Dissertations / Theses on the topic 'Tidsserier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 48 dissertations / theses for your research on the topic 'Tidsserier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Nilsson, Kristoffer, and Viktor Wesström. "Automatiserad detektering av avvikelser i tidsserier." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-67567.
Full textLeja, Eliza, and Jonathan Stråle. "Prognoser av ekonomiska tidsserier med säsongsmönster : En empirisk metodjämförelse." Thesis, Uppsala universitet, Statistiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-155790.
Full textArvid, Odencrants, and Dahl Dennis. "Utvärdering av Transportstyrelsens flygtrafiksmodeller." Thesis, Linköpings universitet, Statistik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-106786.
Full textAvbryt / Spara utkast
Wall, Tobias, and Jacob Titus. "Imputation and Generation of Multidimensional Market Data." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-184162.
Full textKåge, Linus, and Malke Marouki. "Interventionsanalys av Covidpandemins påverkan på antal flygpassagerare : En studie om flygandet i Sverige under år 2020." Thesis, Linköpings universitet, Statistik och maskininlärning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177402.
Full textIn 2020, Sweden and the world were hit by the Covid-19 pandemic. The pandemic has a major impact on theflight industry according to previous studies. The purpose of this study is to estimate how the number of air passengers has been affected by the pandemic and to estimate models whose purpose is to make short-term forecasts. Intervention analysis is carried out to study the impact of the Covid-19 pandemic on the number of air passengers in Sweden. In March of 2020 the ministry of foreign affairs of Sweden announced a recommendation to avoid unnecessary travels to avoid spreading of the disease. Intervention models for domestic passengers, foreign passengers and the total number of air passengers have been produced. An impulse function for May needed to be included in the intervention model for domestic passengers and an impulse function for April needed to be included in the intervention model for foreign passengers. For the total number of air passengers only a step function for Covid-19 was required. The results show that the Covid-19 pandemic has affected the number of air passenger. The total number of air passengers has decreased by almost one million passengers. Foreign passengers have decreased by almost 682000 passengers and decreased by another 180000 passengers in April 2020. Domestic passengers decreased by approximately 375000 passengers and decreased by another 287000 passengers in May. The forecast models show varying results. For domestic passengers, the forecast errors were not lower for the intervention models compared to the ARIMA model without an intervention effect. For foreign passengers, the forecast errors were lower with the intervention models compared to the ARIMA model. For the total number of passengers, some of the intervention models made better forecasts compared to the ARIMA model, but at the same time some of the intervention models performed worse than the ARIMA model.
Hirsch, Daniel, and Tim Steinholtz. "Tidsserie regression på finansmarknaden." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255797.
Full textIn this report, we study the performance of two machine learning algorithms when implemented for price predictions on the Swedish electricity market. The goal of this project is to evaluate if these algorithms can be used as a tool for investments. The algorithms are Kernel Ridge Regression (KRR), and Support Vector Regression (SVR). Both KRR and SVR use the kernel trick to efficiently find non-linear dependencies in the volatile market. The methods are both used with an offline approach. For the Kernel Ridge Regression, an online approach using Stochastic Gradient Descent (SGD) to reduce the computational cost was also implemented. Both algorithms are applied to the Swedish electricity market for the year 2017, using the programming environment Matlab. To evaluate the performance of the algorithms the mean absolute percentage error (MAPE), the root mean squared error (RMSE), and the mean absolute error (MAE) were calculated. The conclusions of this project are that both methods show potential for being used in financial time series predictions. The presented implementations, however, are in need of some refinements. Examples of possible ways to refine the results obtained in this project are discussed, with ideas of future implementations.
Börsum, Jakob, and Jakob Nyblom. "Prognoser på försäkringsdata : En utvärdering av prediktionsmodeller för antal skador på den svenska försäkringsmarknaden." Thesis, Uppsala universitet, Statistiska institutionen, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-374731.
Full textWörman, Jacob. "Analys av nyhetsrapporteringars påverkan på värdet av tillgångar på den amerikanska aktiemarknaden." Thesis, Uppsala universitet, Statistiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444744.
Full textNordlinder, Magnus. "Clustering of Financial Account Time Series Using Self Organizing Maps." Thesis, KTH, Matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291612.
Full textMålet med denna uppsats är att klustra tidsserier över finansiella konton genom att extrahera tidsseriernas karakteristik. För detta används två metoder för att reducera tidsseriernas dimensionalitet, Kohonen Self Organizing Maps och principal komponent analys. Resultatet används sedan för att klustra finansiella tjänster som en kund använder, med syfte att analysera om det existerar ett urval av tjänster som är mer eller mindre förekommande bland olika tidsseriekluster. Resultatet kan användas för att analysera dynamiken mellan kontobehållning och kundens finansiella tjänster, samt om en tjänst är mer förekommande i ett tidsseriekluster.
Anantha, Padmanaban Deepika. "Identification of Fundamental Driving Scenarios Using Unsupervised Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289209.
Full textEn utmaning att släppa autonoma fordon på allmänna vägar är säkerhetsverifiering av de utvecklade funktionerna. Säkerhetstestning av fordon är inte praktiskt genomförbart eftersom acceptanskriteriet kör minst 2,1 miljarder kilometer [1]. Ett alternativ till denna distansbaserade testning är det scenaribaserade tillväga-gångssättet, där intelligenta fordon utsätts för kända scenarier. Identifiering av sådana scenarier från kördata är avgörande för denna validering. Syftet med denna avhandling är att undersöka möjligheten till oövervakad identifiering av körscenarier från kördata. Uppgiften utförs i två huvuddelar. Den första är segmenteringen av tidsseriedrivdata genom att detektera ändringspunkter, följt av klustring av de tidigare erhållna segmenten. Tidsseriesegmentering närmar sig med en Deep Learningmetod, medan den andra uppgiften utförs med hjälp av tidsseriekluster. Arbetet innehåller också ett visuellt tillvägagångssätt för att validera tidsserierna, följt av ett kvantitativt mått på prestanda. Tillvägagångssättet jämförs också med en Bayesian icke-parametrisk metod för att identifiera användbarheten av den föreslagna metoden. Baserat på analysen av resultaten diskuteras metodens användbarhet och nackdelar, följt av möjligheten för framtida forskning.
Singh, Akash. "Anomaly Detection for Temporal Data using Long Short-Term Memory (LSTM)." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215723.
Full textVi undersöker Long short-term memory (LSTM) för avvikelsedetektion i tidsseriedata. På grund av svårigheterna i att hitta data med etiketter så har ett oövervakat an-greppssätt använts. Vi tränar rekursiva neuronnät (RNN) med LSTM-noder för att lära modellen det normala tidsseriemönstret och prediktera framtida värden. Vi undersö-ker olika sätt av att behålla LSTM-tillståndet och effekter av att använda ett konstant antal tidssteg på LSTM-prediktionen och avvikelsedetektionsprestandan. LSTM är också jämförda med vanliga neuronnät med fasta tidsfönster över indata. Våra experiment med tre verkliga datasetvisar att även om LSTM RNN är tillämpbara för generell tidsseriemodellering och avvikelsedetektion så är det avgörande att behålla LSTM-tillståndet för att få de önskaderesultaten. Dessutom är det inte nödvändigt att använda LSTM för enkla tidsserier.
Olsson, Lööf Greta, and Aleksandra Vojcic. "It’s Not EU, It’s Me! : An Event Study of Brexit on Financial Markets." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264181.
Full textStudien undersöker konsekvenserna av folkomröstningen om Storbritanniens medlemskap i EU. Korrelationen och volatiliteten mellan tre olika aktiemarknadsindex jämförs med hjälp av en ekonometrisk modell för tidsserier kallad DCC GARCH. Resultaten från studien visar på omedelbart högre nivåer av volatilitet på aktiemarknaden dagarna efter omröstningen. Analysen ger stöd för hypotesen om högre nivåer av kortsiktiga korrelationer mellan indexen som en konsekvens av högre nivåer av volatilitet. Resultat visar även på att korrelationen mellan det brittiska aktieindexet och de övriga två minskar efter det undersökta eventet.
Ghandeharioon, Cosar. "An evaluation of deep neural network approaches for traffic speed prediction." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254911.
Full textTransportbranschen har en betydande inverkan på samhällets hållbarhet och utveckling. Att lära sig trafikmönster och förutsäga trafikparametrar som flöde eller hastighet för en specifik spatio-temporal punkt är fördelaktigt för transportsystem. Intelligenta transportsystem (ITS) kan till exempel använda prognostiserade resultat för att förbättra tjänster som förarassistanssystem. Vidare kan förutsägelsen underlätta stadsplanering genom att göra ledningsbeslut datadrivna. Det finns flera förutsägelsemodeller för tidsserieregression på trafikdata för att förutsäga medelhastigheten för olika prognoshorisonter. I det här avhandlingsarbetet utvärderade vi Långtidsminne (LSTM), en av de återkommande neurala nätverksmodellerna och Neural dekomposition (ND), ett neuralt nätverk som utför Fourierliknande sönderdelning. Resultaten jämfördes med ARIMA-modellen. Den ihållande modellen valdes som utgångspunkt för utvärderingsuppgiften. Vi föreslog två nya kriterier utöver RMSE och r2, för att utvärdera modeller för prognoser av högt variabla hastighetsändringar. Datasetet insamlades från trafiksensor på motorvägar runt E4 i Stockholm, för det så kallade motorvägskontrollsystemet (MCS). Våra experiment visar att ingen av modellerna kan förutsäga de höga variabla hastighetsförändringarna vid exakta tider som de händer. Anledningen var att det intilliggande lokala området inte hade några indikationer på plötsliga förändringar i medelhastigheten hos fordon som passerade den valda sensorn. Vi drar också slutsatsen att traditionella ML-metrics av RMSE och R2 kan kompletteras med domänspecifika åtgärder.
Tang, Chen. "Forecasting Service Metrics for Network Services." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284505.
Full textEftersom storleken och komplexiteten på internet har ökat dramatiskt under de senaste åren så har belastningen av nätverkshantering också blivit tyngre. Behovet av ett intelligent sätt för dataanalys och prognos blir brådskande. Den breda implementeringen av maskininlärningsmetoder och dataanalysmetoder ger ett nytt sätt att analysera stora mängder data.I detta projekt studerar och utvärderar jag dataprognosmetoder med hjälp av maskininlärningstekniker och analyser av tidsserier som samlats in från KTHtestbädden. Baserat på jämförelse av olika metoder med avseende på noggrannhet och beräkningskostnader, så föreslår jag föreslår den bästa metoden för dataprognoser för olika scenarier.Resultaten visar att maskininlärningstekniker som använder regression kan uppnå bättre prestanda med högre noggrannhet och mindre datoromkostnader. Metoderför dataanalys av tidsserier har relativt lägre noggrannhet, och beräkningsomkostnaderna är mycket högre än maskininlärningstekniker på de datauppsättningar som utvärderatsi detta projekt.
Vera, Barberán José María. "Adding external factors in Time Series Forecasting : Case study: Ethereum price forecasting." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289187.
Full textHuvudinstrumentet för prognosmodeller för tidsserier de senaste åren har gått i riktning mot mönsterbaserat lärande, där ingångsvariablerna för modellerna är en vektor av tidigare observationer för variabeln som ska förutsägas. De mest använda modellerna baserade på detta traditionella mönsterbaserade tillvägagångssätt är auto-regressiv integrerad rörlig genomsnittsmodell (ARIMA) och långa kortvariga neurala nätverk (LSTM). Den huvudsakliga nackdelen med de nämnda tillvägagångssätten är att de inte kan reagera när de underliggande förhållandena i data förändras vilket resulterar i en försämrad prediktiv prestanda för modellerna. För att lösa detta problem försöker olika studier integrera externa faktorer i modellerna som behandlar systemet som en svart låda med en maskininlärningsmetod som genererar komplexa modeller som kräver en stor mängd data för deras inlärning och har liten förklarande kapacitet. I denna uppsatsen har tre olika algoritmer föreslagits för att införliva ytterligare externa faktorer i dessa mönsterbaserade modeller, vilket ger en bra balans mellan prognosnoggrannhet och modelltolkbarhet. Efter att ha använt dessa algoritmer i ett studiefall av prognoser för Ethereums pristidsserier, visas det att förutsägelsefelet effektivt kan minskas genom att ta hänsyn till dessa inflytelserika externa faktorer jämfört med traditionella tillvägagångssätt med bibehållen full tolkbarhet av modellen.
Gangalic, Catalin. "Improving Queuing Time in a Pull Based Containerized Continuous Integration Build System." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-303114.
Full textDe flesta medelstora och större mjukvaruföretag runt om i världen använder idag någon form av kontinuerliga automatiska byggsystem, något som mindre företag även har börjat efterfölja. Detta tillvägagångssätt mot ett mer kontinuerligt flöde har drivit för mer innovation inom domänen och adopteringen av olika orkestreringsverktyg för dessa byggda program. Samtidigt utnyttjar de flesta kontinuerliga integrationssystem inte den data de samlar in för att förbättra den totala byggtiden. Denna uppsats avser att minska den totala byggtiden i ett pull-baserat byggsystem som heter Blazar. Detta uppnås genom att minska den genomsnittliga tid som ett byggt program väntar innan den tilldelas en resurs av orkestreringsverktyget, Kubernetes. Förbättringen av den genomsnittliga kötiden fås genom att utnyttja tidigare data om systemets köbelastning med omfattningen att förutsäga mängden resurser och fördela dem förebyggande. I avhandlingen undersöks olika tidsserieprognosmodeller för att hitta den mest relevanta med avseende på tillgänglig data. Det slutliga valet av modellen är Facebooks Prophet på grund av dess förmåga att utnyttja flera säsongsbestämmelser, hantera avvikelser, helgdagar och ge snabba förutsägelser. Genom att ställa in olika modellparametrar var det möjligt att uppnå tillfredsställande resultat. Under några av de testade perioderna minskade således den genomsnittliga kötiden med upp till 20%, samtidigt som en rimlig resursanvändning bibehölls, jämfört med tiden som ficks utan att använda någon förutsägelsemodell. Slutligen avser denna avhandling inte att ge en toppmodern lösning. Således slutar det med att beskriva sina begränsningar samtidigt som de tillhandahåller andra lösningar och idéer som kan förbättra resultaten.
Kangas, Jussi. "An iterative design process for visualizing historical air temperature recordings effectively in a single display : A user study on narrative visualizations of geospatial time-dependent data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300659.
Full textHur data bör representeras visuellt på ett intuitivt och effektivt sätt undersöks i det vetenskapliga fältet om visualiseringar. Vidare är det utmanande hur geografiska tidsserier ska visualiserar. Utmaningen består i hur en enda visualiserings vy ska skapas som både kan ge en överblick över data och detaljer om specifika data punkter. Anledning till att detta är utmanande är att med fler data dimensioner blir även de möjliga visuella kodnings möjligheterna flera. Därför består utmaningen i hur olika visuella kodningssätt och vyer ska kombineras i en enda vy effektivt. För att designa en effektiv vy undersöktes olika designriktlinjer kopplade till effektivitet. Dessa riktlinjer användes sedan för att designa om en existerande geografisk tidsserie visualisering in en iterativ designprocess. Data som visualiserades var historiska lufttemperaturmätningar i Sverige, en datamängd med både geografiska och tidsberoende komponenter. Den skapade alternativa visualiseringen jämfördes med originalet med hänsyn till effektivitet i en användarstudie. Resultaten tyder på att användarna uppfattar den alternativa visualiseringen som mer effektiv än originalet. Men prestations resultatet på fyra uppgifter tyder inte på att den alternativa visualiseringen skulle vara effektivare. Vidare, jämfört med relaterade arbeten är inte den alternative visualiseringen mer effektiv. Sammanfattningsvis är den alternativa visualiseringen svårare att lära sig än originalet, vilken kan påverka användarnas prestation. Men när användarna lärt sig att använda den alternativa visualiseringen, kan den alternativa vara effektivare att använda än originalet. Vidare är designriktlinjerna användbara i en designprocess men, ingen garanti för en effektiv visualisering i detta fall.
Rådeström, Johan, and Gustav Skoog. "Realtidssammanställning av stora mängder data från tidsseriedatabaser." Thesis, KTH, Data- och elektroteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208932.
Full textLarge amounts of time series data are generated and managed within management systems and industries with the purpose to enable monitoring of the systems. When the time series is to be acquired and compiled for data analysis, the expenditure of time is a problem. This thesis was purposed to determine how the extraction of time series data should be performed to give the systems the best response time possible. To make the extraction and compilation as effective as possible, different techniques and methods were tested and evaluated. The areas that techniques and methods were compared for were compilation of data inside and outside the database, caching, usage of in-memory databases compared to other databases, dataformats, data transfer, and precalculation of data. The results showed that the best solution was to compile data in parallel outside the database, to use a custom built-in in-memory database, to use Google Protobuf as data format, and finally to use precalculated data.
Jaunzems, Davis. "Time-series long-term forcasting for A/B tests." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205344.
Full textThe technological development of computing devices and communication tools has allowed to store and process more information than ever before. For researchers it is a means of making more accurate scientific discoveries, for companies it is a way of better understanding their clients, products and gain an edge over the competitors. In the industry A/B testing is becoming an important and a common way of obtaining insights that help to make data-driven decisions. A/B test is a comparison of two or more versions to determine which is performing better according to predetermined measurements. In combination of data mining and statistical analysis, these tests allow to answer important questions and help to transition from the state of “we think” to “we know”. Nevertheless, running bad test cases can have negative impact on businesses and can result in bad user experience. That is why it is important to be able to forecast A/B test long-term effects from short-term data. In this report A/B tests and their forecasting is looked at using the univariate time-series analysis. However, because of the short duration and high diversity, it poses a great challenge in providing accurate long-term forecasts. This is a quantitative and empirical study that uses real-world data set from a social game development company King Digital Entertainment PLC(King.com). First through series of steps the data are analysed and pre-processed. Time-series forecasting has been around for generations. That is why an analysis and accuracy comparison of existing forecasting models, like, mean forecast, ARIMA and Artificial Neural Networks, is carried out. The results on real data set show similar results that other researchers have found for long-term forecasts with short-term data. To improve the forecasting accuracy a time-series clustering method is proposed. The method utilizes similarity between time-series through Dynamic Time Warping, and trains separate cluster forecasting models. The clusters are chosen with high accuracy using Random Forest classifier, and certainty about time-series long-term range is obtained by using historical tests and a Markov Chain. The proposed method shows superior results against existing models, and can be used to obtain long-term forecasts for A/B tests.
Sofokleous, Ioannis. "Correction of Inhomogeneous Data in the Precipitation Time Series of Sweden Due to the Wind Shield Introduction." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-281709.
Full textKontinuerliga samt felfria nederbördsmätningar är av stor betydelse för geovetenskaper som klimatologi och hydrologi därför att nederbördsdata är en av de primära meteorologiska parametrarna för forskning om klimatförändringen. Att säkerställa felfria (homogena) nederbörds tidsserier betyder i stort sett att säkerställa homogenitet genom att identifiera och korrigera inhomogena data. Icke homogena data uppkommer på grund av förändringar i mätmetoder och mätförhållanden under observationstiden, sedan 1860-talet tills idag alltså. Denna studies syfte är att beräkna en korrektion som ska användas för att korrigera nederbördsmätningar som utfördes sedan 1860 utan vinskydd. Vindskyddet eller vindskärmen, en speciell utrustning som användas på nederbördsinsamlare, infördes gradvis under perioden 1900-1960 vid de svenska nederbördstationerna. Vindskyddet introducerades med avsikt att minska vindens påverka vid nederbördsinsamling. Men trotts den positiva effekten som vindskyddet ledde till, genom den ökade nederbördsmängden som samlades in, skapade denna förändring av mätarutrustningen inhomogena data. Bearbetningen skedde för månadsnederbördsdata från 70 stationer från SMHIs meteorologiska nätverk genom att jämföra nederbördsobservationer som genomfördes under perioderna tio år före och tio år efter införandet av vindskydd. Dessutom användes temperaturdata från samma stationer för att uppskatta nederbördslag (snö/regn). Skälet till detta är att vinskyddseffekten är olika mellan snö och regn. Beräkningarna och bestämningen av nederbördslag ledde till en 5 % respektive 27 % nederbörds ökning för regn och snö för de mätningarna som utfördes utan vindskydd. I genomsnitt har de korrigerade värdena, under perioden som vinskyddet saknades, ökat med omkring 50 mm.
Carpentier, Benjamin. "Deep Learning for Earth Observation: improvement of classification methods for land cover mapping : Semantic segmentation of satellite image time series." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299578.
Full textTidsserier av satellitbilder (SITS) blir tillgängliga med hög rumslig, spektral och tidsmässig upplösning över hela världen med hjälp av de senaste fjärranalyssensorerna. Dessa bildserier kan vara mycket värdefulla när de utnyttjas av klassificeringssystem för att ta fram ofta uppdaterade och exakta kartor över marktäcken. Den stora mängden spektrala, rumsliga och tidsmässiga egenskaper i SITS är en lovande datakälla för utveckling av bättre algoritmer. Metoder för maskininlärning som Random Forests (RF), trots att de har tillämpats på SITS för att ta fram kartor över landtäckning, är strukturellt sett oförmögna att hantera den sammanflätade rumsliga, spektrala och temporala dynamiken utan att bryta sönder datastrukturen. I detta arbete föreslås därför en jämförande studie av olika algoritmer från Konvolutionellt Neuralt Nätverk (CNN) -familjen och en utvärdering av deras prestanda för SITS-klassificering. De jämförs med behandlingskedjan iota2, som utvecklats av CESBIO och bygger på en RF-modell. Försöken utförs i ett operativt sammanhang med glesa annotationer från 290 märkta polygoner. Mindre än 80 000 pixeltidsserier som tillhör 8 marktäckeklasser från ett års månatliga Sentinel-2-synteser används. Resultaten visar att CNNs som använder 3D-falsningar i tid och rum är mer exakta än 1D temporala, staplade 2D- och RF-metoder. Bäst presterande modeller är CNNs som använder spatiotemporala egenskaper, nämligen 3D-CNN, 2D-CNN och SpatioTempCNN, en modell med två flöden som använder både 1D- och 3D-falsningar.
Engström, Olof. "Deep Learning for Anomaly Detection in Microwave Links : Challenges and Impact on Weather Classification." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276676.
Full textArtificiell intelligens har fått mycket uppmärksamhet inom olika teknik- och vetenskapsområden på grund av dess många lovande tillämpningar. I dagens samhälle är väderklassificeringsmodeller med hög noggrannhet av yttersta vikt. Ett alternativ till att använda konventionell väderradar är att använda uppmätta dämpningsdata i mikrovågslänkar som indata till djupinlärningsbaserade väderklassificeringsmodeller. Detektering av avvikelser i uppmätta dämpningsdata är av stor betydelse eftersom en klassificeringsmodells pålitlighet minskar om träningsdatat innehåller avvikelser. Att utforma en noggrann klassificeringsmodell är svårt på grund av bristen på fördefinierade kännetecken för olika typer av väderförhållanden, och på grund av de specifika domänkrav som ofta ställs när det gäller exekveringstid och detekteringskänslighet. I det här examensarbetet undersöker vi förhållandet mellan avvikelser i uppmätta dämpningsdata från mikrovågslänkar, och felklassificeringar gjorda av en väderklassificeringsmodell. För detta ändamål utvärderar vi avvikelsedetektering inom ramen för väderklassificering med hjälp av två djupinlärningsmodeller, baserade på long short-term memory-nätverk (LSTM) och faltningsnätverk (CNN). Vi utvärderar genomförbarhet och generaliserbarhet av den föreslagna metodiken i en industriell fallstudie hos Ericsson AB. Resultaten visar att båda föreslagna metoder kan upptäcka avvikelser som korrelerar med felklassificeringar gjorda av väderklassificeringsmodellen. LSTM-modellen presterade bättre än CNN-modellen både med hänsyn till toppprestanda på en länk och med hänsyn till genomsnittlig prestanda över alla 5 testade länkar, men CNNmodellens prestanda var mer konsistent.
Andersson, Markus. "Multivariate Financial Time Series and Volatility Models with Applications to Tactical Asset Allocation." Thesis, KTH, Matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175326.
Full textDen finansiella marknaden är av en väldigt komplex struktur och modelleringsteknikerna har under senare tid blivit allt mer komplicerade. För en portföljförvaltare är det av yttersta vikt att finna mer sofistikerade modelleringstekniker, speciellt efter finanskrisen 2007-2008. Idéen i den här uppsatsen är att finna ett samband mellan makroekonomiska faktorer och aktieportföljer innehållande tillgångar från OMX Stockholm 30 och använda dessa för att utföra Tactial Asset Allocation (TAA). Mer specifikt är målsättningen att visa att dynamiska modelleringstekniker har ett bättre utfall än mer statiska modeller i portföljteori.
Cronstedt, Axel, and Rebecca Andersson. "Readjusting Historical Credit Ratings : using Ordered Logistic Regression and Principal ComponentAnalysis." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-148567.
Full textJustering av historiska kreditbetyg med hjälp av ordinal logistiskregression och principialkomponentsanalys När Basel II implementerades introducerades även nya riktlinjer för finan-siella instituts riskhantering och beräkning av kreditrisk, så som möjlighetenför banker att använda interna beräkningar av Probability of Default (PD),Exposure at Default (EAD) och Loss Given Default (LGD), som tillsammansgrundar sig i varje låntagares sannoliket för fallissemang. Dessa tre mått ut-gör grunden för beräkningen av de kapitaltäckningskrav som banker förväntasuppfylla och baseras i sin tur på bankernas interna kreditratingsystem. Detär därmed av stor vikt för banker att bygga stabila kreditratingmodeller medkapacitet att generera pålitliga beräkningar av motparternas kreditrisk. Dessamodeller är vanligtvis baserade på empirisk data och modellens goodness-of-fit,eller passning till datat, beror till stor del på kvalitén och den statistiska sig-nifikansen hos det data som står till förfogande. Därför är en av de viktigasteaspekterna för kreditratingsmodeller att ha tillräckligt många observationeratt träna modellen på, vilket gör modellens utvecklingsskede samt mängdendata avgörande för modellens framgång.Huvudsyftet med detta projekt är att, på ett enkelt och effektivt sätt, skapaen längre, homogen tidsserie genom att justera historisk kreditratingdata i enportfölj med företagslån tillhandahållen av Svenska Handelsbanken AB. Jus-teringen görs genom att utveckla olika ordinala logistiska regressionsmodellermed beroende variabler bestående av makroekonomiska variabler, på olikasätt. En av modellerna använder makroekonomiska variabler i form av princi-palkomponenter skapade med hjälp av en principialkomponentsanalys, medande andra modelelrna använder de makroekonomiska variablerna enskilt i olikakombinationer. Modellerna testas för att utvärdera både deras förmåga attjustera portföljens historiska kreditratings samt för att göra prediktioner.
Karlén, Albin, and Sebastian Genas. "Marginaler för morgondagen : En kvantitativ analys av flexibiliteten hos aggregerade laddande elbilar." Thesis, Linköpings universitet, Energisystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177967.
Full textThe electrification of the car fleet is taking place at a frenetic pace. Additionally, demand for electricity from other sectors of the Swedish society is expected to grow considerably in the coming decades, which in combination with an increasing proportion of intermittent energy sources puts increasing pressure on the electrical grid and prompts a need to adapt to these changes. A proposed solution to part of the power system's upcoming challenges is to utilize the flexibility available from charging electric vehicles (EVs) by letting an aggregator control a large number of EV chargers and sell the extra capacity to, for example, Svenska kraftnät's balancing markets. To quantify how much flexibility charging EVs can contribute with, the aggregator needs to make forecasts of how much power that is most likely available at a given time – a point forecast – but also an estimate of what power level the aggregator almost certainly will exceed – a quantile forecast. In this study, an investigation has been made of how the forecast error changes if the amount of aggregated EV chargers is increased, and how much an aggregator can lower their margins when selling the flexibility to be able to deliver according to the bid with certainty. This was done by quantifying the flexibility of 1000 EV chargers located at mainly workplaces, and by scaling up and down the data through random sampling. For these groups, probabilistic forecasts of the flexibility were then made with a moving average forecast as well as an ARIMA model. Based on the forecasts, potential revenues were finally simulated for the case where the aggregator uses the available flexibility for up-regulation to the balancing market FCR-D up, which is a frequency containment reserve that is activated in the event of disturbances. The results show that a tenfold increase in the number of aggregated EV chargers more than halves the forecast error. The two forecast models proved to have comparable precision, which suggests that the moving average forecast is recommended due to its lower complexity compared to the ARIMA model. The increased precision in the forecasts also resulted in higher revenues per charger. The average income from delivering flexibility from 1000 aggregated electric car chargers to FCR-D amounted to SEK 6900 per month, or SEK 0.8 per session – figures that would probably have been higher without the corona pandemic's increased share of work done from home. A 99 percent confidence level for the quantile forecast resulted in a safety margin of varying size, which on average was around 90 percent for 100 chargers, 60 percent for 1000 chargers and 30 percent for 10,000 chargers. Most flexibility was shown to be available on weekday mornings when approximately 600 kW was available at most for 1000 chargers. By examining frequency data for the Nordic power grid from the past ten years, the joint probability that a more than 50 percent activation of the FCR-D bid would coincide with the outcome for the available capacity being one-in-a-hundred-low, was concluded to be nearly non-existent – likely only once in about 511 years. For the aggregator to place bids based on a 99 percent confidence level can thus be considered safe.
Kim, Yeongwoo. "Dynamic GAN-based Clustering in Federated Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-285576.
Full textett nätverk ökat. Enheterna genererar kontinuerligt data som har varierandeinformation, från strömförbrukning till konfigurationen av enheterna. Eftersomdatan innehåller den råa informationen om varje lokal nod i nätverket germanipulation av informationen potential att gynna nätverket med olika metoder.På grund av den stora mängden data, och dess egenskap av att vara icke-o.l.f.,som genereras i varje nod blir manuella operationer för att bearbeta data ochjustera metoderna utmanande. För att hantera utmaningen finns försök med attanvända automatiserade metoder för att bygga precisa maskininlärningsmodellermed hjälp av en mindre mängd insamlad data eller att gruppera nodergenom att utnyttja klustringsalgoritmer och använda maskininlärningsmodellerinom varje kluster. De konventionella klustringsalgoritmerna är emellertidofullkomliga i ett distribuerat och dynamiskt nätverk på grund av risken fördataskydd, de icke-dynamiska klusterna och det fasta antalet kluster. Dessabegränsningar av klustringsalgoritmerna försämrar maskininlärningsmodellernasprestanda eftersom klustren kan bli föråldrade med tiden. Därför föreslårdenna avhandling en trefasklustringsalgoritm i dynamiska miljöer genom attutnyttja 1) GAN-baserad klustring, 2) klusterkalibrering och 3) klyvning avkluster i federerad inlärning. GAN-baserade klustring bevarar dataintegriteteneftersom det eliminerar behovet av att dela rådata i ett nätverk för att skapakluster. Klusterkalibrering lägger till dynamik i klustringen genom att kontinuerligtuppdatera kluster och fördelar metoder som hanterar nätverket. Dessutomdelar den klövlande klustringen olika antal kluster genom att iterativt välja ochdela ett kluster i flera kluster. Som ett resultat skapar vi kluster för dynamiskamiljöer och förbättrar prestandan hos maskininlärningsmodeller inom varjekluster.
Inersjö, Adam. "Transformation of Time-based Sensor Data to Material Quality Data in Stainless Steel Production." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414802.
Full textKvalitetssäkring av rostfritt stål produktion kräver stora mängder av sensordata för att övervaka processtegen. Digitalisering av produktionen skulle ge större kontroll för att både bedöma och öka kvaliteten på slutprodukterna. Vid Outokumpu Avesta Works skapas sensordata vid kontinuerlig bearbetning av stålband utan att datan sammankopplas till enskilda band, trots att denna sammankoppling krävs för att uppnå löftena som digitaliseringens ger. I detta projekt analyserades tidsseriedata från 12 sensorer vid den kontinuerliga bearbetningen av band och fyra alternativa metoder för att sammankoppla sensordatan till stålband presenterades. En metod som byggde på tidsserier med positionsvärden bedömdes vara mest passande för sensordatan och valdes för implementation över andra metoder som byggde på tidsserieanalys av själva sensordatan. Evaluering av den valda metoden visade att den kunde sammankoppla sensordata till 98.10 % av ståldbanden, något lägre än kravet på 99 % korrekthet. På grund av att skapandet av tidsserierna med positionsvärden tog lika lång tid oberoende av antalet sensorer så förbättrades bearbetningstiden desto fler sensorer som bearbetades. För bearbetning av 24 timmar av sensordata låg median bearbetningstiden på mindre än 20 sekunder per sensor när åtta eller fler sensorer bearbetades tillsammans. Prestandan för bearbetning av färre än fyra sensorer var inte lilka bra och kräver ytterliga optimering för att nå kravet på 30 sekunder per sensor. Fastän kraven på metoden inte uppnåddes till fullo kan den implementerade metoden ändå användas på historisk data för att främja kvalitetsbedömning av rostfria stålband.
Engberg, Sara, and Samuel Skånberg. "Hushållsskuldsättningens inverkan på konsumtionen : En tidsserieanalys över skuldackumulation och dess inverkan på konsumtionen." Thesis, Södertörns högskola, Institutionen för samhällsvetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-29930.
Full textBakgrund: Till följd av avreglering av finansmarknader och flertalet finansiella innovationer har hushåll möjlighet att anskaffa krediter mot återbetalning senare i livet. Med låga räntor har skuldsättningen växt till nivåer som oroar flertalet finansiella institutioner. I Sverige har skuldkvoten bland hushåll från 1990-talets mitt fram till 2010 skuldkvoten ökat från 90 % till 170 %. Oron av utvecklingen kan förklaras av den senaste forskningen inom området vars resultat visar på att hög skuldsättning kan vara en faktor som ligger bakom finansiella kriser. Däremot är resultatet gällande skuldens inverkan på konsumtionen något tvetydig. Forskning säger att skulden kan ha en positiv relation med konsumtionen, däremot pekar några studier på att detta ska vara en effekt av ökade huspriser och förmögenhetseffekter. Om utsikterna över ekonomin upphör att vara positiva kommer konsumtionen att minska och recessioner förlängas och fördjupas. Syfte: Studien syftar till att belysa vilken inverkan en ökad skuldsättning har på konsumtionen. Mot bakgrund av de ökade bostadspriserna och skuldsättning bland hushåll är det av vikt att klargöra relationen mellan de två. Metod: För att undersöka skuldtillväxten och dess effekt på konsumtionen används en tidsserieanalys. Med kvartalsdata har perioden mellan 1995 och 2013 undersökts, vilket har genererat en total på 75 observationer. Innan en OLS kan genomföras behövs data undersökas för stationaritet och kointegration. Stationaritet återfinns vid första differensen för samtliga variabler. Kointegration förekommer i original data, och därmed kan regressionen utföras på denna. I och med att laggningar av variabeln skuldsättning förekommer, har data testats för autokorrelation. Modell fyra och fem uppvisar positiv autokorrelation. Därefter är resterande modeller överhängande fria från autokorrelation. Slutsats: Ett positivt förhållande uppvisas mellan skuld och konsumtion. Däremot, när en fördröjning av skuldvariabeln införs uppvisas ett negativt samband mellan skuld och konsumtion. Resultatet från tidigare studier kan bekräftas, däremot verkar den negativa inverkan som skuld har på konsumtion uppvisa sig tidigare än vad befintlig teori specificerat.
Markou, Ioannis. "Analysing User Viewing Behaviour in Video Streaming Services." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292095.
Full textAnvändarupplevelsen som erbjuds av en videostreamingtjänst spelar en grundläggande roll för kundnöjdheten. Denna upplevelse kan försämras av dålig uppspelningskvalitet och buffertproblem. Dessa problem kan orsakas av en efterfrågan från användare som är högre än videostreamingtjänstens kapacitet. Resursskalningsmetoder kan öka tillgängliga resurser för att täcka behovet. De flesta resursskalningssystem är dock reaktiva och uppskalas automatiskt när en viss behovströskel överskrids. Under populärt livestreaminginnehåll kan efterfrågan vara så hög att även genom att skala upp i sista minuten kan systemet fortfarande vara underutnyttjat tillfälligt, vilket resulterar i en dålig användarupplevelse. Lösningen på detta problem är proaktiv skalning som är händelsebaserad och använder innehållsrelaterad information för att skala upp eller ner, enligt kunskap från tidigare händelser. Som ett resultat är proaktiv resursskalning en nyckelfaktor för att tillhandahålla tillförlitliga videostreamingtjänster. Användares visningsvanor påverkar efterfrågan kraftigt. För att ge en exakt modell för proaktiva resursskalningsverktyg måste dessa vanor modelleras. Denna avhandling ger en sådan prognosmodell för användarvyer som kan användas av en proaktiv resursskalningsmekanism. Denna modell är skapad genom att använda maskininlärningsalgoritmer på data från både live-TV och streamingtjänster. För att producera en modell med tillfredsställande noggrannhet ansågs ett flertal dataattribut relaterade till användare, innehåll och innehållsleverantörer. Resultaten av den här avhandlingen visar att efterfrågan på användare kan modelleras med hög noggrannhet utan att starkt förlita sig på användarrelaterade attribut utan istället genom att analysera tidigare händelseloggar och med kunskap om innehållsleverantörens schema, vare sig det är live-tv eller tjänster för videostreaming.
Lindroth, Henriksson Amelia. "Unsupervised Anomaly Detection on Time Series Data: An Implementation on Electricity Consumption Series." Thesis, KTH, Matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301731.
Full textDigitaliseringen av elbranschen, införandet av smarta nät samt ökad reglering av elmätning har resulterat i stora mängder eldata. Denna data skapar en unik möjlighet att analysera och förstå fastigheters elförbrukning för att kunna effektivisera den. Ett viktigt inledande steg i analysen av denna data är att identifiera möjliga anomalier. I denna uppsats testas fyra olika maskininlärningsmetoder för detektering av anomalier i elförbrukningsserier: densitetsbaserad spatiell klustring för applikationer med brus (DBSCAN), lokal avvikelse-faktor (LOF), isoleringsskog (iForest) och en-klass stödvektormaskin (OC-SVM). För att kunna utvärdera metoderna infördes syntetiska anomalier i elförbrukningsserierna och de fyra metoderna utvärderades därefter för de två anomalityperna punktanomali och gruppanomali. Utöver elförbrukningsdatan inkluderades även variabler som beskriver tidigare elförbrukning, utomhustemperatur och tidsegenskaper i modellerna. Resultaten tyder på att tillägget av temperaturvariabeln och lag-variablerna i allmänhet försämrade modellernas prestanda, medan införandet av tidsvariablerna förbättrade den. Av de fyra metoderna visade sig OC-SVM vara bäst på att detektera punktanomalier medan LOF var bäst på att detektera gruppanomalier. I ett försök att förbättra modellernas detekteringsförmåga utfördes samma experiment efter att elförbrukningsserierna trend- och säsongsrensats. Modellerna presterade inte bättre på de rensade serierna än på de icke-rensade.
Erdal, Hamit, and Erik Nyström. "Foreign Direct Investment – Effekten av utländsk direktinvestering på ekonomisk tillväxt : En tidsserie analys av utvecklingsländers tillväxtmöjligheter med FDI." Thesis, Södertörns högskola, Institutionen för samhällsvetenskaper, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-30268.
Full textSaluja, Rohit. "Interpreting Multivariate Time Series for an Organization Health Platform." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289465.
Full textMaskininlärningsbaserade system blir snabbt populära eftersom man har insett att maskiner är effektivare än människor när det gäller att utföra vissa uppgifter. Även om maskininlärningsalgoritmer är extremt populära, är de också mycket bokstavliga. Detta har lett till en enorm forskningsökning inom området tolkbarhet i maskininlärning för att säkerställa att maskininlärningsmodeller är tillförlitliga, rättvisa och kan hållas ansvariga för deras beslutsprocess. Dessutom löser problemet i de flesta verkliga problem bara att göra förutsägelser med maskininlärningsalgoritmer bara delvis. Tidsserier är en av de mest populära och viktiga datatyperna på grund av dess dominerande närvaro inom affärsverksamhet, ekonomi och teknik. Trots detta är tolkningsförmågan i tidsserier fortfarande relativt outforskad jämfört med tabell-, text- och bilddata. Med den växande forskningen inom området tolkbarhet inom maskininlärning finns det också ett stort behov av att kunna kvantifiera kvaliteten på förklaringar som produceras efter tolkning av maskininlärningsmodeller. Av denna anledning är utvärdering av tolkbarhet extremt viktig. Utvärderingen av tolkbarhet för modeller som bygger på tidsserier verkar helt outforskad i forskarkretsar. Detta uppsatsarbete fokuserar på att uppnå och utvärdera agnostisk modelltolkbarhet i ett tidsserieprognosproblem. Fokus ligger i att hitta lösningen på ett problem som ett digitalt konsultföretag står inför som användningsfall. Det digitala konsultföretaget vill använda en datadriven metod för att förstå effekten av olika försäljningsrelaterade aktiviteter i företaget på de försäljningsavtal som företaget stänger. Lösningen innebar att inrama problemet som ett tidsserieprognosproblem för att förutsäga försäljningsavtalen och tolka den underliggande prognosmodellen. Tolkningsförmågan uppnåddes med hjälp av två nya tekniker för agnostisk tolkbarhet, lokala tolkbara modellagnostiska förklaringar (LIME) och Shapley additiva förklaringar (SHAP). Förklaringarna som producerats efter att ha uppnått tolkbarhet utvärderades med hjälp av mänsklig utvärdering av tolkbarhet. Resultaten av de mänskliga utvärderingsstudierna visar tydligt att de förklaringar som produceras av LIME och SHAP starkt hjälpte människor att förstå förutsägelserna från maskininlärningsmodellen. De mänskliga utvärderingsstudieresultaten visade också att LIME- och SHAP-förklaringar var nästan lika förståeliga med LIME som presterade bättre men med en mycket liten marginal. Arbetet som utförts under detta projekt kan enkelt utvidgas till alla tidsserieprognoser eller klassificeringsscenarier för att uppnå och utvärdera tolkbarhet. Dessutom kan detta arbete erbjuda en mycket bra ram för att uppnå och utvärdera tolkbarhet i alla maskininlärningsbaserade regressions- eller klassificeringsproblem.
Fredén, Daniel, and Hampus Larsson. "Forecasting Daily Supermarkets Sales with Machine Learning." Thesis, KTH, Optimeringslära och systemteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276483.
Full textFörbättrade försäljningsprognoser för individuella produkter inom detaljhandeln kan leda till både en miljömässig och ekonomisk förbättring. Historiskt sett har dessa utförts genom en kombination av statistiska metoder och erfarenhet. Med den ökade beräkningskraften hos dagens datorer har intresset för att applicera maskininlärning på dessa problem ökat. Målet med detta examensarbete är därför att undersöka vilken maskininlärningsmetod som kunde prognostisera försäljning bäst. De undersökta metoderna var XGBoost, ARIMAX, LSTM och Facebook Prophet. Generellt presterade XGBoost och LSTM modellerna bäst då dem hade ett lägre mean absolute value och symmetric mean percentage absolute error jämfört med de andra modellerna. Dock, gällande root mean squared error hade Facebook Prophet bättre resultat under högtider, vilket indikerade att Facebook Prophet var den bäst lämpade modellen för att förutspå försäljningen under högtider. Dock, kunde LSTM modellen snabbt anpassa sig och förbättrade estimeringarna. Inkluderingen av väderdata i modellerna resulterade inte i några markanta förbättringar och gav i vissa fall även försämringar. Övergripande, var resultaten tvetydiga men indikerar att den bästa modellen är beroende av prognosens tidsperiod och mål.
Cicek, Sevim. "Economic Growth in China : During the Period of 1980-2003." Thesis, Jönköping University, JIBS, Economics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-648.
Full textInnan Kina öppnade dörrarna för omvärlden, ansågs de inneha en av världens mest slutna marknader. Detta har dock förändrats då Kina tillät marknaden styra istället för central styre, samt att de beslöt för en utåtriktad utvecklings strategi. Detta tyder på att Kina tillät utländsk handel att spela en betydelsefull roll i deras ekonomiska utveckling.
Uppsatsen, med hjälp av inkomst benämner av handel och BNP per capita, har som syfte att studera relationen mellan handel och ekonomisk tillväxt i Kina under perioden 1980-2003. Syftet är att man med hjälp av det ekonometriska verktyget, tidserie, kunna finna en positiv relation emellan dessa variabler. Inkomst benämner av handel inkluderar värden av både export och import. Det är därför teorin används för denna uppsats, eftersom teorin anser att export ensam inte kan orsaka ekonomisk tillväxt om inte import är inkluderad.
Undersökningen, tidserie, innebar en enheten rotar problem, cointegration, samt Granger causalitets test. Värdena givna visar på att undersökningen har statistisk signifikanta värden, vilket tyder på att handel är av relevans för den ekonomisk tillväxt i China under 1980-2003.
Prior to China’s open-door policy, China was considered among one of the worlds’ most isolated economies. However, that changed when they allowed the market force to go before central planning, and decided on an outward orientation for their development strategy. This was a sign indicating that China allowed foreign trade to play a leading role in its economic development.
This thesis, with the help of income terms of trade (ITT) and GDP per capita, aim to study if there is any relation between trade and growth in China during 1980-2003. The purpose is with help of the econometric tool, time series, to find a positive correlation between these variables. ITT include both the value of exports and imports. That is why the theory ITT is being used for this thesis, since the theory indicates that exports alone cannot explain growth if imports is not considered as well.
The test, time series, was performed by doing a unit root problem, co integration, and a Granger causality test. The result given when doing these tests show of statistically significant result, which indicates that trade is of relevance for growth in China during 1980-2003.
Klinkert, Rickard. "Uncertainty Analysis of Long Term Correction Methods for Annual Average Winds." Thesis, Umeå universitet, Institutionen för fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-59690.
Full textFör att bygga en vindkraftspark är man i behov av att kartlägga vindresurserna i det aktuella området. Med hjälp av tidsserier från numeriska vädermodeller (NWP), globala assimileringsdatabaser och intilliggande observationer korrigeras de uppmätta vindhastigheterna och vindriktningarna för att motsvara långtidsvärdena av vindförhållandena. Dessa långtidskorrigeringsmetoder (LTC) genomförs generellt sett med hjälp av linjär regression i Mät-korrelera-predikera-metoden (MCP). Denna metod, och två andra metoder, Sektor-bin (SB) och Syntetiska tidsserier (ST), används i denna rapport för att utreda de osäkerheter som är knutna till långtidskorrigering.Det testområde som är valt för analys i denna rapport omfattas av Nordsjöregionen, med 22 meteorologiska väderobservationsstationer i Danmark, Norge och Sverige. Dessa stationer är till största del belägna till havs eller vid kusten. Tidsserierna som används täcker åttaårsperioden från 2002 till 2009, där det året med högst variabilitet i uppmätt vindhastighet, år 2007, används som den korta mätperiod som blir föremål för långtidskorrigeringen. De långa referensdataseten som använts är väderprediktionsmodellen WRF ( Weather Research and Forecast Model), baserad både på data från NCEP/FNL (National Centers for Environmental Prediciton Final Analysis) och ERA-Interim (ECMWF Interim Re-analysis). Dessutom används även data från MERRA (Modern Era Re-Analysis) och satellitobservationer från QuikSCAT. Långtidsperioden för alla dataset utom QuikSCAT omfattar samma period som observationsstationerna. QuikSCAT-datat som använts omfattar perioden 1 november 1999 till 31 oktober 2009.Analysen är indelad i tre delar. Inledningsvis behandlas osäkerheten som är kopplad till referensdatans ingående i långtidskorrigeringsmetoderna. Därefter analyseras osäkerhetens beroende av längden på den samtidiga datan i referens- och observationsdataseten. Slutligen utreds osäkerheten med hjälp av en icke-parametrisk metod, en s.k. Bootstrap: Osäkerheten i SB-metoden för en fast samtidig längd av tidsserierna från observationer och referensdatat uppskattas genom att skapa en generell modell som estimerar osäkerheten i estimatet.Resultatet visar att skillnaden när man använder WRF-modellen baserad både på NCEP/FNL och ERA-Interim i långtidskorrigeringen är marginell och avviker inte markant i förhållande till stationsobservationerna. Resultatet pekar också på att MERRA-datat kan användas som långtidsreferensdataset i långtidsdkorrigeringsmetoderna. Däremot ger inte QuikSCAT-datasetet tillräckligt med information för att avgöra om det går att använda i långtidskorrigeringsmetoderna. Därför föreslås ett annat tillvägagångssätt än stationsspecifika koordinater vid val av koordinater lämpliga för långtidskorrigering. Ytterligare ett resultat vid analys av långtidskorrigeringsmetoden SB, visar att metoden är robust mot variation i korrelationskoefficienten.Rörande osäkerhetens beroende av längden på samtidig data visar resultaten att en sammanhängande mätperiod på ett år eller mer ger den lägsta osäkerheten i årsmedelvindsestimatet, i förhållande till mätningar av kortare slag. Man kan även se att standardavvikelsen av de långtidskorrigerade medelvärdena avtar med längden på det samtidiga datat. Den implementerade ickeparametriska metoden Bootstrap, som innefattar sampling med återläggning, kan inte estimera osäkerheten till fullo. Däremot ger den lovande resultat som föreslås för vidare arbete.
Lantz, Robin. "Time series monitoring and prediction of data deviations in a manufacturing industry." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-100181.
Full textArvidsson, Philip, and Tobias Ånhed. "Sequence-to-sequence learning of financial time series in algorithmic trading." Thesis, Högskolan i Borås, Akademin för bibliotek, information, pedagogik och IT, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-12602.
Full textPrediktion av den finansiella marknadens beteende är i stort ett olöst problem. Problemet hartagits an på flera sätt med olika metoder så som binär logik, statistiska uträkningar ochgenetiska algoritmer. I den här uppsatsen kommer problemet undersökas medmaskininlärning, mer specifikt Long Short-Term Memory (LSTM), en variant av rekurrentaneurala nätverk (RNN). Rekurrenta neurala nätverk är en typ av artificiellt neuralt nätverk(ANN), en maskininlärningsalgoritm som ska efterlikna de neurala processerna hos däggdjursnervsystem, specifikt utformat för tidsserier. I uppsatsen undersöks kapaciteten hos ett LSTMatt modellera finansmarknadens beteenden och jämförs den mot ett traditionellt RNN, merspecifikt mäts deras effektivitet på olika vis.
Granemark, Elin. "Minskar införandet av skattetillägg benägenheten att begå skattebrott? : En tidsseriestudie om vilken effekt skattetillägg har på självrättelser av inkomstdeklarationer." Thesis, Uppsala universitet, Nationalekonomiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-449070.
Full textWågberg, Max. "Att förutspå Sveriges bistånd : En jämförelse mellan Support Vector Regression och ARIMA." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36479.
Full textUnder det senaste åren har användningen av maskininlärning ökat markant. Dess användningsområden varierar mellan allt från att göra vardagen lättare med röststyrda smarta enheter till bildigenkänning eller att förutspå börsvärden. Att förutspå ekonomiska värden har länge varit möjligt med hjälp av andra metoder än maskininlärning, såsom exempel statistiska algoritmer. Dessa algoritmer och maskininlärningsmodeller använder tidsserier, vilket är en samling datapunkter observerade konstant över en given tidsintervall, för att kunna förutspå datapunkter bortom den originella tidsserien. Men vilken av dessa metoder ger bäst resultat? Projektets övergripande syfte är att förutse sveriges biståndskurva med hjälp av maskininlärningsmodellen Support Vector Regression och den klassiska statistiska algoritmen autoregressive integrated moving average som förkortas ARIMA. Tidsserien som används vid förutsägelsen är årliga summeringar av biståndet från openaid.se sedan år 1998 och fram till 2019. SVR och ARIMA implementeras i python med hjälp av Scikit-learn och Statsmodelsbiblioteken. Resultatet från SVR och ARIMA mäts i jämförelse mellan det originala värdet och deras förutspådda värden medan noggrannheten mäts i root square mean error och presenteras under resultatkapitlet. Resultatet visar att SVR med RBF kärnan är den algoritm som ger det bästa testresultatet för dataserien. Alla förutsägelser bortom tidsserien presenteras därefter visuellt på en openaid prototypsida med hjälp av D3.js.
Norgren, Lee. "Segmenting Observed Time Series Using Comovement and Complexity Measures." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252571.
Full textSamhället är beronde förväntningsriktiga, effektiva och replikerbara mätverktyg för att mer sanningsenligt informera vad som händer när våra sinnen lurar oss. Ett nytt tillvägagångssätt utvecklas för att konsekvent uppmäta början och slut av historiska lågkonjunkturer så som definierats av US Federal Reserve. För att göra detta används tre mätmetoder, korrelation (Spearman och Pearson), Baur comovement och Kolmogorovkomplexitet, för att kvantifiera marknadsbeteendet i avsikt att upptäcka lågkonjunkturer. För att jämföra effektiviteten hos varje metod introduceras normalized correct Area Under Curve (AUC) fraktionen. Det konstateras att effektiviteten hos alla tre metoder är främst beroende av vilken typ av data som används och att finansiell data inte fungerar lika bra som real ekonomiska data för att upptäcka lågkonjunkturer. Vidare visas att comovement är den mest effektiva individualla mätmetoden och även den mest effektiva metoden jämfört med sammanslagna metoder
Åberg, Julia, and Jesper Svensson. "Warranty reserve forecast for complex products." Thesis, Blekinge Tekniska Högskola, Institutionen för industriell ekonomi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18252.
Full textGaranti är ett kontrakt mellan en säljare och en köpare. En garanti används ocks. för att signalera kvalitet vilket kan vara användbart för både säljaren och kunden. Även då garanti främst är något positivt innebär garanti ockå. en risk för den som erbjuder garantier då kostanden att erbjuda garanti kan sträcka sig mellan 2–15% av nettoresultatet av försäljningen va en produkt vilket betyder att garanti kan påverka företaget mycket. Man anv.nder sig av prognostiseringar för att kunna hantera den risken garantin bär med sig. Prognostisering är svårt och det är omöjligt att prognostisera det exakta framtida värdet på grund utav osäkerhet. Faktorer så som kvaliteten av produkten påverkar antalet och kostnaderna på garantianspr.ken men oförutsägbara faktorer så som bedrägeri, mänskliga beteenden och fördröjning av försäljning av produkter måste också tas i akt. Prognostiseringsfel på verkar den part som erbjuder garantin då prognosen används för att lägga undan monetära medel till garantireserven för att täcka garantianspråk. Underestimat och överestimat har negativa konsekvenser för företaget. Ändamålet med denna studie är att prognostisera garantireserven med hjälp av kvantitativa metoder för att få en inblick i vilka modeller som fungerar bra för en komplex produkt. Modeller som har testat kommer fr.n tidsserie metoder och kausala metoder, då de olika metoderna tar hänsyn till olika aspekter i data. Primärdata som används kommer från arkivdata och för att kunna bestämma felen på de prognoser som gjorts används fel mått. Tidsserie metoden exponential smoothing Holt’s-Winter’s var den som gav bäst resultat på fel måtten. Resultatet av modellerna som testats visar på att en mer komplex modell inte behöver vara den som ger bäst resultat. För att kunna minska på prognostiseringsfelen kan en modell som tar hänsyn till oförutsägbara faktorer så som bedrägeri vara lösningen vilket är en intressant sak att undersöka.
Mokhtar, Jonathan, Marcus Larsson, and Martin Westman. "Efterfrågeprognoser : ”En jämförelse av prognosmodeller med avseende på FMCG-marknaden”." Thesis, Linnéuniversitetet, Institutionen för ekonomistyrning och logistik (ELO), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-35868.
Full textMejdi, Sami. "Encoder-Decoder Networks for Cloud Resource Consumption Forecasting." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291546.
Full textÖverflödig allokering av resurser I telekommunikationsnätverk kan förhindras genom att prognosera resursbehoven vid dimensionering av dessa nätverk. Detta görs i syfte att bidra till en mer hållbar utveckling. Inför detta prjekt har trafikdata från molnmiljön som hyser aktiva virtuella komponenter (VNFs) till ett IÅ Multimedia Subsystem (IMS) samlats in tillsammans med resursförbrukningen av dessa komponenter. Detta examensarbete avhandlar hur effektivt övervakad maskininlärning i form av encoder-decoder nätverk kan användas för att prognosera resursbehovet hos ovan nämnda VNFs. Encoder-decoder nätverken appliceras genom att betrakta den samlade datan som en tidsserie. Problemet med att förutspå utvecklingen av tidsserien formuleras sedan som ett sequence-2-sequence (seq2seq) problem. I detta arbete användes en samling encoder-decoder nätverk med olika arkitekturer för att prognosera resursförbrukningen och dessa jämfördes med en populär modell hämtad från klassisk tidsserieanalys. Resultaten visar att encoder-decoder nätverken misslyckades med att överträffa den klassiska tidsseriemodellen med avseende på Root Mean Squeared Error (RMSE) och Mean Absolut Error (MAE). Dock visar encoder-decoder nätverken en betydlig motståndskraft mot prestandaförfall över tid i jämförelse med den klassiska tidsseriemodellen. Detta indikerar att encoder-decoder nätverk är lämpliga för prognosering över en längre tidshorisont. Utöver detta visade encoder-decoder nätverken en konkurrenskraftig förmåga att förutspå det korrekta resursbehovet, trots en begränsad justering av disponeringsparametrarna och utan mer sofistikerad funktionalitet implementerad som exempelvis attention.
Mejdi, Sami. "Encoder-Decoder Networks for Cloud Resource Consumption Forecasting." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-294066.
Full textÖverflödig allokering av resurser i telekommunikationsnätverk kan förhindras genom att prognosera resursbehoven vid dimensionering av dessa nätverk. Detta görs i syfte att bidra till en mer hållbar utveckling. Infor detta projekt har trafikdata från molnmiljon som hyser aktiva virtuella komponenter (VNFs) till ett IP Multimedia Subsystem (IMS) samlats in tillsammans med resursförbrukningen av dessa komponenter. Detta examensarbete avhandlar hur effektivt övervakad maskininlärning i form av encoder-decoder natverk kan användas för att prognosera resursbehovet hos ovan nämnda VNFs. Encoder-decoder nätverken appliceras genom att betrakta den samlade datan som en tidsserie. Problemet med att förutspå utvecklingen av tidsserien formuleras sedan som ett sequence-to-sequence (seq2seq) problem. I detta arbete användes en samling encoder-decoder nätverk med olika arkitekturer for att prognosera resursförbrukningen och dessa jämfördes med en populär modell hämtad från klassisk tidsserieanalys. Resultaten visar att encoder- decoder nätverken misslyckades med att överträffa den klassiska tidsseriemodellen med avseende på Root Mean Squared Error (RMSE) och Mean Absolute Error (MAE). Dock visade encoder-decoder nätverken en betydlig motståndskraft mot prestandaförfall över tid i jämförelse med den klassiska tidsseriemodellen. Detta indikerar att encoder-decoder nätverk är lämpliga för prognosering över en längre tidshorisont. Utöver detta visade encoder-decoder nätverken en konkurrenskraftig förmåga att förutspå det korrekta resursbehovet, trots en begränsad justering av disponeringsparametrarna och utan mer sofistikerad funktionalitet implementerad som exempelvis attention.
Straathof, Bas Theodoor. "A Deep Learning Approach to Predicting the Length of Stay of Newborns in the Neonatal Intensive Care Unit." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-282873.
Full textFramstegen inom maskininlärning och det utbredda införandet av elektroniska hälsoregister har möjliggjort genombrott för flera prediktiva modelleringsuppgifter inom sjukvården. En sådan uppgift som har sett betydande förbättringar förknippade med djupa neurala nätverk är förutsägelsens av vistelsetid på sjukhus, men forskningen har främst inriktats på vuxna patienter i intensivvården. Den här avhandlingen använder multivariata tidsserier extraherade från den offentligt tillgängliga databasen Medical Information Mart for Intensive Care III för att undersöka potentialen för djup inlärning att klassificera återstående vistelsetid för nyfödda i den neonatala intensivvårdsavdelningen (neonatal-IVA) vid varje timme av vistelsen. Denna avhandling beskriver experiment genomförda med olika djupinlärningsmodeller, inklusive longshort-term memory, gated recurrent units, fully-convolutional networks och flera sammansatta nätverk. Detta arbete visar att modellering av återstående vistelsetid för nyfödda i neonatal-IVA som ett multivariat tidsserieklassificeringsproblem på ett naturligt sätt underlättar upprepade förutsägelser över tid och gör det möjligt för avancerade djupa inlärningsmodeller att överträffaen multinomial logistisk regressionsbaslinje tränad på handgjorda funktioner. Dessutom visar det vikten av den nyfödda graviditetsåldern och binära masker som indikerar saknade värden som variabler för att förutsäga den återstående vistelsetiden.
Malmgren, Erik, and Annie Zhang. "Risk Modeling of Sustainable Mutual Funds Using GARCH Time Series." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273578.
Full textEfterfrågan av hållbara investeringar har ökat kraftigt de senaste åren. Det finns många studier som genomför backtesting av hållbara investeringars avkastning och risk jämfört med konventionella investeringar. Färre studier har däremot gjorts för att modellera och jämföra investeringarnas riskegenskaper. Denna uppsats syftar till att modellera risken av hållbara investeringar genom att jämföra de 10% fonder med högst Morningstar Portfolio Sustainability Score mot de 10% fonder med lägst score. Jämförelsen görs separat för globala fonder och europeiska fonder, vilket resulterar i totalt 4 portföljer. Analysen baseras på data på fondernas avkasting och Morningstar Portfolio Sustainability Score under tidsperioden december 2015 till augusti 2019. Genom att undersöka flera olika GARCH-modeller, kommer vi fram till att en ARMA-GARCH-modell med skev t-fördelning bäst beskriver den dagliga logaritmerade avkastningen för varje portfölj. Baserat på de anpassade ARMA-GARCH-modellerna, används en "parametric bootstrap"-metod för att beräkna 95%-iga konfidensintervall för skillnaden i långsiktig volatilitet och value at risk (VaR) mellan portföljerna med högt och lågt Morningstar Portfolio Sustainability Score. Detta görs separat för de europeiska och globala fonderna. Vår slutsats är att det, för globala och europeiska fonder, inte råder en signifikant skillnad i långsiktig volatilitet eller VaR mellan fonder med högt och lågt Morningstar Portfolio Sustainability Score.
Bergfors, Anund. "Using machine learning to identify the occurrence of changing air masses." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-357939.
Full textAlexander, Ödlund Lindholm. "The Salience of Issues in Parliamentary Debates : Its Development and Relation to the Support of the Sweden Democrats." Thesis, Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167610.
Full text