Egusquiza I. L. 1965-, eds. Time in quantum mechanics. 2nd ed. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

C, Althorpe Stuart, Soldán Pavel, Balint-Kurti Gabriel G, Daresbury Laboratory, and Collaborative Computational Project on Molecular Quantum Dynamics., eds. Time-dependent quantum dynamics. Warrington: Daresbury Laboratory, Collaborative Computational Project on Molecular Quantum Dynamics, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Quantum processes. Singapore: World Scientific, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bayfield, James E. Quantum evolution: An introduction to time-dependent quantum mechanics. New York: John Wiley, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Muga, Gonzalo, Andreas Ruschhaupt, and Adolfo Campo, eds. Time in Quantum Mechanics II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03174-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "TIME QUANTUM"

1

Allday, Jonathan. "Quantum Considerations." In Space-time, 317–42. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9781315165141-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schwabl, Franz. "Time Dependent Phenomena." In Quantum Mechanics, 281–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02703-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Busch, Paul, Pekka Lahti, Juha-Pekka Pellonpää, and Kari Ylinen. "Time and Energy." In Quantum Measurement, 389–403. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43389-9_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schwabl, Franz. "Time Dependent Phenomena." In Quantum Mechanics, 287–310. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04840-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schwabl, Franz. "Time Dependent Phenomena." In Quantum Mechanics, 287–310. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03170-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pohl, Martin. "Quantum fields." In Particles, Fields, Space-Time, 127–46. Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429331107-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lock, Maximilian P. E., and Ivette Fuentes. "Relativistic Quantum Clocks." In Time in Physics, 51–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68655-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cramer, John G. "Reversing Time." In The Quantum Handshake, 47–55. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24642-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Raju, C. K. "Quantum-Mechanical Time." In Time: Towards a Consistent Theory, 161–89. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8376-3_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Siddiqui, Shabnam. "Time-Dependent Perturbation Theory." In Quantum Mechanics, 189–207. Boca Raton : CRC Press, Taylor & Francis Group, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/b22074-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "TIME QUANTUM"

1

Oppenheim, Jonathan. "Quantum time." In GENERAL RELATIVITY AND RELATIVISTIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1301593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zehra, Syedah Sadaf, John Costello, Peirgiorgio Nicolosi, and Paddy Hayden. "Time-integrated and time-resolved VUV LIBS: a comparative study." In Quantum Technologies, edited by Andrew J. Shields, Jürgen Stuhler, and Miles J. Padgett. SPIE, 2018. http://dx.doi.org/10.1117/12.2306459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

AHARONOV, YAKIR, Jeeva ANANDAN, and Lev VAIDMAN. "QUANTUM TIME MACHINE." In Proceedings of the International Conference on Fundamental Aspects of Quantum Theory — to Celebrate 30 Years of the Aharonov-Bohm-Effect. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814439251_0029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hua, Yuanyuan, Konstantinos Bantounos, Ian Underwood, Robert Henderson, and Danial Chitnis. "A Portable and Cost-effective Time-of-Flight System for Time-Domain Near-Infrared Spectroscopy." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/quantum.2023.qth2a.32.

Full text
Abstract:
System complexity and the high price of Time-domain Near-Infrared Spectroscopy (TD-NIRS) hinder its clinical practice and daily care application. This paper presents a portable, cost-effective TD-NIRS system with high temporal resolution and efficient data acquisition.
APA, Harvard, Vancouver, ISO, and other styles
5

Munro, William J., Yanbao Zhang, Hsin-Pin Lo, Alan Mink, Takuya Ikuta, Toshimori Honjo, and Hiroki Takesue. "A real-time low-latency certifiable QRNG." In Quantum Communications and Quantum Imaging XIX, edited by Keith S. Deacon and Ronald E. Meyers. SPIE, 2021. http://dx.doi.org/10.1117/12.2593285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rahmouni, Anouar, Samprity Saha, Oliver Slattery, and Thomas Gerrits. "Hyperspectral photon-counting optical time domain reflectometry." In Quantum Communications and Quantum Imaging XX, edited by Keith S. Deacon and Ronald E. Meyers. SPIE, 2022. http://dx.doi.org/10.1117/12.2633451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davis, Samantha I., Chang Li, Rahaf Youssef, Neil Sinclair, Raju Valivarthi, and Maria Spiropulu. "Generation of Time-bin GHZ States." In Quantum 2.0. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/quantum.2023.qth4a.7.

Full text
Abstract:
We detail our experiments towards generating GHZ states encoded into time-bin qubits using a switch. We present a theoretical model founded on phase-space techniques to corroborate our experimental findings.
APA, Harvard, Vancouver, ISO, and other styles
8

Nowakowski, Marcin. "Quantum entanglement in time." In QUANTUM RETROCAUSATION III. Author(s), 2017. http://dx.doi.org/10.1063/1.4982771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jafarizadeh, Saber. "Continuous time quantum consensus & quantum synchronisation." In 2016 Australian Control Conference (AuCC). IEEE, 2016. http://dx.doi.org/10.1109/aucc.2016.7868219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grübl, Gebhard. "Arrival time and backflow effect." In QUANTUM MECHANICS: Are There Quantum Jumps? - and On the Present Status of Quantum Mechanics. AIP, 2006. http://dx.doi.org/10.1063/1.2219361.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "TIME QUANTUM"

1

Bush, Stephen. TIME-SENSITIVE QUANTUM KEY DISTRIBUTION. Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1870109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chew, G. F. Space and time from quantum mechanics. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10163929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chew, G. F. Space and time from quantum mechanics. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6077034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, Chao. Simulation of Quantum Time-Frequency Transform Algorithms. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada435027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Svetlichny, George Svetlichny. Quantum Information and the Problem of Time. Journal of Geometry and Symmetry in Physics, 2012. http://dx.doi.org/10.7546/jgsp-9-2007-67-74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leburton, Jean-Pierre. Quantum Transport and Scattering Time Engineering in Nanostructures. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada413484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cao, Jianshu, and Gregory A. Voth. Semiclassical Approximations to Quantum Dynamical Time Correlation Functions. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada300432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cao, Jianshu, and Gregory A. Voth. A New Perspective on Quantum Time Correlation Functions. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada272579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pan, Wei, John Reno, and Julien Tranchida. Enhance coherence time in intensely driven quantum systems. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1670245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Danos, Michael. Chaos, dissipation, arrow of time, in quantum physics. Gaithersburg, MD: National Bureau of Standards, 1993. http://dx.doi.org/10.6028/nist.tn.1403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography