Journal articles on the topic 'Tightness of SLM parts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Tightness of SLM parts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yan, Xiaoling, Xiansheng Xu, and Qinxue Pan. "Study on the Measurement of Stress in the Surface of Selective Laser Melting Forming Parts Based on the Critical Refraction Longitudinal Wave." Coatings 10, no. 1 (December 19, 2019): 5. http://dx.doi.org/10.3390/coatings10010005.
Full textLiu, A., Chee Kai Chua, and Kah Fai Leong. "Properties of Test Coupons Fabricated by Selective Laser Melting." Key Engineering Materials 447-448 (September 2010): 780–84. http://dx.doi.org/10.4028/www.scientific.net/kem.447-448.780.
Full textLiu, Jin Hui, Wen Juan Xie, Sheng Bing Xiao, Wei Ling Zhao, and Jia Zhang. "On Formation and Estimation of Pores during Selective Laser Melting of Single-Phase Metal Powders." Advanced Materials Research 338 (September 2011): 94–101. http://dx.doi.org/10.4028/www.scientific.net/amr.338.94.
Full textWang, Di, Yang Liu, Yongqiang Yang, and Dongming Xiao. "Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting." Rapid Prototyping Journal 22, no. 4 (June 20, 2016): 706–16. http://dx.doi.org/10.1108/rpj-06-2015-0078.
Full textFranz, Peter, Aamir Mukhtar, Warwick Downing, Graeme Smith, and Ben Jackson. "Mechanical Behaviour of Gas Nitrided Ti6Al4V Bars Produced by Selective Laser Melting." Key Engineering Materials 704 (August 2016): 225–34. http://dx.doi.org/10.4028/www.scientific.net/kem.704.225.
Full textBâlc, Nicolae, Sorin Cosmin Cosma, Julia Kessler, and Voicu Mager. "Research on Improving the Outer Surface Quality of the Parts Made by SLM." Applied Mechanics and Materials 808 (November 2015): 199–204. http://dx.doi.org/10.4028/www.scientific.net/amm.808.199.
Full textBOJKO, Łukasz, Wojciech RYNIEWICZ, Anna M. RYNIEWICZ, Marcin KOT, and Paweł PAŁKA. "THE INFLUENCE OF ADDITIVE TECHNOLOGY ON THE QUALITY OF THE SURFACE LAYER AND THE STRENGTH STRUCTURE OF PROSTHETIC CROWNS." Tribologia 280, no. 4 (August 1, 2018): 13–22. http://dx.doi.org/10.5604/01.3001.0012.7480.
Full textWang, Zhi Gang, Yu Sheng Shi, Rui Di Li, Qing Song Wei, and Jin Hui Liu. "Manufacturing AISI316L Components via Selective Laser Melting Coupled with Hot Isostatic Pressing." Materials Science Forum 675-677 (February 2011): 853–56. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.853.
Full textLin, Zhenqiang, Yiwen Lai, Taotao Pan, Wang Zhang, Jun Zheng, Xiaohong Ge, and Yuangang Liu. "A New Method for Automatic Detection of Defects in Selective Laser Melting Based on Machine Vision." Materials 14, no. 15 (July 27, 2021): 4175. http://dx.doi.org/10.3390/ma14154175.
Full textKról, M., J. Mazurkiewicz, and S. Żołnierczyk. "Optimization and analysis of porosity and roughness in selective laser melting 316L parts." Archives of Materials Science and Engineering 1, no. 90 (March 1, 2018): 5–15. http://dx.doi.org/10.5604/01.3001.0012.0607.
Full textMerkt, Simon, Christian Hinke, Henrich Schleifenbaum, and Holger Voswinckel. "Integrative Technology Evaluation Model (ITEM) for Selective Laser Melting (SLM)." Advanced Materials Research 337 (September 2011): 274–80. http://dx.doi.org/10.4028/www.scientific.net/amr.337.274.
Full textPonnusamy, Panneer, Rizwan Abdul Rahman Rashid, Syed Hasan Masood, Dong Ruan, and Suresh Palanisamy. "Mechanical Properties of SLM-Printed Aluminium Alloys: A Review." Materials 13, no. 19 (September 26, 2020): 4301. http://dx.doi.org/10.3390/ma13194301.
Full textChen, Tian, Linzhi Wang, and Sheng Tan. "Effects of vacuum annealing treatment on microstructures and residual stress of AlSi10Mg parts produced by selective laser melting process." Modern Physics Letters B 30, no. 19 (July 20, 2016): 1650255. http://dx.doi.org/10.1142/s0217984916502559.
Full textUhlmann, E., and V. Kashevko. "Oberflächengüte additiv gefertigter Kupferbauteile*/Surface quality of additive copper alloy parts – Investigations to increase the surface quality of top and side faces of SLM-generated CuCr1Zr copper alloy parts." wt Werkstattstechnik online 108, no. 11-12 (2018): 815–20. http://dx.doi.org/10.37544/1436-4980-2018-11-12-75.
Full textFieger, Thiemo Valentin, Maximilian Ferdinand Sattler, and Gerd Witt. "Developing laser beam welding parameters for the assembly of steel SLM parts for the automotive industry." Rapid Prototyping Journal 24, no. 8 (November 12, 2018): 1288–95. http://dx.doi.org/10.1108/rpj-12-2016-0204.
Full textMaamoun, Ahmed, Yi Xue, Mohamed Elbestawi, and Stephen Veldhuis. "The Effect of Selective Laser Melting Process Parameters on the Microstructure and Mechanical Properties of Al6061 and AlSi10Mg Alloys." Materials 12, no. 1 (December 20, 2018): 12. http://dx.doi.org/10.3390/ma12010012.
Full textYan, Xiaoling, Jincheng Pang, and Yanlong Jing. "Ultrasonic Measurement of Stress in SLM 316L Stainless Steel Forming Parts Manufactured Using Different Scanning Strategies." Materials 12, no. 17 (August 25, 2019): 2719. http://dx.doi.org/10.3390/ma12172719.
Full textMaamoun, Ahmed, Yi Xue, Mohamed Elbestawi, and Stephen Veldhuis. "Effect of Selective Laser Melting Process Parameters on the Quality of Al Alloy Parts: Powder Characterization, Density, Surface Roughness, and Dimensional Accuracy." Materials 11, no. 12 (November 22, 2018): 2343. http://dx.doi.org/10.3390/ma11122343.
Full textKonečná, Radomila, and Gianni Nicoletto. "Near-Surface Structure and Fatigue Crack Initiation Mechanisms of As-Built SLM Inconel 718." Defect and Diffusion Forum 405 (November 2020): 306–11. http://dx.doi.org/10.4028/www.scientific.net/ddf.405.306.
Full textBassani, Paola, Carlo Alberto Biffi, Riccardo Casati, Adrianni Zanatta Alarcon, Ausonio Tuissi, and Maurizio Vedani. "Properties of Aluminium Alloys Produced by Selective Laser Melting." Key Engineering Materials 710 (September 2016): 83–88. http://dx.doi.org/10.4028/www.scientific.net/kem.710.83.
Full textLiu, Jin Hui, Wen Juan Xie, Qing Song Wei, and Li Wang. "Progress on Investigation of Pores During Selective Laser Melting of Metal Powders and Future Work Discussion." Advanced Materials Research 291-294 (July 2011): 3088–94. http://dx.doi.org/10.4028/www.scientific.net/amr.291-294.3088.
Full textCloots, Michael, Livia Zumofen, Adriaan Bernardus Spierings, Andreas Kirchheim, and Konrad Wegener. "Approaches to minimize overhang angles of SLM parts." Rapid Prototyping Journal 23, no. 2 (March 20, 2017): 362–69. http://dx.doi.org/10.1108/rpj-05-2015-0061.
Full textAl-Rubaie, Kassim S., Saulo Melotti, Alexsandro Rabelo, José M. Paiva, Mohamed A. Elbestawi, and Stephen C. Veldhuis. "Machinability of SLM-produced Ti6Al4V titanium alloy parts." Journal of Manufacturing Processes 57 (September 2020): 768–86. http://dx.doi.org/10.1016/j.jmapro.2020.07.035.
Full textMaksimov, Peter, Oleg Smetannıkov, Aleksandra Dubrovskaya, Konstantin Dongauzer, and Leonid Bushuev. "Numeric simulation of aircraft engine parts additive manufacturing process." MATEC Web of Conferences 224 (2018): 01065. http://dx.doi.org/10.1051/matecconf/201822401065.
Full textDeng, Yong, Zhongfa Mao, Nan Yang, Xiaodong Niu, and Xiangdong Lu. "Collaborative Optimization of Density and Surface Roughness of 316L Stainless Steel in Selective Laser Melting." Materials 13, no. 7 (April 1, 2020): 1601. http://dx.doi.org/10.3390/ma13071601.
Full textZhang, L. C., and T. B. Sercombe. "Selective Laser Melting of Low-Modulus Biomedical Ti-24Nb-4Zr-8Sn Alloy: Effect of Laser Point Distance." Key Engineering Materials 520 (August 2012): 226–33. http://dx.doi.org/10.4028/www.scientific.net/kem.520.226.
Full textLeal, Malena Ley Bun, Barbara Bermudez-Reyes, Patricia del Carmen Zambrano Robledo, and Omar Lopez-Botello. "Parameter optimization of aluminum alloy thin structures obtained by Selective Laser Melting." MRS Advances 4, no. 55-56 (2019): 2997–3005. http://dx.doi.org/10.1557/adv.2019.434.
Full textJadhav, Dadbakhsh, Vleugels, Hofkens, Puyvelde, Yang, Kruth, Humbeeck, and Vanmeensel. "Influence of Carbon Nanoparticle Addition (and Impurities) on Selective Laser Melting of Pure Copper." Materials 12, no. 15 (August 2, 2019): 2469. http://dx.doi.org/10.3390/ma12152469.
Full textGong, Haijun, Venkata Karthik Nadimpalli, Khalid Rafi, Thomas Starr, and Brent Stucker. "Micro-CT Evaluation of Defects in Ti-6Al-4V Parts Fabricated by Metal Additive Manufacturing." Technologies 7, no. 2 (June 12, 2019): 44. http://dx.doi.org/10.3390/technologies7020044.
Full textLi, Zhonghua, Ibrahim Kucukkoc, David Z. Zhang, and Fei Liu. "Optimising the process parameters of selective laser melting for the fabrication of Ti6Al4V alloy." Rapid Prototyping Journal 24, no. 1 (January 2, 2018): 150–59. http://dx.doi.org/10.1108/rpj-03-2016-0045.
Full textPacurar, Razvan, and Petru Berce. "Research on How Lens Position of the Optical System is Influencing the Mechanical Characteristics of the Metallic Parts Made by Selective Laser Melting Equipment." Advanced Engineering Forum 8-9 (June 2013): 285–92. http://dx.doi.org/10.4028/www.scientific.net/aef.8-9.285.
Full textBaitimerov, R. M. "Single Track Formation during Selective Laser Melting of Ti-6Al-4V Alloy." Materials Science Forum 946 (February 2019): 978–83. http://dx.doi.org/10.4028/www.scientific.net/msf.946.978.
Full textZhao, Zhanyong, Liang Li, Le Tan, Peikang Bai, Jing Li, Liyun Wu, Haihong Liao, and Yahui Cheng. "Simulation of Stress Field during the Selective Laser Melting Process of the Nickel-Based Superalloy, GH4169." Materials 11, no. 9 (August 24, 2018): 1525. http://dx.doi.org/10.3390/ma11091525.
Full textHötter, Jan Steffen, Miranda Fateri, and Andreas Gebhardt. "Selective Laser Melting of Metals: Desktop Machines Open up New Chances even for Small Companies." Advanced Materials Research 622-623 (December 2012): 461–65. http://dx.doi.org/10.4028/www.scientific.net/amr.622-623.461.
Full textYadroitsava, Ina, Stephen Grewar, Daniel Hattingh, and Igor Yadroitsev. "Residual Stress in SLM Ti6Al4V Alloy Specimens." Materials Science Forum 828-829 (August 2015): 305–10. http://dx.doi.org/10.4028/www.scientific.net/msf.828-829.305.
Full textBuican, George Răzvan, Gheorghe Oancea, Camil Lancea, and Mihai Alin Pop. "Influence of Layer Thickness on Internal Structure of Parts Manufactured from 316-L Steel Using SLM Technology." Applied Mechanics and Materials 809-810 (November 2015): 369–74. http://dx.doi.org/10.4028/www.scientific.net/amm.809-810.369.
Full textBoschetto, Alberto, Luana Bottini, Luciano Macera, and Francesco Veniali. "Post-Processing of Complex SLM Parts by Barrel Finishing." Applied Sciences 10, no. 4 (February 19, 2020): 1382. http://dx.doi.org/10.3390/app10041382.
Full textLi, Rui Di, Yu Sheng Shi, Zhi Gang Wang, and Jin Hui Liu. "Selective Laser Melting of Multi-Component Ni-Based Powder Mixture for Building Metallic Parts." Materials Science Forum 675-677 (February 2011): 723–26. http://dx.doi.org/10.4028/www.scientific.net/msf.675-677.723.
Full textKhan, Mushtaq, and Phill Dickens. "Selective laser melting (SLM) of pure gold for manufacturing dental crowns." Rapid Prototyping Journal 20, no. 6 (October 20, 2014): 471–79. http://dx.doi.org/10.1108/rpj-03-2013-0034.
Full textYap, Chor Yen, Hongyi Kenneth Tan, Zhenglin Du, Chee Kai Chua, and Zhili Dong. "Selective laser melting of nickel powder." Rapid Prototyping Journal 23, no. 4 (June 20, 2017): 750–57. http://dx.doi.org/10.1108/rpj-01-2016-0006.
Full textGiganto, Sara, Susana Martínez-Pellitero, Eduardo Cuesta, Víctor M. Meana, and Joaquín Barreiro. "Analysis of Modern Optical Inspection Systems for Parts Manufactured by Selective Laser Melting." Sensors 20, no. 11 (June 4, 2020): 3202. http://dx.doi.org/10.3390/s20113202.
Full textDadbakhsh, Sasan, and Liang Hao. "Effect of Layer Thickness in Selective Laser Melting on Microstructure of Al/5 wt.%Fe2O3Powder Consolidated Parts." Scientific World Journal 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/106129.
Full textHao, Xinxin, Xiaoxue Li, and Jingchen Zheng. "Screening China Emergency Medical Team (CEMT) Members: A Self-Leadership Perspective." Prehospital and Disaster Medicine 33, no. 6 (October 31, 2018): 596–601. http://dx.doi.org/10.1017/s1049023x18000961.
Full textBuican, George Răzvan, Gheorghe Oancea, and Alexandru Manolescu. "Remanufacturing of Damaged Parts Using Selective Laser Melting Technology." Applied Mechanics and Materials 693 (December 2014): 285–90. http://dx.doi.org/10.4028/www.scientific.net/amm.693.285.
Full textGudushauri, �. G., and G. Ya Panovko. "Assembly of parts with guaranteed tightness under vibrational conditions." Strength of Materials 18, no. 2 (February 1986): 221–24. http://dx.doi.org/10.1007/bf01522560.
Full textHassanin, Hany, Khamis Essa, Chunlei Qiu, Ali M. Abdelhafeez, Nicholas J. E. Adkins, and Moataz M. Attallah. "Net-shape manufacturing using hybrid selective laser melting/hot isostatic pressing." Rapid Prototyping Journal 23, no. 4 (June 20, 2017): 720–26. http://dx.doi.org/10.1108/rpj-02-2016-0019.
Full textHe, Ketai, and Xue Zhao. "3D Thermal Finite Element Analysis of the SLM 316L Parts with Microstructural Correlations." Complexity 2018 (October 3, 2018): 1–13. http://dx.doi.org/10.1155/2018/6910187.
Full textSantos, Luis, Joel de Jesus, José Ferreira, José Costa, and Carlos Capela. "Fracture Toughness of Hybrid Components with Selective Laser Melting 18Ni300 Steel Parts." Applied Sciences 8, no. 10 (October 11, 2018): 1879. http://dx.doi.org/10.3390/app8101879.
Full textRavichander, Bharath Bhushan, Amirhesam Amerinatanzi, and Narges Shayesteh Moghaddam. "Study on the Effect of Powder-Bed Fusion Process Parameters on the Quality of as-Built IN718 Parts Using Response Surface Methodology." Metals 10, no. 9 (September 2, 2020): 1180. http://dx.doi.org/10.3390/met10091180.
Full textZhang, Zhixiong, Chunbing Wu, Tang Li, Keshan Liang, and Yujun Cao. "Design of internal branch support structures for selective laser melting." Rapid Prototyping Journal 24, no. 4 (May 14, 2018): 764–73. http://dx.doi.org/10.1108/rpj-11-2016-0186.
Full text