Dissertations / Theses on the topic 'Time domain'

To see the other types of publications on this topic, follow the link: Time domain.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Time domain.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Spangenberg, Dirk-Mathys. "Time domain ptychography." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96735.

Full text
Abstract:
Thesis (PhD)--Stellenbosch University, 2015.
ENGLISH ABSTRACT: In this work we investigate a new method to measure the electric field of ultrafast laser pulses by extending a known measurement technique, ptychography, in the spatial domain to the time domain which we call time domain ptychography. The technique requires the measurement of intensity spectra at different time delays of an unknown temporal object and a known probe pulse. We show for the first time by measurement and calculation that this technique can be applied with excellent results to recover both the amplitude and phase of a temporal object. This technique has several advantages, such as fast convergence, the resolution is limited by the usable measured spectral bandwidth and the recovered phase has no sign ambiguity. We then extend the technique to pulse characterization where the probe is derived form the temporal object by filtering meaning the probe pulse is also unknown, but the spectrum of the probe pulse must be the same as the spectrum of the temporal object before filtering. We modify the reconstruction algorithm, now called ptychographic iterative reconstruction algorithm for time domain pulses (PIRANA), in order to also reconstruct the probe and we show for the first time that temporal objects, a.k.a laser pulses, can be reconstructed with this new modality.
AFRIKAANSE OPSOMMING: In hierdie werk het ons ’n nuwe metode ondersoek om die elektriese veld van ’n ultravinnige laser puls te meet deur ’n bekende meettegniek wat gebruik word in die ruimtelike gebied, tigografie, aan te pas vir gebruik in die tyd gebied genaamd tyd gebied tigografie. Die tegniek vereis die meting van ’n reeks intensiteit spektra by verskillende tyd intervalle van ’n onbekende ‘tyd voorwerp’ en ’n bekende monster puls. Ons wys vir die eerste keer deur meting en numeriese berekening dat hierdie tegniek toegepas kan word met uitstekende resultate, om die amplitude en fase van ’n ‘tyd voorwerp’ te meet. Hierdie tegniek het verskeie voordele, die iteratiewe proses is vinnig, die resolusie van die tegniek word bepaal deur die spektrale bandwydte gemeet en die fase van die ‘tyd voorwerp’ word met die korrekte teken gerekonstrueer. Ons het hierdie tegniek uitgebrei na puls karakterisering waar die monster pulse afgelei word, deur ’n bekende filter te gebruik, van die onbekende ‘tyd voorwerp’ nl. die inset puls. Ons het die iteratiewe algoritme wat die ‘tyd voorwerp’ rekonstrueer aangepas om ook die monster puls te vind en ons wys dat ons hierdie metode suksesvol kan gebruik om laser pulse te karakteriseer
APA, Harvard, Vancouver, ISO, and other styles
2

Skjeie, Hans Christian Bakken. "Terahertz Time-Domain Spectroscopy." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19214.

Full text
Abstract:
The field of terahertz time-domain spectroscopy (THz-TDS) is still far from reaching its full potential, but is a very promising utility for a wide range of applications. Principle experiments have been performed in fields of drug screening, pharmaceutical, medical diagnostics, security imaging and detection of explosives. Optimized and adapted THz-TDS systems holds great promise for driving this technology further.The purpose of this thesis was to build a THz-TDS system, explore possibilities for improving this system and to perform THz-TDS measurements on semiconductors and wood. The aim of the experimental work was to build a stable and reliable system with an electric field strength of THz radiation in the order of kV/cm. The THz-TDS system used in this thesis was based upon the principles of optical rectification and free-space electro-optic sampling in zinc telluride (ZnTe) crystals using a femtosecond Ti:Sapphire amplified laser.Theoretical studies were performed on the principles of generation and detection of THz radiation. The experimental work was based on publications of similar experiments. Theoretical and experimental studies lead to several modifications and improvements of the setup first built in this thesis. Experiments were performed on disparate materials to find suitable materials for THz transmission. Results from measurements performed on semiconductors and wood, obtained by THz-TDS, were analysed to find the absorption coefficient and the refractive index of the materials. The spectroscopic information obtained by THz-TDS can also be used to find the conductivity and the mobility of these materials. THz-TDS measures the electric field and therefore provides information of both the amplitude and the phase of the THz wave. A Fourier transformation was used to obtain the frequency spectrum of the detected signal. The improvements were done by analysing the results of the detected signal to see which adjustments and modifications to the setup that had positive effects on the results. The pump power used for generation of THz radiation and the optimum azimuthal angle of the ZnTe crystals were crucial to obtain a THz-TDS system with a strong electric field. The maximum electric field strength for the THz radiation in this thesis was 13.2 kV/cm, with a signal-to-noise ratio of 43 and dynamic range of 1500.
APA, Harvard, Vancouver, ISO, and other styles
3

Lam, Vai Iam. "Time domain approach in time series analysis." Thesis, University of Macau, 2000. http://umaclib3.umac.mo/record=b1446633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sankaran, Krishnaswamy. "Accurate domain truncation techniques for time-domain conformal methods /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17447.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lopez-Castellanos, Victor. "Ultrawideband Time Domain Radar for Time Reversal Applications." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1301040987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hussain, Ali. "Ultrabroadband time domain terahertz spectroscopy." Thesis, University of Bath, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Predoehl, Andrew M. "Time domain antenna pattern measurements." Thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-11072008-063651/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roberts, Adam. "Time Domain Spectroscopy of Graphene." Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/228120.

Full text
Abstract:
This dissertation describes the response of graphene and graphene fragments to ultrafast optical pulses. I will first describe how we created few-cycle optical pulses for interacting with the graphene lattice. These pulses are created through filamentation based pulse compression. I studied how the filamentation process can be optimized through simple means to create the shortest possible pulse. I then examine the extent to which graphene can withstand irradiation from intense ultra-fast pulses. I examine both the high intensity regime at which a single laser pulse will ablate the graphene and a more moderate regime that slowly degrades the graphene from long term exposure to ultrafast pulses. The knowledge lets us both identify a safe working regime for driving the graphene lattice with optical fields as well as use ultrafast lasers to create graphene nano-fragments down to 2nm. Next, I explore the ultrafast dynamics of photo-excited graphene. Graphene undergoes electronic band renormalization after photo exciting carriers. By measuring a differential transmission spectrum, small changes to the band structure can be quantified. I will explain how screened exchange and electron phonon self energies provide corrections to the band structure for different times after carrier excitation. Lastly, I will describe measurements that determine the extent of electron-electron correlations in graphene fragments. By measuring the energy of the two photon state and comparing it the lowest energy one photon state in graphene fragments, we can determine the strength of the correlations in graphene systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Jian. "Theory and application methods of time domain reflectometry/time domain transmission computed tomography (TDR/TDT CT)." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, p, 2007. http://proquest.umi.com/pqdweb?did=1397912601&sid=5&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Torcedo, Jojit Camama. "Time-domain Terahertz Spectroscopy of water." Diss., [Riverside, Calif.] : University of California, Riverside, 2010. http://proquest.umi.com/pqdweb?index=0&did=2019861181&SrchMode=2&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1274284155&clientId=48051.

Full text
Abstract:
Thesis (Ph. D.)--University of California, Riverside, 2010.
Includes abstract. Title from first page of PDF file (viewed May 18, 2010). Includes bibliographical references. Issued in print and online. Available via ProQuest Digital Dissertations.
APA, Harvard, Vancouver, ISO, and other styles
11

Kalyoncu, Ozden. "Noise Reduction In Time-frequency Domain." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608768/index.pdf.

Full text
Abstract:
In this thesis work, time-frequency filtering of nonstationary signals in noise using Wigner-Ville Distribution is investigated. Continuous-time, discrete-time and discrete Wigner Ville Distribution definitions, their relations, and properties are given. Time-Frequency Peak Filtering Method is presented. The effects of different parameters on the performance of the method are investigated, and the results are presented. Time-Varying Wiener Filter is presented. Using simulations it is shown that the performance of the filter is good at SNR levels down to -5 dB. It is proposed and shown that the performance of the filter improves by using Support Vector Machines. The presented time-frequency filtering techniques are applied on test signals and on a real world signal. The results obtained by the two methods and also by classical zero-phase low-pass filtering are compared. It is observed that for low sampling rates Time-Varying Wiener Filter, and for high sampling rates Time-Frequency Peak Filter performs better.
APA, Harvard, Vancouver, ISO, and other styles
12

Condori-Arapa, Cristina. "Antenna elements matching : time-domain analysis." Thesis, Högskolan i Gävle, Akademin för teknik och miljö, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-7783.

Full text
Abstract:
Time domain analysis in vector network analyzers (VNAs) is a method to represent the frequency response, stated by the S-parameters, in time domain with apparent high resolution. Among other utilities time domain option from Agilent allows to measure microwave devices into a specific frequency range and down till DC as well with the two time domain mode: band-pass and low-pass mode. A special feature named gating is of important as it allows representing a portion of the time domain representation in frequency domain.   This thesis studies the time domain option 010 from Agilent; its uncertainties and sensitivity. The task is to find the best method to measure the antenna element matching taking care to reduce the influence of measurement errors on the results.   The Agilent 8753ES is the instrument used in the thesis. A specific matching problem in the antenna electric down-tilt (AEDT) previously designed by Powerwave Technologies is the task to be solved. This is because it can not be measured directly with 2-port VNAs. It requires adapters, extra coaxial cables and N-connectors, all of which influences the accuracy. The AEDT connects to the array antenna through cable-board-connectors (CBCs). The AEDT and the CBCs were designed before being put into the antenna-system. Their S-parameters do not coincide with the ones measured after these devices were put in the antenna block.   Time domain gating and de-embedding algorithms are two methods proposed in this thesis to measure the S-parameters of the desired antenna element while reducing the influence of measurement errors due to cables CBCs and other connectors. The aim is to find a method which causes less error and gives high confidence measurements.   For the time domain analysis, reverse engineering of the time domain option used in the Agilent VNA 8753ES is implemented in a PC for full control of the process. The results using time-domain are not sufficiently reliable to be used due to the multiple approximations done in the design. The methodology that Agilent uses to compensate the gating effects is not reliable when the gate is not centered on the analyzed response. Big errors are considered due to truncation and masking effects in the frequency response.   The de-embedding method using LRL is implemented in the AEDT measurements, taking away the influences of the CBCs, coaxial cables and N-connector. It is found to have sufficient performance, comparable to the mathematical model. Error analysis of both methods has been done to explaine the different in measurements and design.
APA, Harvard, Vancouver, ISO, and other styles
13

Soong, Chi-Li. "Fast time-domain-based GPS acquisition." Ohio : Ohio University, 1996. http://www.ohiolink.edu/etd/view.cgi?ohiou1178041237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Reader, H. C. "Time domain techniques for antenna analysis." Thesis, University of Cambridge, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Camus, Enrique Castro. "Polarisation resolved terahertz time domain spectroscopy." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Fitzgerald, Colm J. "Time-domain simulations for floating structures." Thesis, Loughborough University, 2009. https://dspace.lboro.ac.uk/2134/14475.

Full text
Abstract:
In this thesis numerical and analytical investigations of wave-structure interactions are conducted within the linearised theory of water waves. The primary objective of the thesis was to develop a numerical time-domain solution method capable of simulating wave-structure interactions in three-dimensions involving axisymmetric structures. Although the solution method was developed for three-dimensional problems, many two-dimensional interactions were also simulated using an existing time-domain solution method. The numerical method for obtaining the solution of the time-domain water wave problem combines a cubic spline boundary element method (BEM) which yields a solution to the boundary integral equation with a time-stepping algorithm to advance the solution in time. The assumption regarding the axisymmetric nature of the structural geometry results in significant simplifications of the governing boundary integral equation and allows the existing BEM implementation for two-dimensional problems to be used as the basis for the solution method. The time-advancement algorithm was implemented such that radiation, scattering and floating body interactions can be simulated. Despite the focus on the time-domain investigations, the interactions were also considered in the frequency-domain to complement the time-domain results and for the purposes of verification. The analytical frequency-domain investigations are particularly relevant to highly resonant interactions where the response of the fluid and structure is related to the location of the resonance in the complex frequency plane. The complementary frequency-domain analysis was utilised in the development of a damped harmonic oscillator model to approximate the transient fluid motions in resonant scattering interactions. Passive trapped modes which can be supported by both fixed and floating structures were discovered in frequency-domain uniqueness investigations in the water-wave problem for a floating structure and their existence was confirmed in both two and three dimensions using time-domain excitation simulations. Finally, the time-domain BEM code was utilised to simulate various wave-structure interactions of practical interest.
APA, Harvard, Vancouver, ISO, and other styles
17

Ellison, John G. "A polarimetric optical time domain reflectometer." Thesis, University of Essex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Matthysen, Nardus. "Time domain metrology for MeerKAT systems." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95963.

Full text
Abstract:
Thesis (MEng)--Stellenbosch University, 2014.
ENGLISH ABSTRACT: This work in this study covers a powerful technique to derive propagation and scattering information in an expedient fashion. Expedient because time-domain (TD) data gathers a broad spectrum in a single transmitted pulse. TD has been criticised because of a lack of dynamic range, which has now been overcome by the direct sampling system, RATTY and RTA. This study focuses on the investigation of a TD metrology system, to assist with the characterisation of MeerKAT systems. The elementary components of the system include a fast-rising impulse generator that was coupled with an impulse radiating antenna (IRA). The system was calibrated and tested before practical measurements and preliminary testing in the Karoo were done. For TDmetrology a larger bandwidth accelerates measurements without the loss of accuracy. The pulse generator’s (PG’s) fundamental components are an avalanche transistor and a step recovery diode (SRD), to sharpen the leading edge of the pulse. Improving the rise-time of a pulse increases its bandwidth in the spectrum. The external circuitry around these components is pivotal and it determines the shape, amplitude and rise-time of the pulse. In the course of the investigation, the general circuitry around the PG was improved to obtain the best possible pulse for measurements inside a reverberation chamber (RC) and for measurements in the Karoo. In light of this, a second and third PG source were obtained. For measurements in the Karoo, a larger amplitude pulse was required to increase the spectral content and this is essential for propagation measurements over distance and the shielding effectiveness (SE) of structures. Stacking avalanche transistors allow larger amplitude pulses and it improves the dynamic range of the spectrum. A PG incorporating stacked avalanche transistors, was designed, built and measured to assist with RC and small-scale field measurements in the Karoo. The third PG was bought for the practical measurements in the Karoo. The PG produces kilovolt pulses with pico-second rise-times that extend the spectral range of the current PGs at our disposal. With these PGs, an antenna is required for the radiation of impulse-like transients. The IRA is a high-gain large-bandwidth antenna. The IRA consists of a parabolic reflector, conical-plate transmission lines that are terminated through resistors onto the dish, and a feeding balun. The IRA design was thoroughly discussed and a first model for metrology was designed, measured and optimised. The IRA was also simulated with computation software code, FEKO. Before deployment of theTDsystem, calibration and characterisation measurements are required. The measuring devices used within this study were sampling oscilloscopes and direct sampling systems. The limitations of each device were explored and are discussed. The final measurements that were conducted contribute to work related to the SKA. This incorporated antenna pattern calibration, propagation over distance and the SE of a berm built from Karoo soil. The system investigated the propagation attenuation over the Karoo soil and vegetation, with great promise. A broad spectrum was measured over a few kilometres and compared to free-space loss. The SE of the berm covered the same spectral bandwidth. In this measurement, scattering effects and knife-edge diffraction were observed.
AFRIKAANSE OPSOMMING: Die werk in hierdie studie dek ’n kragtige tegniek wat gebruik kan word om die voortplanting en die verstrooiingsinligting van elektromagnetiese golwe op ’n voordelige manier af te lei. Dit is voordelig, want tydgebieddata versamel ’n wye spektrum in ’n enkele oordraagbare puls. Tydgebied is in die verlede baie gekritiseer omdat dit ’n dinamiese reikwydte kortkom en dit is nou oorwin deur die direkte steekproefnemingstelsel, RATTY en RTA. Hierdie studie fokus op die ondersoek van ’n tydgebiedmetingssisteem en dit help met die karakterisering van MeerKAT sisteme. Die elementêre komponente van die sisteem bestaan uit ’n vinnig-stygende impulsgenerator wat gekoppel is aan ’n impulsuitstralende-antenna (IRA). Die sisteem is gekalibreer en getoets voordat praktiese metings en toetse in die Karoo uitgevoer kon word. Vir tydgebiedmetings versnel ’n groter bandwydte die metings sonder om die akkuraatheid daarvan te beïnvloed. Die pulsgenerator se fundamentele komponente is ’n stortvloedtransistor en ’n stap-herstel diode (SRD) wat die voorpunt van die puls verskerp. Die eskterne stroombaan rondom hierdie komponente is noodsaaklik en dit bepaal die vorm, amplitude en die stygtyd van die puls. Deur die loop van hierdie ondersoek is die algemene stroombaan rondom die puls verbeter, om die beste moontlike puls vir metings binne in die weerkaatsingskamer en vir metings in die Karoo, te verkry. Na aanleiding van dit is ’n tweede en derde pulsgenerator bron verkry. Vir die metings in die Karoo is ’n puls met ’n groter amplitude vereis om die spektrale inhoud te vermeerder. Dit is noodsaaklik vir elektromagnetiese golf voortplantingsmetings oor afstand asook die beskermings effektiwiteit (SE) van die strukture. Stapel-stortvloed transistors skep pulse met groter amplitudes en dit verbeter die dinamiese reikwydte van die spektrum. ’n Pulsgenerator wat gestapelde stortvloedtransistors insluit is ontwerp, gebou en gemeet om te help met metings in die weerkaatsingskamer en kleinskaal veldmetings in die Karoo. Die derde pulsgenerator is gekoop vir praktiese metings in die Karoo. Die pulsgenerator vervaardig kilovolt pulse met pikosekond stygtye, wat die reikwydte van die spektrum van ons huidige puls uitbrei. Hierdie pulsgenerators vereis ’n antenna vir die uistraling van impulsagtige seine. Die IRA is ’n hoë-wins, groot-bandwydte antenna. Die IRA bestaan uit ’n paraboliese weerkaatser, konieseplaat transmissielyne wat deur weerstande op die skottel getermineer word, asook ’n voedings "balun". Die IRA ontwerp is deeglik bespreek en ’n model is ontwerp, gemeet en verbeter. Die IRA is ook gesimuleer met behulp van ’n rekenaarsagtewareprogram, FEKO. Voordat die tydgebiedsisteem benut kan word, moet dit gekalibreer word en karakteriseringsmetings moet ook daarmee uitgevoer word. Die meetinstrumente wat in hierdie studie gebruik is, is steekproefneming-ossilloskope en direkte steekproefneming-sisteme. Die tekortkominge van elke instrument is ondersoek en bespreek. Die finale meting wat uitgevoer is, dra by tot die werk wat geassosieer word met die SKA. Dit behels antennapatroonkalibrasie, voortplanting van elektromagnetiese golwe oor afstand en die SE van ’n "berm"wat gebou is uit Karoo-grond. Hierdie sisteem is gebruik om die voortplantings-verswakking oor die Karoo-grond en plantegroei te ondersoek en dit lyk baie belowend. ’nWye spektrumis oor ’n paar kilometer gemeet en dit is met wrywinglose ruimte vergelyk. Die SE van die "berm"het dieselfde spektrale bandwydte gedek. In hierdie meting is verstrooiingseffekte en mespunt-diffraksie waargeneem.
APA, Harvard, Vancouver, ISO, and other styles
19

Deane, Anne Margaret. "Time domain work on brass instruments." Thesis, University of Surrey, 1986. http://epubs.surrey.ac.uk/847357/.

Full text
Abstract:
This work investigates brass instruments in the time domain, rather than the traditional frequency domain, and considers first, impulse measurements and secondly, their analysis. An existing apparatus for measuring the response to an acoustic impulse at the input of a brass instrument has been refined. Problems of impulse inconsistency, ambient temperature variation and source reflections have been resolved. Developments of the above equipment are used to test the quality of brass instruments on a factory production line. A prototype and a test instrument are compared by taking the arithmetical difference of their impulse responses. The equipment has detected small faults missed by normal inspection methods. The usefulness of this technique to brass instrument manufacturers is discussed. Links between the instrument's measured transient response and its bore geometry have been developed. The stages involved are deconvolution and bore reconstruction. Various deconvolution methods have been studied systematicaly by applying them to simulated noiseless and noisy data. Noise introduces errors, particularly at high frequencies, so deconvolution of real measured data is distorted. Techniques to reduce the effects of noise have been investigated. Attempts to employ the Gerchberg restoration algorithm 'to restore high frequency information proved unsuccessful. A new inverse method, based on an iterative z-transform procedure, of reconstructing an instrument's bore shape and damping profile from its transient response has been developed. It produces perfect results for noiseless model data, but even the smallest amount of noise renders the method unstable. Regularisation is therefore required. The corresponding direct process of predicting the transient response from bore and damping data is stable and produces results which compare well with measured responses. The work strengthens relationships between an instrument's shape and its musical quality, and will enhance the design of better instruments. Further research on the link between transient response and subjective quality is recommended.
APA, Harvard, Vancouver, ISO, and other styles
20

Czech, Daniel Josef. "Time domain classification of transient RFI." Doctoral thesis, Faculty of Engineering and the Built Environment, 2019. http://hdl.handle.net/11427/30071.

Full text
Abstract:
Since the emergence of radio astronomy as a field, it has been afflicted by radio frequency interference (RFI). RFI continues to present a problem despite increasingly sophisticated countermeasures developed over the decades. Due to technological improvements, radio telescopes have become more sensitive (for example, MeerKAT’s L-band receiver). Existing RFI has become more prominent as a result. At the same time, the prevalence of RFI-generating devices has increased as new technologies have been adopted by society. Many approaches have been developed for mitigating RFI, which are typically used in concert. New telescope arrays are often built far from human habitation in radio-quiet reserves. In South Africa, a radio-quiet reserve has been established in which several world class instruments are under construction. Despite the remote location of the reserve, careful attention is paid to the possibility of RFI. For example, some instruments will begin observations while others are still under construction. The infrastructure and equipment related to the construction work may increase the risk of RFI, especially transient RFI. A number of mitigation strategies have been employed, including the use of fixed and mobile RFI monitoring stations. Such stations operate independently of the main telescope arrays and continuously monitor a wide bandwidth in all directions. They are capable of recording spectra and high resolution time domain captures of transient RFI. Once detected, and if identified, an RFI source can be found and dealt with. The ability to identify the sources of detected RFI would be highly beneficial. Continuous wave intentional transmissions (telecommunication signals for example) are easily identified as they are required to adhere to allocated frequency bands. Transient RFI signals, however, are significantly more challenging to identify since they are generally broadband and highly intermittent. Transient RFI can be generated as a by-product of the normal operation of devices such as relays, AC machines and fluorescent lights, for example. Such devices may be present near radio telescope arrays as part of the infrastructure or equipment involved in the construction of new instruments. Other than contaminating observation data, transient RFI can also appear to have genuine astronomical origins. In one case, transient signals received from a microwave oven exhibited dispersion, suggesting a distant source. Therefore, the ability to identify transient RFI by source would be enormously valuable. Once identified, such sources may be removed or replaced where possible. Despite this need, there is a paucity of work on classifying transient RFI in the literature. This thesis focusses on the problem of identifying transient RFI by source in time domain data of the type captured by remote monitoring stations. Several novel approaches are explored in this thesis. If used with independent RFI monitoring stations, these approaches may aid in tracking down nearby RFI sources at a radio telescope array. They may also be useful for improving RFI flagging in data from radio telescopes themselves. Distinguishing between transient RFI and natural astronomical signals is likely to be an easier prospect than classifying transient RFI by source. Furthermore, these approaches may be better able to avoid excising genuine astronomical transients that nevertheless share some characteristics with RFI signals. The radio telescopes themselves are significantly more sensitive than RFI monitoring stations, and would thus be able to detect RFI sources more easily. However, terrestrial RFI would likely enter via sidelobes, tempering this advantage somewhat. In this thesis, transient RFI is first characterised, prior to classification by source. Labelled time-domain recordings of a number of transient RFI sources are acquired and statistically examined. Second, components analysis techniques are considered for feature selection. Cluster separation is analysed for principal components analysis (PCA) and kernel PCA, the latter proving most suitable. The effect of the supply voltage of certain RFI sources on cluster separation in the principal components domain is also explored. Several na¨ıve classification algorithms are tested, using kernel PCA for feature selection A more sophisticated dictionary-based approach is developed next. While there are variations in repeated recordings of the same RFI source, the signals tend to adhere to a common overarching structure. Full RFI signals are observed to consist of sequences of individual transients. An algorithm is presented to extract individual transients from full recordings, after which they are labelled using unsupervised clustering methods. This procedure results in a dictionary of archetypal transients, from which any full RFI sequence may be represented. Some approaches in Automated Speech Recognition (ASR) are similar: spoken words are divided into individual labelled phonemes. Representing RFI signals as sequences enables the use of hidden Markov models (HMMs) for identification. HMMs are well suited to sequence identification problems, and are known for their robustness to variation. For example, in ASR, HMMs are able to handle the variations in repeated utterances of the same word. When classifying the recorded RFI signals, good accuracy is achieved, improving on the results obtained using the more na¨ıve methods. Finally, a strategy involving deep learning techniques is explored. Recurrent neural networks and convolutional neural networks (CNNs) have shown great promise in a wide variety of classification tasks. Here, a model is developed that includes a pre-trained CNN layer followed by a bidirectional long short-term memory (BLSTM) layer. Special attention is paid to mitigating class imbalance when the model is used with individual transients extracted from full recordings. High classification accuracy is achieved, improving on the dictionary-based approach and the other na¨ıve methods. Recommendations are made for future work on developing these approaches further for practical use with remote monitoring stations. Other possibilities for future research are also discussed, including testing the robustness of the proposed approaches. They may also prove useful for RFI excision in observation data from radio telescopes.
APA, Harvard, Vancouver, ISO, and other styles
21

Su, Wansheng. "Calibration of time domain network analyzers." Diss., This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-09232008-144723/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Meier, Mark Albert. "The time domain triple probe method /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Charlamov, Jevgenij. "Time domain optical reflectometer systems investigation." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2013~D_20140227_140438-77567.

Full text
Abstract:
The dissertation investigates the optical time domain reflectometer (OTDR) systems. The main object of research is an optical receiver for OTDR. The aim of the work is to create an optical receiver design method-ology to achieve optimal dynamic range of the system for a given band-width, design and investigate integrated fully differential variable gain tran-simpedance amplifier for OTDR optical receiver. Main tasks solved in this work are: perform analysis of OTDR struc-tures, main specifications and suggest possible improvement approaches; analyze main optical receiver noise sources and noise minimization and create generalized noise model; create optical receiver for an OTDR design methodology, that allow calculating avalanche photodiode multiplication factor, transimpedance amplifier feedback resistance and voltage amplifier input transistor dimensions that achieves optimal OTDR dynamic range; design and perform simulations of transimpedance amplifier integrated cir-cuit using AMS 0.35 µm CMOS technology and calculate optical receiver parameters in 0.1–100 MHz range of bandwidths The dissertation consists of four parts including Introduction, 4 chap-ters, Conclusions, References and 1 Annex. The introduction reveals the investigated problem, importance of the thesis and the object of research. It also describes the purpose and tasks, research methodology, scientific novelty, the practical significance of re-sults examined in the paper and defended statements. The... [to full text]
Disertacijoje nagrinėjamos laiko srities optinės reflektometrinės (OTDR) sistemos. Pagrindinis tyrimo objektas yra OTDR įėjimo pakopa – optinis imtuvas (OI). Disertacijos tikslas – sukurti OI projektavimo metodiką, lei-džiančią pasiekti optimalų dinaminį diapazoną, suprojektuoti ir ištirti integ-rinį diferencinį pereinamos varžos stiprintuvą (PVS) su kintamu stiprinimo koeficientu. Darbe sprendžiami šie uždaviniai: atliekama OTDR ir jų pagrindinių charakteristikų analizė ir formuluojamos tobulinimo kryptys; analizuojami pagrindiniai optinio imtuvo triukšmų šaltiniai, jų mažinimo galimybės ir su-daromas apibendrintas optinio imtuvo triukšmų modelis; sukuriama OI pro-jektavimo metodika, leidžianti apskaičiuoti griūtinio fotodiodo dauginimo faktorių, pereinamosios varžos stiprintuvo grįžtamojo ryšio varžą ir įėjimo tranzistoriaus fizinius matmenis, kuriems esant gaunamas optimalus dina-minis diapazonas; projektuojamas optinio imtuvo maketas iš diskrečiųjų elementų ir tiriami jo parametrai; atliekamas integrinio PVS projektavimas ir modeliavimas, taikant 0,35 µm KMOP technologiją bei optinio imtuvo pa-rametrų skaičiavimas 0,1–100 MHz dažnių juostų diapazone. Disertaciją sudaro įvadas ir keturi skyriai. Pabaigoje pateikiami naudo-tos literatūros ir autoriaus publikacijų disertacijos tema sąrašai ir 1 priedas. Įvadiniame skyriuje aptariama: tiriamoji problema, darbo aktualumas, aprašomas tyrimų objektas, suformuluotas darbo tikslas bei uždaviniai, ap-rašoma tyrimų metodika... [toliau žr. visą tekstą]
APA, Harvard, Vancouver, ISO, and other styles
24

Cluff, Julian. "Time domain THz spectroscopy of semiconductors." Thesis, University of Bath, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311454.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Graber, Benjamin. "HIGH POWER TIME DOMAIN TERAHERTZ SPECTROSCOPY." Diss., Temple University Libraries, 2014. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/301211.

Full text
Abstract:
Physics
Ph.D.
Terahertz (THz) has become a strong area for scientific research and commercial application in recent years. This research group has redesigned and optimized a THz photoconductive antenna, which currently operates with approximately 10x the power of a commercial antenna. It has been determined by this research that the THz signal emitted from a photoconductive antenna consists of coherent and incoherent signals. In addition to the improvement of the THz photoconductive antenna, I have optimized an electro optic THz detection system by characterizing the field dependency of an electro optic crystal, which enabled me to estimate the THz electric field strength. The high power THz source and optimized detection system were combined into a high power, high resolution time domain THz spectrometer. This spectrometer was used to conduct original measurements of the THz spectrum of water vapor, ionized air, and various chemical vapor including explosives. Most of these measurements were only possible with our improved THz spectrometer. In order to understand ionized air, an additional study was carried out to explore the ionization of several gases (e.g. N2, O2, Ar, CO2, and water vapor) which were ionized by radioactive isotopes. This unique study found that in addition to dose rate, the gamma energy of the radioactive isotopes and the sequential ionization levels of gases affect the equilibrium ion densities of these gases. This effect was especially pronounced for argon gas. The study of ion dynamics in gases has lead to the development of a prototype for stand-off detection and identification of radioactive isotopes. This prototype, despite being simple in design, can detect isotopes faster and more cheaply than a conventional gamma ray spectrometer. Throughout this thesis research I have successfully developed a high power, high resolution terahertz spectrometer and demonstrated that with the spectrometer I could identify characteristic resonances of water vapor, some chemicals including explosives, and even ionized air produced by nuclear isotopes. From the characteristic resonance frequencies one can understand the underlying physics or chemistry of molecules or atoms.
Temple University--Theses
APA, Harvard, Vancouver, ISO, and other styles
26

Khoshnavaz, Mohammad Javad. "Coherency based time-domain imaging algorithms." Thesis, Curtin University, 2016. http://hdl.handle.net/20.500.11937/54048.

Full text
Abstract:
Seismic time-domain imaging is one of the most robust tools in seismic data processing. Compared with depth imaging, time-domain imaging employs a reduced number of parameters by taking effective approximations for wave propagation in the subsurface. Accurate time-domain seismic imaging as applied in very complex environments (e.g., hard rock environments) requires a novel critical thinking. In this thesis, several efficient time-domain imaging techniques have been developed and successfully applied to different seismic data sets.
APA, Harvard, Vancouver, ISO, and other styles
27

Alsanabani, Mohamed Moslih. "Soil water determination by time domain reflectometry: Sampling domain and geometry." Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185550.

Full text
Abstract:
This work investigates several aspects of time domain reflectometry (TDR) theory and application. One of these aspects is the study of the influence of TDR probe geometries on the travel time. No change in the travel time resulted from increasing either the diameter of wire or spacing. However, we found a linear relationship between the travel time and the length of the probe for measurements in water. Also we found the reflected voltage was inversely proportionally to the incident voltage in water. Another aspect is the volume of sensitivity for the TDR which depends on the electrical properties of the medium and the geometry of the probe. The sensitivity of TDR in soil is different than in water. The observations in soils indicate that soil with a high water content (θᵥ) has a smaller sample volume than the one with low θᵥ. A probe with a large wire diameter has a larger sample volume than a probe with a small wire diameter. Also, a simple model and a mixing model were investigated and compared to Topp's model, for relating θᵥ to the effective dielectric constant. The distance to wetting front over time was observed and calculated using an expression which relates the travel time in soil before and after water application. This was tested with probes of different geometries. The wetting front from a point source were monitored for two and three dimensions in a plexiglas tank using TDR. Contour maps for the calculated radius of wetting front vs. the depth over time were produced.
APA, Harvard, Vancouver, ISO, and other styles
28

Zhou, Tingdong. "Electromagnetic system frequency-domain reduced-order modeling and time-domain simulation." Diss., The University of Arizona, 2002. http://hdl.handle.net/10150/279965.

Full text
Abstract:
Model order reduction methodologies are presented for semi-discrete electromagnetic systems obtained from the spatial discretization of the hyperbolic system of Maxwell's equations. Different reduced-order modeling algorithms, i.e., Pade via Lanczos (PVL), multiple point PVL, Krylov, rational Krylov, PVL with expansion at infinity, are presented and applied for model order reduction and the properties of these algorithms are discussed. The implementation of the model order reduction methodologies to a full-wave frequency domain electromagnetic system simulator (ROMES) is discussed in detail. Scattering parameters are calculated for several electromagnetic systems with discontinuities. A time domain simulation framework is also introduced for transmission line embedded systems described by the Telegrapher's equations. The time domain convolution approach is selected to perform the transmission line embedded circuit simulations. Derivations for Closed-form triangle impulse responses (TIR) are discussed and numerical examples are presented. The developed triangle impulse responses are used to perform time-domain circuit simulations. The effects of frequency-dependent lossy transmission lines on signal integrity and causality issues associated with the transmission line parameters ( R, L, C, and G) in Telegrapher's equation are discussed. The presented research provides an accurate and efficient way to characterize electromagnetic systems for high-speed circuit applications in the frequency domain and methods to simulate these circuits in the time domain.
APA, Harvard, Vancouver, ISO, and other styles
29

Luo, Linqing. "Time-frequency localisation of distributed Brillouin Optical Time Domain Reflectometry." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274568.

Full text
Abstract:
Distributed fibre optic sensing (DFOS) is essential for structural health monitoring (SHM) of strain changes induced during the lifetime of a structure. Among different DFOS systems, the Brillouin Optical Time Domain Reflectometry (BOTDR) takes the advantages of obtaining full frequency spectrum to provide strain and temperature information along the optic fibre. The key parameters of distributed fibre optic sensors, spatial and frequency resolution, are strongly linked with the time-frequency (T-F) localisation in the system in three parts: pulse, hardware design and optical fibre. T-F localization is fundamentally important for the communication system, whereas in this study the importance of the T-F localisation to the spatial and frequency resolution, repeatability and the measurement speed are introduced in BOTDR. In this dissertation, the development of DFOS is first introduced, including both traditional methods and new developed designs. The literature review shows the signal to noise ratio (SNR) of BOTDR can be improved by investigating its T-F localisation. In the hardware design, in order to improve the T-F localisation in hardware architecture, a Short-Time Fourier Transform-Brillouin Optical Time-Domain Reflectometry (STFT-BOTDR), which implements STFT over the full frequency spectrum to measure the distributed temperature and strain along the optic fibre, is applied so that the conventional frequency sweeping method can be replaced for high resolution and fast speed measurement, providing new research advances in dynamic distributed sensing. The STFT based BOTDR has better T-F localisation, which in turn provides an opportunity for off-line post signal processing that is more adaptable for fast speed measurements. The spatial and frequency resolution of dynamic BOTDR sensing is limited by the Signal to Noise Ratio (SNR) and the T-F localization of the input pulse shape. The T-F localized input pulse shape can enhance the SNR and the spatial and frequency resolution in STFT-BOTDR. In this study, simulation and experiments of T-F localized different pulses shapes are conducted to examine the limitation of the system resolution. The result indicates that a rectangular pulse should be selected to optimize the spatial resolution and a Lorentzian pulse could be chosen to optimize the frequency resolution, while a Gaussian shape pulse can be used in general applications for its balanced performance in both spatial and frequency resolution. Meanwhile, T-F localization is used for pulse T-F localisation optimisation. A set of Kaiser-Bessel functions is used to simulate different pulse shapes and to compare their parameters in terms of T-F localisation and their Brillouin scattering spectrum. A method using an iterative filtering algorithm to achieve the optimised pulse in terms of T-F localisation is introduced to converge the Effective-pulse Width (TEW) in the time-domain and Effective-pulse Linewidth (FEL) in the frequency domain to identify the fundamental limitations. The optimised pulse can be fitted with a 7th order Gaussian (super-Gaussian) shape and it offers the best experimental performance compared to a Rectangular pulse. The sensitivity of a sensor to strain or temperature variations due to distributed Brillouin scattering is closely related to the power distribution on the Brillouin scattering spectrum which is related to the property of the optic fibre. The performance of a highly nonlinear fibre that can generate a higher Brillouin scattering signal is compared to that of a standard single mode fibre. The results show that much higher SNR of the Brillouin scattering spectrum and smaller frequency uncertainties in the sensing measurement can be achieved by using a highly nonlinear fibre for comparable launched powers. With a measurement speed of 4 Hz, the frequency uncertainty can be 0.43 MHz, corresponding to 10 με in strain or 0.43°C in temperature uncertainty for the tested highly nonlinear fibre. In contrast, for a standard single mode fibre, the value would increase to about 1.02 MHz (25 με or 1.02°C), demonstrating the advantage of the tested highly nonlinear fibre for distributed strain/temperature sensing. Results show that, by using a small effective area highly nonlinear fibre, the strain or temperature resolution can be improved because it generates stronger Brillouin scattering signal with high SNR and high Q factor spectrum, both of which determine the optimal averaging time in a single measurement. In general, the STFT-BOTDR can achieve 1 m spatial resolution, 10 με frequency resolution on a 10 km fibre with measurement speed at about 2.5 kHz.
APA, Harvard, Vancouver, ISO, and other styles
30

Eid, Rudy. "Time domain model reduction by moment matching /." München : Verl. Dr. Hut, 2009. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017609232&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Eng, Ju-Ling. "Higher order finite-difference time-domain method." Connect to resource, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1165607826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Mui, Chi Seong. "Frequency domain approach to time series analysis." Thesis, University of Macau, 2000. http://umaclib3.umac.mo/record=b1446676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Koseoglu, Devrim. "Material Characterization With Terahertz Time-domain Spectroscopy." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/2/12611648/index.pdf.

Full text
Abstract:
Terahertz time-domain spectroscopy systems were developed and used for the anaylsis and characterization of various materials. By using ultra-fast Ti:Sapphire and Er-doped fiber lasers, terahertz time-domain spectrometers of different configurations were constructed and tested. To increase the accuracy and sensitivity of the measurements, the systems were optimized for spectroscopic analysis. MBE grown nominally undoped epitaxial GaAs samples were used for the spectroscopic measurements. These samples were first charactrized by electrical measurements in order to check the accuracy of the terahertz time-domain experiments. We have shown that the terahertz time-domin spectroscopic techniques provides a quick way of the determining the real ( ) and complex () components of the refractive index of material. In addition, we have investigated the photoexcitation dynamics of these GaAs samples. We have demonstrated that direct and photoexcited terahertz time-domain measurements give an estimate of the carrier densities and both the hole and electron mobility values with good precision. rnin An algorithm is developed to prevent the unwanted Fabry-Perot reflections which is commonly encountered in Terahertz Spectroscopy systems. We have performed terahertz time-domain transmission measurements on ZnTe <
110>
crystals of various thicknesses to test the applicability of this algorithm. We have shown that the algorithm developed provides a quick way of eliminating the &ldquo
etalon&rdquo
reflections from the data. In addition, it is also shown that these &ldquo
etalon&rdquo
effects can be used for the frequency calibration of terahertz time-domain spectrometers.
APA, Harvard, Vancouver, ISO, and other styles
34

Saunders, Charles T. W. "Optical fibre sensing by time domain reflectometry." Thesis, University of Manchester, 2006. https://www.research.manchester.ac.uk/portal/en/theses/distributed-optical-fibre-sensing(f1857f29-5af2-4e94-97dd-164f3d67f29b).html.

Full text
Abstract:
This thesis considers cost effective optical time domain rcflectometry for distributed fibre sensors, using new developments in light sources, detectors, fibres and computational power, suitable to interrogate distributed fibre sensors from 20m to 10km, within a £5,000 hardware budget. The characteristics of 200μm core diameter polymer clad silica (PCS) fibre and 980μm core diameter PMMA POF (polymethyl methacrylate plastic optical fibre) were theoretically evaluated including damage thresholds, optimum sensitisation (evanescent field attenuation and micro-bending) and launch conditions for optimum performance as a distributed sensor. Rayleigh backscattered signals, forward-propagating power and Fresnel reflections for different fibre types at different distances along the fibre were considered. PCS fibre allows solutes and gases ready access to the core-cladding interface and is preferred for distributed optical fibre sensors (DOFS) of 1000m. 50-125 graded index multimode fibre is preferred as a sensor of mechanical measurands for DOFS 10km long. The higher backscattering coefficient of PMMA POF returns the highest reflected signals for DOFS of up to 30m. Test beds of simulated distributed optical fibre sensors built from single- and multimode silica, hybrid and PCS fibres were assembled for interrogation by visible and NIR wavelengths using mechanical measurands and misaligned splices as point losses, to determine the relationships between launch pulse power, pulse width and backscattered power and the factors determining spatial resolution and dynamic range. Commercial analogue OTDRs (optical time domain reflectometers) and custom-built photon counting OTDRs (ν-OTDRs) were used to probe the fibre sensors. This enabled the design, custom build and evaluation of an OTDR-based DOFS system where the light source may easily be changed for one of a different power or wavelength. The performance of intrinsic or modified fibres in applications of chemical and pH sensing was evaluated: A simulated distributed PMMA POF was demonstrated to sense pH to a resolution of ±1 pH when placed in aqueous solutions of 4.2 x 10⁻⁴ M methyl red between pH 2.89 and 9.70 and probed with 648nm light using a ν-OTDR. An undyed PCS fibre was used to sense aqueous methyl red when probed with 657nm light from a ν-OTDR. An undyed PCS fibre was used to detect 6.5 x 10⁻⁴ M methyl red in ethanol using 657nm light from a ν-OTDR by modifying the cladding refractive index from 1.401 to 1.370. A PCS fibre dyed with 4.4 x 10⁻⁶ M chlorophyll a in ethanol solution then dried was probed by ν-OTDR at 657nm, returning a 4.0dB peak on the trace indicating detection by Fresnel reflection by light in the cladding. A slope of -2.0dB/m on the trace indicated evanescent field absorption due to the 662nm absorption peak. An avalanche photodiode (APD) detection system with inherent stability suitable for long term monitoring of Rayleigh back-scattered signals was designed and built. The modules included an active quench and recharge circuit capable of 20MHz count rate with a novel quenching circuit bias arrangement to provide immunity from spurious triggering, and a Peltier cooler circuit to regulate the APD to ± 0.1°C. A dynamic bias control system based around a PCI-6602 (NI) counter-timer card was designed, built, evaluated and shown by calculation to limit the tolerance on 2.0V excess bias to ± 0.048V. The tighter control of the excess bias stabilises quantum efficiency, resolution and dark count.
APA, Harvard, Vancouver, ISO, and other styles
35

Dounavis, Anestis. "Time domain macromodels for high-speed interconnects." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0015/MQ48469.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Andersson, Ulf. "Time-Domain Methods for the Maxwell Equations." Doctoral thesis, Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gorti, Bhaskar M. "Techniques for discrete, time domain system identification." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-11242009-020121/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lall, Sanjay. "Robust control synthesis in the time domain." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mavrikis, Paul. "Trajectory-specific model reduction in time domain." Thesis, Imperial College London, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Tych, Katarzyna Maria. "Terahertz time-domain spectroscopy of biological macromolecules." Thesis, University of Leeds, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Giakas, Giannis K. "Time and frequency domain applications in biomechanics." Thesis, Manchester Metropolitan University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Vine, Daniel Samuel Gordon. "Time-domain concatenative text-to-speech synthesis." Thesis, Bournemouth University, 1998. http://eprints.bournemouth.ac.uk/351/.

Full text
Abstract:
A concatenation framework for time-domain concatenative speech synthesis (TDCSS) is presented and evaluated. In this framework, speech segments are extracted from CV, VC, CVC and CC waveforms, and abutted. Speech rhythm is controlled via a single duration parameter, which specifies the initial portion of each stored waveform to be output. An appropriate choice of segmental durations reduces spectral discontinuity problems at points of concatenation, thus reducing reliance upon smoothing procedures. For text-to-speech considerations, a segmental timing system is described, which predicts segmental durations at the word level, using a timing database and a pattern matching look-up algorithm. The timing database contains segmented words with associated duration values, and is specific to an actual inventory of concatenative units. Segmental duration prediction accuracy improves as the timing database size increases. The problem of incomplete timing data has been addressed by using `default duration' entries in the database, which are created by re-categorising existing timing data according to articulation manner. If segmental duration data are incomplete, a default duration procedure automatically categorises the missing speech segments according to segment class. The look-up algorithm then searches the timing database for duration data corresponding to these re-categorised segments. The timing database is constructed using an iterative synthesis/adjustment technique, in which a `judge' listens to synthetic speech and adjusts segmental durations to improve naturalness. This manual technique for constructing the timing database has been evaluated. Since the timing data is linked to an expert judge's perception, an investigation examined whether the expert judge's perception of speech naturalness is representative of people in general. Listening experiments revealed marked similarities between an expert judge's perception of naturalness and that of the experimental subjects. It was also found that the expert judge's perception remains stable over time. A synthesis/adjustment experiment found a positive linear correlation between segmental durations chosen by an experienced expert judge and duration values chosen by subjects acting as expert judges. A listening test confirmed that between 70% and 100% intelligibility can be achieved with words synthesised using TDCSS. In a further test, a TDCSS synthesiser was compared with five well-known text-to-speech synthesisers, and was ranked fifth most natural out of six. An alternative concatenation framework (TDCSS2) was also evaluated, in which duration parameters specify both the start point and the end point of the speech to be extracted from a stored waveform and concatenated. In a similar listening experiment, TDCSS2 stimuli were compared with five well-known text-tospeech synthesisers, and were ranked fifth most natural out of six.
APA, Harvard, Vancouver, ISO, and other styles
43

Clouston, Eric Nicol. "Microwave antenna measurements in the time domain." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bingham, Harry Bradford. "Simulating ship motions in the time domain." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Brezas, Panagiotis Panos. "Time-domain optimal control for vehicle suspensions." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Bozhinova, Inna. "TOYS : time-domain observations of young stars." Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/12014.

Full text
Abstract:
Stars form inside clouds of molecular gas and dust. In the early stages of stellar evolution the remainders of the initial cloud form a circumstellar disk. For the next few million years the disk will slowly dissipate via accretion, outflows, photoevaporation and planet growth while the star makes its way onto the Main Sequence. This stage of a star's life is referred to as the T Tauri phase and is characterised by high-level spectrophotometric variability. This thesis aims to study and map out the environments of T Tauri stars down to the very low mass regime by the means of time-domain monitoring. Different physical processes in the system manifest themselves as variability on different time- scales as well as produce characteristic spectroscopic and photometric features at various wave- lengths. In order to study young stellar objects in depth, the observing campaigns presented in this work were designed to cover a large range of time-scales - minutes, hours, days and months. Combining all the data, this thesis establishes a baseline of over a decade for some objects. The observations also cover a wide range of wavelengths from the optical to the mid-infrared part of the spectrum. The star RW Aur experienced two long-lasting dimming events in 2010 and 2014. This thesis presents a large collection of spectral and photometric measurements carried out just before and during the 2014 event. Spectral accretion signatures indicate no change in the accretion activity of the system. Photometry indicates that parallel to the dimming in the optical the star becomes brighter in the mid-infrared. The observations in this work combined with literature data suggest that the origin of the 2014 event is most likely obscuration of the star by hot dust from the disk being lifted into the disk wind. Very low mass stars (< 0.4 M⊙) are the most common type of star in the Galaxy. In order to understand the early stages of stellar evolution we must study young very low mass stars. This work investigates the photometric and spectroscopic variability of seven brown dwarfs in star forming regions near σ Ori and ε Ori. All targets exhibit optical photometric variability between from 0.1 to over 1.0 magnitude that persists on a time-scale of at least one decade. Despite the photometric variability no change in the spectral type is measured. In the cases where the stars are accreting, modelling of the spectral changes suggest the accretion flow is more homogeneous and less funnelled compared to Sun-like T Tauri stars. The non-accreting variables are more plausibly explained by obscuration by circumstellar material, possibly a ring made out of multiple clouds of dust grains and pebbles with varying optical depths. The star-disk systems studied in this thesis have some broader implications for star and planet formation theory. The case-study of RW Aur has unambiguously demonstrated that the planet- forming environment is very dynamic and can change dramatically on short time-scales, which in turn would have implications for the diversity of planetary systems found in the Galaxy. The Orion stars have shown that the current theory for the T Tauri stage of stellar evolution is valid down to the very low mass regime. The seven dwarfs are a good example for the evolutionary path of circumstellar disks, showing the transition from gas-high, flared accretion disks (σ Ori) to dust-dominated, depleted, structured debris disks (ε Ori).
APA, Harvard, Vancouver, ISO, and other styles
47

Ratcliffe, Colin Paul. "Dynamic structural modelling for time domain analysis." Thesis, University of Southampton, 1985. https://eprints.soton.ac.uk/52303/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Orcutt, Edward Kerry 1964. "Correlation filters for time domain signal processing." Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277215.

Full text
Abstract:
This study proposes employing new filters in various configurations for use in digital communication systems. We believe that significant improvements in such performance areas as transmission rate and synchronization may be achieved by incorporating these filters into digital communications receivers. Recently reported in the literature, these filters may offer advantages over the matched filter which allow enhancements in data rates, ISI tolerance, and synchronization. To make full use of the benefits of these filters, we introduce the concept of parallel signal transmission over a single channel. We also examine the effects of signal set selection and noise on performance.
APA, Harvard, Vancouver, ISO, and other styles
49

Papagni, Francesca <1993&gt. "Frequency domain analysis of stationary time series." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9850/1/Papagni_Francesca_tesi.pdf.

Full text
Abstract:
This thesis provides a necessary and sufficient condition for asymptotic efficiency of a nonparametric estimator of the generalised autocovariance function of a Gaussian stationary random process. The generalised autocovariance function is the inverse Fourier transform of a power transformation of the spectral density, and encompasses the traditional and inverse autocovariance functions. Its nonparametric estimator is based on the inverse discrete Fourier transform of the same power transformation of the pooled periodogram. The general result is then applied to the class of Gaussian stationary ARMA processes and its implications are discussed. We illustrate that for a class of contrast functionals and spectral densities, the minimum contrast estimator of the spectral density satisfies a Yule-Walker system of equations in the generalised autocovariance estimator. Selection of the pooling parameter, which characterizes the nonparametric estimator of the generalised autocovariance, controlling its resolution, is addressed by using a multiplicative periodogram bootstrap to estimate the finite-sample distribution of the estimator. A multivariate extension of recently introduced spectral models for univariate time series is considered, and an algorithm for the coefficients of a power transformation of matrix polynomials is derived, which allows to obtain the Wold coefficients from the matrix coefficients characterizing the generalised matrix cepstral models. This algorithm also allows the definition of the matrix variance profile, providing important quantities for vector time series analysis. A nonparametric estimator based on a transformation of the smoothed periodogram is proposed for estimation of the matrix variance profile.
APA, Harvard, Vancouver, ISO, and other styles
50

Elayouty, Amira Sherif Mohamed. "Time and frequency domain statistical methods for high-frequency time series." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8061/.

Full text
Abstract:
Advances in sensor technology enable environmental monitoring programmes to record and store measurements at high-temporal resolution over long time periods. These large volumes of high-frequency data promote an increasingly comprehensive picture of many environmental processes that would not have been accessible in the past with monthly, fortnightly or even daily sampling. However, benefiting from these increasing amounts of high-frequency data presents various challenges in terms of data processing and statistical modeling using standard methods and software tools. These challenges are attributed to the large volumes of data, the persistent and long memory serial correlation in the data, the signal to noise ratio, and the complex and time-varying dynamics and inter-relationships between the different drivers of the process at different timescales. This thesis aims at using and developing a variety of statistical methods in both the time and frequency domains to effectively explore and analyze high-frequency time series data as well as to reduce their dimensionality, with specific application to a 3 year hydrological time series. Firstly, the thesis investigates the statistical challenges of exploring, modeling and analyzing these large volumes of high-frequency time series. Thereafter, it uses and develops more advanced statistical techniques to: (i) better visualize and identify the different modes of variability and common patterns in such data, and (ii) provide a more adequate dimension reduction representation to the data, which takes into account the persistent serial dependence structure and non-stationarity in the series. Throughout the thesis, a 15-minute resolution time series of excess partial pressure of carbon dioxide (EpCO2) obtained for a small catchment in the River Dee in Scotland has been used as an illustrative data set. Understanding the bio-geochemical and hydrological drivers of EpCO 2 is very important to the assessment of the global carbon budget. Specifically, Chapters 1 and 2 present a range of advanced statistical approaches in both the time and frequency domains, including wavelet analysis and additive models, to visualize and explore temporal variations and relationships between variables for the River Dee data across the different timescales to investigate the statistical challenges posed by such data. In Chapter 3, a functional data analysis approach is employed to identify the common daily patterns of EpCO2 by means of functional principal component analysis and functional cluster analysis. The techniques used in this chapter assume independent functional data. However, in numerous applications, functional observations are serially correlated over time, e.g. where each curve represents a segment of the whole time interval. In this situation, ignoring the temporal dependence may result in an inappropriate dimension reduction of the data and inefficient inference procedures. Subsequently, the dynamic functional principal components, recently developed by Hor mann et al. (2014), are considered in Chapter 4 to account for the temporal correlation using a frequency domain approach. A specific contribution of this thesis is the extension of the methodology of dynamic functional principal components to temporally dependent functional data estimated using any type of basis functions, not only orthogonal basis functions. Based on the scores of the proposed general version of dynamic functional principal components, a novel clustering approach is proposed and used to cluster the daily curves of EpCO2 taking into account the dependence structure in the data. The dynamic functional principal components depend in their construction on the assumption of second-order stationarity, which is not a realistic assumption in most environmental applications. Therefore, in Chapter 5, a second specific contribution of this thesis is the development of a time-varying dynamic functional principal components which allows the components to vary smoothly over time. The performance of these smooth dynamic functional principal components is evaluated empirically using the EpCO2 data and using a simulation study. The simulation study compares the performance of smooth and original dynamic functional principal components under both stationary and non-stationary conditions. The smooth dynamic functional principal components have shown considerable improvement in representing non-stationary dependent functional data in smaller dimensions. Using a bootstrap inference procedure, the smooth dynamic functional principal components have been subsequently employed to investigate whether or not the spectral density and covariance structure of the functional time series under study change over time. To account for the possible changes in the covariance structure, a clustering approach based on the proposed smooth dynamic functional principal components is suggested and the results of application are discussed. Finally, Chapter 6 provides a summary of the work presented within this thesis, discusses the limitations and implications and proposes areas for future research.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography