Journal articles on the topic 'Time-of-flight mass spectrometry'

To see the other types of publications on this topic, follow the link: Time-of-flight mass spectrometry.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Time-of-flight mass spectrometry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

VG Scientific Ltd. "Time-of-flight mass spectrometry." Vacuum 36, no. 6 (June 1986): 358. http://dx.doi.org/10.1016/0042-207x(86)90022-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ibrahimi, Morteza, Andrea Montanari, and George S. Moore. "Accelerated Time-of-Flight Mass Spectrometry." IEEE Transactions on Signal Processing 62, no. 15 (August 2014): 3784–98. http://dx.doi.org/10.1109/tsp.2014.2329644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

STROBEL, F. H., and D. H. RUSSELL. "ChemInform Abstract: Tandem Time-of-Flight Mass Spectrometry. A Magnetic Sector-Reflectron Time-of-Flight Mass Spectrometer." ChemInform 25, no. 16 (August 19, 2010): no. http://dx.doi.org/10.1002/chin.199416328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pinkston, J. David, Martin Rabb, J. Throck Watson, and John Allison. "New time‐of‐flight mass spectrometer for improved mass resolution, versatility, and mass spectrometry/mass spectrometry studies." Review of Scientific Instruments 57, no. 4 (April 1986): 583–92. http://dx.doi.org/10.1063/1.1138874.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Brock, Ansgar, Nestor Rodriguez, and Richard N. Zare. "Hadamard Transform Time-of-Flight Mass Spectrometry." Analytical Chemistry 70, no. 18 (September 1998): 3735–41. http://dx.doi.org/10.1021/ac9804036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schnieders, Albert. "Time-of-Flight Secondary Ion Mass Spectrometry." Microscopy Today 19, no. 2 (February 28, 2011): 30–33. http://dx.doi.org/10.1017/s1551929511000058.

Full text
Abstract:
The properties of many modern products are not only governed by their surface morphology and structure but also by their surface chemistry. For example, in some cases a contamination of less than a monolayer of molecules can be responsible for the failure of a coating with all its consequences (aesthetics, protection, life time, and so on). Other areas affected by surface chemistry are adhesion, staining, corrosion, and so on. Thus, powerful analytical techniques for the identification, as well as the localization and quantification, of substances on a surface or at the interface between different layers are of increasing importance for fast and efficient failure analysis. However, surface analysis is not only limited to failure analysis but can be also used in research and development of, for example, methods of surface modification on the molecular level as well as in production and quality control, such as the evaluation of cleaning procedures.
APA, Harvard, Vancouver, ISO, and other styles
7

Plaß, Wolfgang R., Timo Dickel, and Christoph Scheidenberger. "Multiple-reflection time-of-flight mass spectrometry." International Journal of Mass Spectrometry 349-350 (September 2013): 134–44. http://dx.doi.org/10.1016/j.ijms.2013.06.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Knorr, Fritz J., Massoud Ajami, and Dale A. Chatfield. "Fourier transform time-of-flight mass spectrometry." Analytical Chemistry 58, no. 4 (April 1986): 690–94. http://dx.doi.org/10.1021/ac00295a007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guilhaus, M., V. Mlynski, and D. Selby. "Perfect Timing: Time-of-flight Mass Spectrometry†." Rapid Communications in Mass Spectrometry 11, no. 9 (June 15, 1997): 951–62. http://dx.doi.org/10.1002/(sici)1097-0231(19970615)11:9<951::aid-rcm785>3.0.co;2-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vestal, Marvin L. "Modern MALDI time-of-flight mass spectrometry." Journal of Mass Spectrometry 44, no. 3 (March 2009): 303–17. http://dx.doi.org/10.1002/jms.1537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Guilhaus, M., D. Selby, and V. Mlynski. "Orthogonal acceleration time-of-flight mass spectrometry." Mass Spectrometry Reviews 19, no. 2 (2000): 65–107. http://dx.doi.org/10.1002/(sici)1098-2787(2000)19:2<65::aid-mas1>3.0.co;2-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Demoranville, L. T., D. L. Knies, K. S. Grabowski, and A. C. Mignerey. "Testing of mass filtered, time dilated, time-of-flight mass spectrometry." Journal of Radioanalytical and Nuclear Chemistry 282, no. 1 (July 28, 2009): 305–8. http://dx.doi.org/10.1007/s10967-009-0260-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Grundwürmer, Johann M., Michael Bönisch, Gary R. Kinsel, Jürgen Grotemeyer, and E. W. Schlag. "High-resolution mass spectrometry in a linear time-of-flight mass spectrometer." International Journal of Mass Spectrometry and Ion Processes 131 (February 1994): 139–48. http://dx.doi.org/10.1016/0168-1176(93)03882-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Budzikiewicz, H. "Selected reviews on mass spectrometric topics. LIV. Time-of-flight mass spectrometry." Mass Spectrometry Reviews 13, no. 1 (January 1994): 103. http://dx.doi.org/10.1002/mas.1280130108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Go, Eden P., Jessica E. Prenni, Jing Wei, Arianna Jones, Steven C. Hall, H. Ewa Witkowska, Zhouxin Shen, and Gary Siuzdak. "Desorption/Ionization on Silicon Time-of-Flight/Time-of-Flight Mass Spectrometry." Analytical Chemistry 75, no. 10 (May 2003): 2504–6. http://dx.doi.org/10.1021/ac026253n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sysoev, Alexey A., O. I. Fomin, S. S. Poteshin, D. M. Chernyshev, A. V. Karpov, and Alexander A. Sysoev. "Data Collection and Processing Instrumentation for Time-of-Flight Mass Spectrometry and Ion Mobility Time-of-Flight Mass Spectrometry." Physics Procedia 72 (2015): 274–77. http://dx.doi.org/10.1016/j.phpro.2015.09.086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Blitz, Mark A., Andrew Goddard, Trevor Ingham, and Michael J. Pilling. "Time-of-flight mass spectrometry for time-resolved measurements." Review of Scientific Instruments 78, no. 3 (March 2007): 034103. http://dx.doi.org/10.1063/1.2712797.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lee, Choon Geun, Joo Won Kim, Jhulee Park, Yong Il Park, You Jin Hwang, and Jae Kweon Park. "Determination of Mode of Chitosanase Action by Matrix Associated Laser Desorption Ionization - Time of Flight Mass Spectrometry Analysis." Journal of Chitin and Chitosan 21, no. 2 (June 30, 2016): 100–108. http://dx.doi.org/10.17642/jcc.21.2.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Belov, Mikhail E., Michael A. Buschbach, David C. Prior, Keqi Tang, and Richard D. Smith. "Multiplexed Ion Mobility Spectrometry-Orthogonal Time-of-Flight Mass Spectrometry." Analytical Chemistry 79, no. 6 (March 2007): 2451–62. http://dx.doi.org/10.1021/ac0617316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

McComb, Mark E., Lynda J. Donald, and Hélène Perreault. "Electrospray ionization mass spectrometry and on-line capillary zone electrophoresis - mass spectrometry for the characterization of citrate synthase." Canadian Journal of Chemistry 77, no. 11 (November 1, 1999): 1752–60. http://dx.doi.org/10.1139/v99-138.

Full text
Abstract:
The enzyme citrate synthase from E. coli is a protein with a molecular weight (Mr) of 47 885 Da (wild type). This enzyme has been studied extensively, and its amino acid sequence has been characterized. This model protein has been used in this work for development and validation of methods involving capillary electrophoresis (CE) and electrospray ionization mass spectrometry (ESI-MS). The Mr determinations were conducted using sample infusion ESI-MS, and the tryptic digestion products of wild-type citrate synthase were characterized by on-line CE-ESI-MS coupled with a sheathless interface. On-line experiments were conducted on two different mass spectrometers, a Quattro-LC triple quadrupole instrument equipped with a Z-SprayTM source (Micromass), and a reflecting time-of-flight (TOF) mass spectrometer built in-house in the Time-of-Flight Laboratory, Department of Physics, University of Manitoba. This is the first article to be written on the interfacing of a Z-SprayTM source with CE. Unmodified fused silica capillaries gold-coated sheathless interfaces were used. The on-line CE separations yielded theoretical plate numbers greater than 104 on average. Selected ion electrophorograms (SIE) of the tryptic peptides recorded on the Quattro-LC displayed S/N ratios ranging from ca. 14 to 120 on raw data. These SIE enabled identification of each peptide. The use of reflecting time-of-flight mass spectrometry (TOFMS) afforded mass resolution values of ca. 6000 (m/deltamFWHM), which enabled isotopic resolution of the peptide components. CE-ESI-MS and CE-ESI-TOFMS experiments enabled the generation of a complete tryptic map of citrate synthase.Key words: capillary electrophoresis, electrospray ionization, mass spectrometry, citrate synthase, tryptic digestion, triple quadrupole analyzer, time-of-flight analyzer.
APA, Harvard, Vancouver, ISO, and other styles
21

Cotter, Robert J., Amina S. Woods, and Timothy J. Cornish. "Biological applications of time-of-flight mass spectrometry." Biochemical Society Transactions 22, no. 2 (May 1, 1994): 539–42. http://dx.doi.org/10.1042/bst0220539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Price, D., and G. J. Milnes. "The renaissance of time-of-flight mass spectrometry." International Journal of Mass Spectrometry and Ion Processes 99, no. 1-2 (October 1990): 1–39. http://dx.doi.org/10.1016/0168-1176(90)85019-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kato, Makoto, Akinori Mogami, Motohiro Naito, Shingo Ichimura, and Hazime Shimizu. "Resolution of time‐of‐flight mass spectrometers evaluated for secondary neutral mass spectrometry." Review of Scientific Instruments 59, no. 9 (September 1988): 1947–50. http://dx.doi.org/10.1063/1.1140056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jardine, Daniel R., David S. Alderdice, and Peter J. Derrick. "Time-of-flight/time-of-flight tandem mass spectrometry of multiple incident ions." Organic Mass Spectrometry 26, no. 10 (October 1991): 915–16. http://dx.doi.org/10.1002/oms.1210261021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Braun, Julian Erik, and Hans J�rgen Neusser. "Threshold photoionization in time-of-flight mass spectrometry." Mass Spectrometry Reviews 21, no. 1 (2002): 16–36. http://dx.doi.org/10.1002/mas.10014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Demoranville, L. T., K. S. Grabowski, D. L. Knies, and C. Cetina. "Experimental demonstration of mass-filtered, time-dilated, time-of-flight mass spectrometry." Surface and Interface Analysis 43, no. 1-2 (June 8, 2010): 525–28. http://dx.doi.org/10.1002/sia.3524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mahoney, Patrick P., Steven J. Ray, and Gary M. Hieftje. "Time-of-Flight Mass Spectrometry for Elemental Analysis." Applied Spectroscopy 51, no. 1 (January 1997): 16A—28A. http://dx.doi.org/10.1366/0003702971938759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Campana, Joseph E. "Time-of-Flight Mass Spectrometry: a Historical Overview." Instrumentation Science & Technology 16, no. 1 (January 1987): 1–14. http://dx.doi.org/10.1080/10739148708543625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Brinckerhoff, W. B., G. G. Managadze, R. W. McEntire, A. F. Cheng, and W. J. Green. "Laser time-of-flight mass spectrometry for space." Review of Scientific Instruments 71, no. 2 (February 2000): 536–45. http://dx.doi.org/10.1063/1.1150237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ogasawara, Keiichi, Stefano A. Livi, Mihir I. Desai, Robert W. Ebert, David J. McComas, and Brandon C. Walther. "Avalanche photodiode based time-of-flight mass spectrometry." Review of Scientific Instruments 86, no. 8 (August 2015): 083302. http://dx.doi.org/10.1063/1.4927420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Dooley, Patrick W., V. Ravi Bhardwaj, David M. Rayner, and Paul B. Corkum. "Optically Timed Submillimeter Time-of-Flight Mass Spectrometry." Analytical Chemistry 76, no. 2 (January 2004): 262–66. http://dx.doi.org/10.1021/ac034621x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Olthoff, James K., Jeffrey P. Honovich, and Robert J. Cotter. "Liquid secondary ion time-of-flight mass spectrometry." Analytical Chemistry 59, no. 7 (April 1987): 999–1002. http://dx.doi.org/10.1021/ac00134a016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mamyrin, B. A. "Laser assisted reflectron time-of-flight mass spectrometry." International Journal of Mass Spectrometry and Ion Processes 131 (February 1994): 1–19. http://dx.doi.org/10.1016/0168-1176(93)03891-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Price, D. "The resurgence in time-of-flight mass spectrometry." TrAC Trends in Analytical Chemistry 9, no. 1 (January 1990): 21–25. http://dx.doi.org/10.1016/0165-9936(90)80012-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Huang, L. Q., R. J. Conzemius, G. A. Junk, and R. S. Houk. "Ion association by time-of-flight mass spectrometry." International Journal of Mass Spectrometry and Ion Processes 90, no. 1 (May 1989): 85–96. http://dx.doi.org/10.1016/0168-1176(89)83055-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Müller, D., T. Faestermann, A. Gillitzer, G. Korschinek, R. Scheuer, and U. Bittner. "Accelerator mass spectrometry with time-of-flight measurement." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 50, no. 1-4 (April 1990): 271–74. http://dx.doi.org/10.1016/0168-583x(90)90367-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Giese, R. W. "Time-of-flight mass spectrometry and its applications." Journal of Chromatography A 687, no. 2 (December 1994): 356. http://dx.doi.org/10.1016/0021-9673(94)89006-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Schlag, E. W. "Time-of-flight mass spectrometry and its applications." Journal of the American Society for Mass Spectrometry 9, S8 (August 1998): A7. http://dx.doi.org/10.1016/s1044-0305(98)80001-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Frank, S. M., D. J. Bunnell, K. P. Carney, and S. G. Johnson. "Hot cell based time-of-flight mass spectrometry." Journal of Radioanalytical and Nuclear Chemistry Articles 194, no. 1 (July 1995): 35–39. http://dx.doi.org/10.1007/bf02037610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Williamson, Leah N., and Michael G. Bartlett. "Quantitative liquid chromatography/time-of-flight mass spectrometry." Biomedical Chromatography 21, no. 6 (2007): 567–76. http://dx.doi.org/10.1002/bmc.844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Koudelka, Štěpán, Tereza Gelbíčová, Markéta Procházková, and Renáta Karpíšková. "Lineage and serotype identification of Listeria monocytogenes by matrix-assisted laser desorption ionization-time of flight mass spectrometry." Czech Journal of Food Sciences 36, No. 6 (January 7, 2019): 452–58. http://dx.doi.org/10.17221/87/2018-cjfs.

Full text
Abstract:
The identification of Listeria species, lineages and serotypes remains a crucial issue not only in epidemic surveys, but also in monitoring of the diversity of bacteria in the food chain. The aim of this study was identification of L. monocytogenes strains at lineage and serotype level using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The performance of MALDI-TOF MS was tested to identify L. monocytogenes into two lineages (I and II) and four serotypes (1/2a, 1/2b, 1/2c and 4b) the most commonly found in humans and food. Total of 227 L. monocytogenes strains from different sources were subjected to the study. Some of strains (112) were used for main spectrum profile (MSP) library creation. Other strains of interest (115) were then correctly identified on the lineage level comparing with the library by MALDI-TOF MS analysis using Biotyper (90%) and ClinPro Tools (100%) software. The serotype identification with 55.7% (Biotyper) and 67.8% (ClinPro Tools) accuracy is rather a proof that under given conditions the method has not big potential to be used for serotyping. However, MALDI-TOF MS has a potential to identify lineages of L. monocytogenes of food and human origin.
APA, Harvard, Vancouver, ISO, and other styles
42

Olthoff, J. K., I. A. Lys, and R. J. Cotter. "A pulsed time-of-flight mass spectrometer for liquid secondary ion mass spectrometry." Rapid Communications in Mass Spectrometry 2, no. 9 (September 1988): 171–75. http://dx.doi.org/10.1002/rcm.1290020902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hutchens, T. W. "Erratum to: 10th asilomat conference on mass spectrometry: Time of flight mass spectrometry." Journal of the American Society for Mass Spectrometry 4, no. 7 (July 1993): 612. http://dx.doi.org/10.1007/bf03210250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Cottee, Frank, Neville Haskins, Duncan Bryant, Christine Eckers, and Soraya Monté. "The Use of Accurate Mass Measurement by Orthogonal Time-of-Flight Mass Spectrometry in Pharmaceuticals Research." European Journal of Mass Spectrometry 6, no. 2 (April 2000): 219–24. http://dx.doi.org/10.1255/ejms.340.

Full text
Abstract:
Allan Maccoll was the founding editor of Organic Mass Spectrometry, the first journal dedicated to the application of mass spectrometry to the analysis of organic structures. Many papers in OMS described the elucidation of structures from natural and synthetic sources. This is still a major application of mass spectrometry today, especially in those fine chemical industries such as Pharmaceuticals which depend on the discovery and development of organic compounds for a variety of applications. In this paper we describe the advances we have made in the last few years, especially utilising time-of-flight (ToF) mass spectrometers, to use accurate mass measurement to determine the structures of minor components contained within drug substance and degraded samples. The additional information obtained from accurate mass measurement is shown to be critical in assigning a particular structure in a number of examples.
APA, Harvard, Vancouver, ISO, and other styles
45

LaiHing, K., P. Y. Cheng, T. G. Taylor, K. F. Willey, M. Peschke, and M. A. Duncan. "Photodissociation in a reflectron time-of-flight mass spectrometer: a novel mass spectrometry/mass spectrometry configuration for high-mass systems." Analytical Chemistry 61, no. 13 (July 1989): 1458–60. http://dx.doi.org/10.1021/ac00188a031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ul’shina, D. V., D. A. Kovalev, I. V. Kuznetsova, O. V. Bobrysheva, T. L. Krasovskaya, and A. N. Kulichenko. "Software Solutions for Indication and Identification of Pathogenic Microoranisms Using Time-of-Flight Mass Spectrometry." Problems of Particularly Dangerous Infections, no. 3 (October 23, 2021): 40–50. http://dx.doi.org/10.21055/0370-1069-2021-3-40-50.

Full text
Abstract:
The effectiveness of differentiation of bacterial pathogens using MALDI-TOF mass spectrometry depends on the quality of sample preparation, compliance with mass spectrometric analysis parameters and statistical approaches used, implemented by various modern software tools. The review provides a brief description of the most known software used in the processing and bioinformation analysis of time-of-flight mass spectrometry data. A list of computer platforms, programs and environments, both commercial and publicly available, is presented. The results of indication and identification of pathogens of particularly dangerous and natural-focal infections by MALDI-TOF mass spectrometry using publicly available software – programming language R, Mass-Up, MicrobeMS, licensed – MatLab, ClinProTools, as well as free web applications, including, Speclust, Ribopeaksare provided. The data on usage of such well-known platforms as MALDI BioTyper, SARAMIS Vitek-MS and Andromas (Andromas SAS, France) for inter- and intra-specific differentiation of closely related species are presented. Results of identification and differentiation of microorganisms applying MALDI-TOF mass spectrometry based on detection of specific proteins for cross-comparison – biomarkers – are given. The analysis shows that the programming language R environment is one of the publicly available universal platforms with an optimal combination of algorithms for processing and interpreting of a large array of mass spectrometric data.
APA, Harvard, Vancouver, ISO, and other styles
47

Sparkman, O. David. "Review of the 10th Sanibel Conference on Mass Spectrometry: Time-of-Flight Mass Spectrometry." Journal of the American Society for Mass Spectrometry 9, no. 8 (August 1998): 849–51. http://dx.doi.org/10.1016/s1044-0305(98)00057-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sekuła, Justyna, Joanna Nizioł, Wojciech Rode, and Tomasz Ruman. "Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging." Analyst 140, no. 18 (2015): 6195–209. http://dx.doi.org/10.1039/c5an00943j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Prazdnikov, Yuri Evgenevich. "Time-of-Flight Mass Spectrometry of Highly Ordered Carbyne." Journal of Modern Physics 03, no. 09 (2012): 895–901. http://dx.doi.org/10.4236/jmp.2012.39117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Saldi, F., Y. Marie, Y. Gao, C. Simon, H. Migeon, D. Bégin, and J. Marêché. "Time-of-flight secondary ion mass spectrometry of fullerenes." European Journal of Mass Spectrometry 1, no. 1 (1995): 487. http://dx.doi.org/10.1255/ejms.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography