Academic literature on the topic 'Time of Adaptation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Time of Adaptation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Time of Adaptation"
Pezzotta, Elisa. "The Magic of Time inLolita: The Time Traveller Humbert Humbert." Adaptation 8, no. 3 (April 29, 2015): 297–320. http://dx.doi.org/10.1093/adaptation/apv010.
Full textNí Fhlainn, Sorcha. "‘There’s Something Very Familiar About All This’: Time Machines, Cultural Tangents, and Mastering Time in H.G. Wells’sThe Time Machineand theBack to the Futuretrilogy." Adaptation 9, no. 2 (November 18, 2015): 164–84. http://dx.doi.org/10.1093/adaptation/apv028.
Full textChen, Stephanie, and Christof Büskens. "Real-time model adaptation." PAMM 17, no. 1 (December 2017): 837–38. http://dx.doi.org/10.1002/pamm.201710386.
Full textPedersen, Anita L., Keith A. Crnic, Bruce L. Baker, and Jan Blacher. "Reconceptualizing Family Adaptation to Developmental Delay." American Journal on Intellectual and Developmental Disabilities 120, no. 4 (July 1, 2015): 346–70. http://dx.doi.org/10.1352/1944-7558-120.4.346.
Full textArpaci-Dusseau, Remzi H. "Run-time adaptation in river." ACM Transactions on Computer Systems 21, no. 1 (February 2003): 36–86. http://dx.doi.org/10.1145/592637.592639.
Full textRobinson, Linda A. "Crinolines and Pantalettes: What MGM’s Switch in Time Did to Pride and Prejudice (1940)." Adaptation 6, no. 3 (April 18, 2013): 283–304. http://dx.doi.org/10.1093/adaptation/apt003.
Full textBoothroyd, R. G. "Non-relativistic time, existence and adaptation." International Journal of Design & Nature and Ecodynamics 10, no. 3 (September 30, 2015): 199–212. http://dx.doi.org/10.2495/dne-v10-n3-199-212.
Full textTAYAMA, Tadayuki, Yuya MAEKAWA, and Quingyao SHAO. "Time Perception under Temporal-Frequency Adaptation." Proceedings of the Annual Convention of the Japanese Psychological Association 76 (September 11, 2012): 1AMA19. http://dx.doi.org/10.4992/pacjpa.76.0_1ama19.
Full textShevell, Steven K. "The time course of chromatic adaptation." Color Research & Application 26, S1 (2000): S170—S173. http://dx.doi.org/10.1002/1520-6378(2001)26:1+<::aid-col37>3.0.co;2-5.
Full textChachuat, B., B. Srinivasan, and D. Bonvin. "Adaptation strategies for real-time optimization." Computers & Chemical Engineering 33, no. 10 (October 2009): 1557–67. http://dx.doi.org/10.1016/j.compchemeng.2009.04.014.
Full textDissertations / Theses on the topic "Time of Adaptation"
Svanberg, Kerstin. "Bringing the history of fashion up-to-date; towards a model for temporal adatation in translation." Thesis, Linnéuniversitetet, Institutionen för språk och litteratur, SOL, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-22629.
Full textKaragiannidis, Charalampos. "Supporting run-time adaptation in intelligent user interfaces." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242908.
Full textEl-Marakby, Randa Aly Mosaad. "Scalability and QoS adaptation of Internet real-time communications." Thesis, Lancaster University, 1999. http://eprints.lancs.ac.uk/11682/.
Full textArroyo, Palacios Jorge. "Real-time emotion recognition, adaptation and interaction using physiological signals." Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548646.
Full textWeiss, Joshua D. "Real-time dynamic model learning and adaptation for underwater vehicles." Thesis, Monterey, California: Naval Postgraduate School, 2013. http://hdl.handle.net/10945/37741.
Full textPrecision control of unmanned underwater vehicles (UUVs) requires accurate knowledge of the dynamic characteristics of the vehicles. However, developing such models are time and resource intensive. The problem is further exacerbated by the sensitivity of the dynamic model to vehicle configuration. This is particularly true for hovering-class UUVs since sensor payloads are often mounted outside the vehicle body. Methods are investigated in this thesis to learn the dynamic model for such a hovering-class UUV in real time from motion and position measurements. Several system identification techniques, including gradient estimation, Bayesian estimation, neural network estimation, and recursive linear least square estimation, are employed to estimate equations of motion coefficients. Experimental values are obtained for the surge, sway, heave, and yaw degrees of freedom. Theoretical results are obtained for the roll and pitch degrees of freedom. The experimentally obtained model is then compared to the true vehicle behavior.
Bauer, Steven J. (Steven Joseph) 1976. "Expressing application and network adaptivity : time variations and adaptation paths." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8954.
Full textIncludes bibliographical references (leaves 45-48).
Existing wireless networks provide a wide variety of service capabilities. Due to the inherent nature of wireless transmissions, these services are often characterized by high error rates, variable bandwidths and delays, and unpredictable interruptions. Users and applications are somewhat adaptive in their ability to handle these variable service conditions. However applications are not completely flexible nor does the user perceived quality vary in uniform fashion with the changes in network service. By characterizing flexibility, network service variations and application behaviors can be correlated to improve the QoS provided. To this end, this thesis argues that two new concepts, adaptation paths and time constraints, are important. Adaptation paths specify the ways in which network services and traffic can or do change with time. Time constraints capture aspects of QoS requirements related to time. In particular, two time constraints are introduced. First, a Discernible Service Time (DST) captures the duration for which a level of service must or will be provided before it is changed. Second, Interrupt Time (IT) captures durations for which a particular service may be interrupted for whatever reason. To demonstrate the utility of theses constructs this thesis provides a number of examples for how these extensions can be employed in wireless networks to improve QoS.
by Steven J. Bauer.
S.M.
Barral, Nicolas. "Time-accurate anisotropic mesh adaptation for three-dimensional moving mesh problems." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066476/document.
Full textTime dependent simulations are still a challenge for industry, notably due to problems raised by moving boundaries, both in terms of CPU cost and accuracy. This thesis presents contributions to several aspects of simulations with moving meshes. A moving-mesh algorithm based on a large deformation time step and connectivity changes (swaps) is studied. An elasticity method and an Inverse Distance Weighted interpolation method are compared on many 3D examples, demonstrating the efficiency of the algorithm in handling large geometry displacement without remeshing. This algorithm is coupled with an Arbitrary-Lagrangian-Eulerian (ALE) solver, whose schemes and implementation in 3D are described in details. A linear interpolation scheme is used to handle swaps. Validation test cases showed that the use of swaps does not impact notably the accuracy of the solution, while several other complex 3D examples demonstrate the capabilities of the approach both with imposed motion and Fluid-Structure Interaction problems. Metric-based mesh adaptation has proved its efficiency in improving the accuracy of steady simulation at a reasonable cost. We consider the extension of these methods to unsteady problems, updating the previous fixed-point algorithm thanks to a new space-time error analysis based on the continuous mesh model. An efficient p-thread parallelization enables running 3D unsteady adaptative simulations with a new level of accuracy. This algorithm is extended to moving mesh problems, notably by correcting the optimal unsteady metric. Finally several 3D examples of adaptative moving mesh simulations are exhibited, that prove our concept by improving notably the accuracy of the solution for a reasonable time cost
Pavilanskas, Lukas. "Adaptation of Wireless Access MAC Protocol for Real Time Packet Flows." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2007. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2007~D_20070702.132059-17359.
Full textMokslo problemos aktualumas. Plačiajuostės licencijuojamų dažnių bevielės technologijos, kurios paprastai skirtos vartotojams teikti komercines multimedijos ir balso paslaugas, yra per brangios vystant prieigos tinklus, kuriuose sutinkama didelė vartotojų koncentracija. Dėl to šios technologijos dažniausiai naudojamos tik komercinių balso paslaugų tiekėjų. Labiausiai tinkama alternatyva – yra IEEE 802.11 technologijos, kurių naudojimas modernių telekomunikacijų tinklų išplėtimui įvairiose tipinėse sąlygose yra pastebimai auganti telekomunikacijų rinkos dalis. Ši technologija greitai išplito ir tapo populiari verslo, namų, „paskutinės mylios“ ir kituose tinklų vystymo sprendimuose. Modernėjant Interneto technologijoms, telekomunikacijų tinkluose įsivyrauja multimedijos požymių turintys srautai, kurių sukurtoms specifinėms sąlygoms IEEE 802.11 technologijos nėra pritaikytos. Todėl svarbu kurti naujus, ribines galimybes išnaudojančius, bet specifikacijos nekeičiančius protokolus, kurie leistų rinkoje esančią įrangą adaptuoti realaus laiko srautams. Disertacijoje naudojama IEEE 802.11 MAC protokolo technologinių sąnaudų įtakos vertinimo metodika nebuvo taikoma. Šis vertinimo būdas leidžia įvertinti fizinio resurso užėmimo racionalumą ir numatyti IEEE 802.11 protokolo modifikavimo kryptis. Pateiktas sinchroninis vartotojų prieigos adaptacijos balso perdavimams būdas leidžia racionaliai panaudoti IEEE 802.11 protokolą balsui adaptuotose vartotojų prieigose. Todėl, galima teigti... [toliau žr. visą tekstą]
Chen, Hao. "Real time model adaptation for non-linear and non-stationary systems." Thesis, University of Reading, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.630445.
Full textTaing, Nguonly. "Run-time Variability with Roles." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234933.
Full textBooks on the topic "Time of Adaptation"
Bauer, Lars, and Jörg Henkel. Run-time Adaptation for Reconfigurable Embedded Processors. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7412-9.
Full textBauer, Lars. Run-time Adaptation for Reconfigurable Embedded Processors. New York, NY: Springer Science+Business Media, LLC, 2011.
Find full text1953-, Ioannou P. A., ed. Linear time-varying systems: Control and adaptation. Englewood Cliffs, N.J: Prentice Hall, 1993.
Find full textYan, Wanglin, and Will Galloway, eds. Rethinking Resilience, Adaptation and Transformation in a Time of Change. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50171-0.
Full textCooking in ten minutes, or, The adaptation to the rhythm of our time. London: Faber and Faber, 1985.
Find full textPomiane, Edouard de. Cooking in ten minutes: Or the adaptation to the rhythm of our time. London: Serif, 1993.
Find full textHelfand, Lewis. The time machine. New Delhi: Kalyani Navyug Media, 2009.
Find full textCottonwood and the river of time: On trees, evolution, and society. Seattle: University of Washington Press, 2009.
Find full textMeyer, Benjamin. Measuring, Modeling and Simulating the Re-adaptation Process of the Human Visual System after Short-Time Glares in Traffic Scenarios. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-14704-4.
Full textAdams, Robert. Lucy & Maude: An Edwardian drama in a Herefordshire schoolroom : an adaptation based on the records of the time by Robert Adams. Leominster: The author, 1995.
Find full textBook chapters on the topic "Time of Adaptation"
Demory, Pamela. "Moonlight, Adaptation, and Queer Time." In Queer/Adaptation, 89–105. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05306-2_6.
Full textMatthews, Roger. "Order, Control and Adaptation in Prison." In Doing Time, 49–75. London: Palgrave Macmillan UK, 2009. http://dx.doi.org/10.1057/9780230277069_3.
Full textHewson, Louise, and Amparo Tarrega. "Sensory Adaptation." In Time-Dependent Measures of Perception in Sensory Evaluation, 67–87. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118991640.ch4.
Full textCybenko, George. "Just-in-Time Learning and Estimation." In Identification, Adaptation, Learning, 423–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03295-4_11.
Full textBeigi, Homayoon. "Adaptation over Time (Case Study)." In Fundamentals of Speaker Recognition, 601–9. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-77592-0_21.
Full textVarsavsky, Thomas, Mauricio Orbes-Arteaga, Carole H. Sudre, Mark S. Graham, Parashkev Nachev, and M. Jorge Cardoso. "Test-Time Unsupervised Domain Adaptation." In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 428–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59710-8_42.
Full textMacGregor, Donald. "Time Pressure and Task Adaptation." In Time Pressure and Stress in Human Judgment and Decision Making, 73–82. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4757-6846-6_5.
Full textFriedman, W. J. "Introduction Time Concepts and Adaptation: Developmental Approaches." In Time, Action and Cognition, 9–12. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-017-3536-0_2.
Full textBieliková, Mária, and Rastislav Habala. "Time-Based Extensions to Adaptation Techniques." In Lecture Notes in Computer Science, 376–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27780-4_54.
Full textUllrich, Carsten, Tianxiang Lu, and Erica Melis. "Just-in-Time Adaptivity through Dynamic Items." In User Modeling, Adaptation, and Personalization, 373–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02247-0_39.
Full textConference papers on the topic "Time of Adaptation"
Granado, Bertrand, Marc Gatti, Julien Denoulet PhD, and Martin Rayrole. "In Flight Real-Time Adaptation." In AeroTech Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2017. http://dx.doi.org/10.4271/2017-01-2169.
Full textRoyer, Amelie, and Christoph H. Lampert. "Classifier adaptation at prediction time." In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015. http://dx.doi.org/10.1109/cvpr.2015.7298746.
Full textFritsch, Serena, Aline Senart, Douglas C. Schmidt, and Siobhán Clarke. "Scheduling time-bounded dynamic software adaptation." In the 2008 international workshop. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1370018.1370035.
Full textPetitjean, Francois, Jordi Inglada, and Pierre Gancarski. "Temporal domain adaptation under time warping." In IGARSS 2011 - 2011 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2011. http://dx.doi.org/10.1109/igarss.2011.6049995.
Full textWalker, Ivor T. "Just-in-Time Personalisation of Real-Time Media Content." In Second International Workshop on Semantic Media Adaptation and Personalization (SMAP 2007). IEEE, 2007. http://dx.doi.org/10.1109/smap.2007.21.
Full textWalker, Ivor T. "Just-in-Time Personalisation of Real-Time Media Content." In Second International Workshop on Semantic Media Adaptation and Personalization (SMAP 2007). IEEE, 2007. http://dx.doi.org/10.1109/smap.2007.4414423.
Full textSkalistis, Stefanos, and Angeliki Kritikakou. "Timely Fine-Grained Interference-Sensitive Run-Time Adaptation of Time-Triggered Schedules." In 2019 IEEE Real-Time Systems Symposium (RTSS). IEEE, 2019. http://dx.doi.org/10.1109/rtss46320.2019.00030.
Full textChen, Yingming, Chenyang Lu, and Xenofon Koutsoukos. "Optimal Discrete Rate Adaptation for Distributed Real-Time Systems." In 28th IEEE International Real-Time Systems Symposium (RTSS 2007). IEEE, 2007. http://dx.doi.org/10.1109/rtss.2007.39.
Full textFidkowski, Krzysztof. "OUTPUT-BASED SPACE-TIME ADAPTATION WITH NON-VARIATIONAL TIME INTEGRATION." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.1989.9753.
Full textHashimoto, Masanori. "Run-time performance adaptation: Opportunities and challenges." In 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2015. http://dx.doi.org/10.1109/edssc.2015.7285063.
Full textReports on the topic "Time of Adaptation"
Chang, Fangzhe, and Vijay Karamcheti. Automatic Configuration and Run-time Adaptation of Distributed Applications. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada439727.
Full textBento, Antonio, Noah Miller, Mehreen Mookerjee, and Edson Severnini. Time is of the Essence: Climate Adaptation Induced by Existing Institutions. Cambridge, MA: National Bureau of Economic Research, May 2021. http://dx.doi.org/10.3386/w28783.
Full textGao, Shihong, Jialong Wu, Dongxian Hao, and Changming Kang. A Study of the Normal Value of Dark Adaptation Time for Healthy Chinese Pilots. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada210585.
Full textZhu, X., R. Pan, M. Ramalho, and S. Mena. Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control Scheme for Real-Time Media. RFC Editor, February 2020. http://dx.doi.org/10.17487/rfc8698.
Full textBacher-Hicks, Andrew, Joshua Goodman, and Christine Mulhern. Inequality in Household Adaptation to Schooling Shocks: Covid-Induced Online Learning Engagement in Real Time. Cambridge, MA: National Bureau of Economic Research, July 2020. http://dx.doi.org/10.3386/w27555.
Full textDasarathy, Balakrishnan. The DARPA Adaptive and Reflective Middleware Systems (ARMS) Program, Phase II: Pervasive Instrumentation and Adaptation for Distributed Real-Time Embedded Systems. Fort Belvoir, VA: Defense Technical Information Center, February 2007. http://dx.doi.org/10.21236/ada462967.
Full textEise, Jessica, Natalie Lambert, Tiwaladeoluwa Adekunle, and Laura Eise. More Inclusive, More Practical: Climate Change Communication Research to Serve the Future. Purdue University, 2020. http://dx.doi.org/10.5703/1288284317278.
Full textTobin, Daniel, Erin Lane, and Ron Hoover. Climate Change and Agriculture in the Northeast: Teamwork, Responses, and Results. USDA Northeast Climate Hub, 2015. http://dx.doi.org/10.32747/2015.6965353.ch.
Full textSolaun, Kepa, Chiquita Resomardono, Katharina Hess, Helena Antich, Gerard Alleng, and Adrián Flores. State of the Climate Report: Suriname: Summary for Policy Makers. Inter-American Development Bank, July 2021. http://dx.doi.org/10.18235/0003415.
Full textSolaun, Kepa, Gerard Alleng, Adrián Flores, Chiquita Resomardono, Katharina Hess, and Helena Antich. State of the Climate Report: Suriname. Inter-American Development Bank, July 2021. http://dx.doi.org/10.18235/0003398.
Full text