Journal articles on the topic 'Ti2AlNb alloys'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Ti2AlNb alloys.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wu, Jie, Lei Xu, Rui Peng Guo, Zheng Guan Lu, Yu You Cui, and Rui Yang. "Microstructure and Mechanical Properties of Powder Metallurgy Ti-22Al-24Nb-0.5Mo Alloys Joints with Electron Beam Welding." Materials Science Forum 849 (March 2016): 321–26. http://dx.doi.org/10.4028/www.scientific.net/msf.849.321.
Full textHang, Ye Chao, Hong Yan Wu, and Shi Juan Li. "Microstructure and Hot Corrosion Properties of Surface Plasma Alloyed Ti2AlNb-Based Alloys." Advanced Materials Research 744 (August 2013): 388–91. http://dx.doi.org/10.4028/www.scientific.net/amr.744.388.
Full textPolozov, Igor, Kirill Starikov, Anatoly Popovich, and Vadim Sufiiarov. "Mitigating Inhomogeneity and Tailoring the Microstructure of Selective Laser Melted Titanium Orthorhombic Alloy by Heat Treatment, Hot Isostatic Pressing, and Multiple Laser Exposures." Materials 14, no. 17 (August 30, 2021): 4946. http://dx.doi.org/10.3390/ma14174946.
Full textWang, Wei, Ziru Han, Qingjuan Wang, Baojia Wei, Shewei Xin, and Yuan Gao. "Tribological Properties of Ti2AlNb Matrix Composites Containing Few-Layer Graphene Fabricated by Spark Plasma Sintering." Metals 10, no. 7 (July 9, 2020): 924. http://dx.doi.org/10.3390/met10070924.
Full textLi, Shi Qiong, Yun Jun Cheng, Xiao Bo Liang, and Jian Wei Zhang. "Recent Work on Alloy and Process Development of Ti2AlNb Based Alloys." Materials Science Forum 475-479 (January 2005): 795–800. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.795.
Full textChen, Wei, Lei Huang, Yaoyao Liu, Yanfei Zhao, Zhe Wang, and Zhiwen Xie. "Oxidative Corrosion Mechanism of Ti2AlNb-Based Alloys during Alternate High Temperature-Salt Spray Exposure." Coatings 12, no. 10 (September 20, 2022): 1374. http://dx.doi.org/10.3390/coatings12101374.
Full textPolozov, Igor, Anna Gracheva, and Anatoly Popovich. "Interface Characterization of Bimetallic Ti-6Al-4V/Ti2AlNb Structures Prepared by Selective Laser Melting." Materials 15, no. 23 (November 30, 2022): 8528. http://dx.doi.org/10.3390/ma15238528.
Full textIllarionov, Anatoliy G., Stepan I. Stepanov, Inna A. Naschetnikova, Artemiy A. Popov, Prasanth Soundappan, K. H. Thulasi Raman, and Satyam Suwas. "A Review—Additive Manufacturing of Intermetallic Alloys Based on Orthorhombic Titanium Aluminide Ti2AlNb." Materials 16, no. 3 (January 20, 2023): 991. http://dx.doi.org/10.3390/ma16030991.
Full textBraun, R., and C. Leyens. "Protective coatings on orthorhombic Ti2AlNb alloys." Materials at High Temperatures 22, no. 3-4 (January 2005): 437–47. http://dx.doi.org/10.1179/mht.2005.052.
Full textJiao, Xueyan, Zhiqiang Liu, Yong Wu, and Gang Liu. "Investigation on precision and performance for hot gas forming of thin-walled components of Ti2AlNb-based alloy." MATEC Web of Conferences 190 (2018): 07001. http://dx.doi.org/10.1051/matecconf/201819007001.
Full textGe, Fuguo, Bei Peng, João Pedro Oliveira, Wenchao Ke, Fissha Biruke Teshome, Yongmei Li, and Zhi Zeng. "Dissimilar Laser Welding of a NiTi Shape Memory Alloy to Ti2AlNb." Metals 11, no. 10 (October 4, 2021): 1578. http://dx.doi.org/10.3390/met11101578.
Full textZhang, Boxian, Chunhuan Chen, Jianchao He, Jinbao Hou, Lu Chai, and Yanlong Lv. "Spark Plasma Diffusion Bonding of TiAl/Ti2AlNb with Ti as Interlayer." Materials 13, no. 15 (July 24, 2020): 3300. http://dx.doi.org/10.3390/ma13153300.
Full textLiu, N., Y. L. Liu, Z. L. Zhao, H. O. Yang, and W. X. Xu. "The preparation of gradient titanium alloy through laser deposition." IOP Conference Series: Materials Science and Engineering 1270, no. 1 (December 1, 2022): 012118. http://dx.doi.org/10.1088/1757-899x/1270/1/012118.
Full textChen, Xi, Zhao Zhang, Faqin Xie, Xiangqing Wu, Tiejun Ma, Wenya Li, and Dianjun Sun. "Optimizing the Integrity of Linear Friction Welded Ti2AlNb Alloys." Metals 11, no. 5 (May 14, 2021): 802. http://dx.doi.org/10.3390/met11050802.
Full textShagiev, M. R., R. M. Galeyev, Oleg R. Valiakhmetov, and Rinat V. Safiullin. "Improved Mechanical Properties of Ti2AlNb-Based Intermetallic Alloys and Composites." Advanced Materials Research 59 (December 2008): 105–8. http://dx.doi.org/10.4028/www.scientific.net/amr.59.105.
Full textWang, Yanju, Duo Zhou, Yi Zhou, Aixue Sha, Huaxing Cheng, and Yabin Yan. "A Constitutive Relation Based on the Johnson–Cook Model for Ti-22Al-23Nb-2(Mo, Zr) Alloy at Elevated Temperature." Crystals 11, no. 7 (June 28, 2021): 754. http://dx.doi.org/10.3390/cryst11070754.
Full textZhang, Yaran, Yongchang Liu, Liming Yu, Hongyan Liang, Yuan Huang, and Zongqing Ma. "Microstructures and tensile properties of Ti2AlNb and Mo-modified Ti2AlNb alloys fabricated by hot isostatic pressing." Materials Science and Engineering: A 776 (March 2020): 139043. http://dx.doi.org/10.1016/j.msea.2020.139043.
Full textPetrushynets, Lidiia, Oleh Novomlynets, Iurii Falchenko, Tetyana Melnychenko, and Leonid Radchenko. "STUDY OF THE POSSIBILITY OF USING NICKEL-BASED INTERMEDIATE LAYERS WHEN WELDING TITANIUM ORTHOALUMINIDE WITH A NICKEL ALLOY." Technical Sciences and Technologies, no. 2(28) (2022): 38–51. http://dx.doi.org/10.25140/2411-5363-2022-2(28)-38-51.
Full textGuo, He Ping, and Zhi Qiang Li. "Heat Treatment of Ti2AlNb Intermetallic and its Superplastic Properties." Materials Science Forum 551-552 (July 2007): 453–56. http://dx.doi.org/10.4028/www.scientific.net/msf.551-552.453.
Full textPolozov, Igor, Anna Gracheva, and Anatoly Popovich. "Processing, Microstructure, and Mechanical Properties of Laser Additive Manufactured Ti2AlNb-Based Alloy with Carbon, Boron, and Yttrium Microalloying." Metals 12, no. 8 (August 3, 2022): 1304. http://dx.doi.org/10.3390/met12081304.
Full textXu, Run, Boyong Hur, Sugun Lim, and Younwook Kim. "The Relation of the Tensile & Shear Stress of Schmid & their Efficient Fracture Stress with Twins and Dislocations in TiAl Alloys." Scholars International Journal of Chemistry and Material Sciences 5, no. 1 (January 12, 2022): 1–5. http://dx.doi.org/10.36348/sijcms.2022.v05i01.001.
Full textWang, Xu, Sun, Zong, Chen, and Shan. "Study on Microstructure Evolution and Mechanical Properties of Ti2AlNb-Based Alloy under Canning Compression and Annealing." Metals 9, no. 9 (September 3, 2019): 980. http://dx.doi.org/10.3390/met9090980.
Full textWang, Yan Qing, Zhao Gang Liu, Ben Shuang Sun, and Dong Xin Wang. "An Investigation of Several Nb-Ti-Al Based Alloys on Microstructure." Advanced Materials Research 472-475 (February 2012): 727–31. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.727.
Full textSingh §, A. K., B. Nageswara Sarma, and S. Lele. "Order–disorder transformation of the O phase in Ti2AlNb alloys." Philosophical Magazine 84, no. 27 (September 21, 2004): 2865–76. http://dx.doi.org/10.1080/14786430410001720336.
Full textZhang, Ya-ran, Qi Cai, Yong-chang Liu, Zong-qing Ma, Chong Li, and Hui-jun Li. "Evaluation of precipitation hardening in TiC-reinforced Ti2AlNb-based alloys." International Journal of Minerals, Metallurgy, and Materials 25, no. 4 (April 2018): 453–58. http://dx.doi.org/10.1007/s12613-018-1591-x.
Full textWu, Jie, Lei Xu, Zhengguan Lu, Bin Lu, Yuyou Cui, and Rui Yang. "Microstructure Design and Heat Response of Powder Metallurgy Ti2AlNb Alloys." Journal of Materials Science & Technology 31, no. 12 (December 2015): 1251–57. http://dx.doi.org/10.1016/j.jmst.2015.09.006.
Full textRalison, A., F. Dettenwanger, and M. Schütze. "Oxidation of orthorhombic Ti2AlNb alloys at 800 °C in air." Materials and Corrosion 51, no. 5 (May 2000): 317–28. http://dx.doi.org/10.1002/(sici)1521-4176(200005)51:5<317::aid-maco317>3.0.co;2-w.
Full textLI, Yan-jun, Ai-ping WU, Quan LI, Yue ZHAO, Rui-can ZHU, and Guo-qing WANG. "Mechanism of reheat cracking in electron beam welded Ti2AlNb alloys." Transactions of Nonferrous Metals Society of China 29, no. 9 (September 2019): 1873–81. http://dx.doi.org/10.1016/s1003-6326(19)65095-8.
Full textYao, Ze Kun, Chun Qin, Yong Quan Ning, Jing Xia Chao, Jian Wei Zhang, Zhong Gang Tan, and Zhang Long Zhao. "Structure Evolving at Bonding Interface of Dual-Alloys Jointed with Different Method under Coupling Action of Heat and Force." Advanced Materials Research 668 (March 2013): 543–46. http://dx.doi.org/10.4028/www.scientific.net/amr.668.543.
Full textNaumov, S. V., D. O. Panov, R. S. Chernichenko, V. S. Sokolovsky, E. I. Volokitina, N. D. Stepanov, S. V. Zherebtsov, Е. B. Alekseev, N. A. Nochovnaya, and G. A. Salishchev. "Structure and mechanical properties of welded joints from alloy based on VTI-4 orthorhombic titanium aluminide produced by pulse laser welding." Izvestiya. Non-Ferrous Metallurgy, no. 2 (April 25, 2023): 57–73. http://dx.doi.org/10.17073/0021-3438-2023-2-57-73.
Full textFENG, Guang-jie, Yan WEI, Bing-xu HU, Yi-feng WANG, De-an DENG, and Xiu-xia YANG. "Vacuum diffusion bonding of Ti2AlNb alloy and TC4 alloy." Transactions of Nonferrous Metals Society of China 31, no. 9 (September 2021): 2677–86. http://dx.doi.org/10.1016/s1003-6326(21)65684-4.
Full textSun, Z., X. X. Zhu, H. Z. Chen, and L. X. Zhang. "Brazing of TiAl and Ti2AlNb alloys using high-entropy braze fillers." Materials Characterization 186 (April 2022): 111814. http://dx.doi.org/10.1016/j.matchar.2022.111814.
Full textZhang, Yaran, Qi Cai, Zongqing Ma, Chong Li, Liming Yu, and Yongchang Liu. "Solution treatment for enhanced hardness in Mo-modified Ti2AlNb-based alloys." Journal of Alloys and Compounds 805 (October 2019): 1184–90. http://dx.doi.org/10.1016/j.jallcom.2019.07.149.
Full textCai, Detao, Jichun Chen, Xianfeng Mao, and Chuanyong Hao. "Reheat cracking in Ti2AlNb alloy resistance spot weldments." Intermetallics 38 (July 2013): 63–69. http://dx.doi.org/10.1016/j.intermet.2013.02.013.
Full textSHEN, Jun, and Aihan FENG. "RECENT ADVANCES ON MICROSTRUCTURAL CONTROLLING AND HOT FORMING OF Ti2AlNb-BASED ALLOYS." Acta Metallurgica Sinica 49, no. 11 (2013): 1286. http://dx.doi.org/10.3724/sp.j.1037.2013.00607.
Full textWang, Wei, Weidong Zeng, Dong Li, Bin Zhu, Youping Zheng, and Xiaobo Liang. "Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition." Materials Science and Engineering: A 662 (April 2016): 120–28. http://dx.doi.org/10.1016/j.msea.2016.03.058.
Full textPeng, Jihua, Yong Mao, Shiqiong Li, and Xunfang Sun. "Microstructure controlling by heat treatment and complex processing for Ti2AlNb based alloys." Materials Science and Engineering: A 299, no. 1-2 (February 2001): 75–80. http://dx.doi.org/10.1016/s0921-5093(00)01417-9.
Full textLi, Ping, Xiaohu Ji, and Kemin Xue. "Diffusion Bonding of TA15 and Ti2AlNb Alloys: Interfacial Microstructure and Mechanical Properties." Journal of Materials Engineering and Performance 26, no. 4 (March 1, 2017): 1839–46. http://dx.doi.org/10.1007/s11665-017-2555-4.
Full textHagiwara, M., S. Emura, A. Araoka, B. O. Kong, and F. Tang. "Enhanced mechanical properties of orthorhombic Ti2AlNb-based intermetallic alloy." Metals and Materials International 9, no. 3 (June 2003): 265–72. http://dx.doi.org/10.1007/bf03027045.
Full textMao, Yong, and Masuo Hagiwara. "Tensile Properties and Creep Behavior of Compositional Modified Orthorhombic Ti2AlNb Alloys." Materials Science Forum 539-543 (March 2007): 1549–52. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.1549.
Full textWU, Hong-yan, Ping-ze ZHANG, Wei CHEN, Ling WANG, Hao-feng ZHAO, and Zhong XU. "High-temperature tribological behaviors of Ti2AlNb-based alloys by plasma surface duplex treatment." Transactions of Nonferrous Metals Society of China 19, no. 5 (October 2009): 1121–25. http://dx.doi.org/10.1016/s1003-6326(08)60417-3.
Full textSONG, Hui, Zhong-jin WANG, and Xiao-dong HE. "Improving in plasticity of orthorhombic Ti2AlNb-based alloys sheet by high density electropulsing." Transactions of Nonferrous Metals Society of China 23, no. 1 (January 2013): 32–37. http://dx.doi.org/10.1016/s1003-6326(13)62425-5.
Full textWu, Hongyan, Pingze Zhang, Ling Wang, Haofeng Zhao, and Zhong Xu. "The role of process parameters in plasma surface chromising of Ti2AlNb-based alloys." Applied Surface Science 256, no. 5 (December 2009): 1333–40. http://dx.doi.org/10.1016/j.apsusc.2009.07.076.
Full textZhu, Fuhui, Heli Peng, Xifeng Li, and Jun Chen. "Dissimilar diffusion bonding behavior of hydrogenated Ti2AlNb-based and Ti-6Al-4V alloys." Materials & Design 159 (December 2018): 68–78. http://dx.doi.org/10.1016/j.matdes.2018.08.034.
Full textBu, Z. Q., Y. G. Zhang, L. Yang, J. M. Kang, and J. F. Li. "Effect of cooling rate on phase transformation in Ti2AlNb alloy." Journal of Alloys and Compounds 893 (February 2022): 162364. http://dx.doi.org/10.1016/j.jallcom.2021.162364.
Full textSkvortsova, S. V., and A. Yu Zolotareva. "Influence of coatings on oxidation kinetics of intermetallide titanium alloys of Ti2AlNb and γ-TiAl systems." Corrosion: Materials, Protection, no. 5 (May 21, 2019): 1–7. http://dx.doi.org/10.31044/1813-7016-2019-0-5-1-7.
Full textZhao, Qing, Manqian Lv, and Zhenshan Cui. "Investigation on transformation-related recrystallization behavior of Ti2AlNb-based alloy." Intermetallics 138 (November 2021): 107302. http://dx.doi.org/10.1016/j.intermet.2021.107302.
Full textSenkevich, K. S., O. Z. Umarova, and V. V. Zasypkin. "Embrittlement of an Orthorhombic Ti2AlNb-Based Titanium Alloy in a Hydrogenated State." Russian Metallurgy (Metally) 2019, no. 1 (January 2019): 31–35. http://dx.doi.org/10.1134/s0036029519010130.
Full textOglodkov, M. S., V. A. Duyunova, N. A. Nochovnaya, V. I. Ivanov, and L. Yu Avilochev. "FEATURES OF THE TECHNOLOGY MANUFACTURING OF DEFORMED BLANKS FROM INTERMETALLIC ALLOYS VIT1 FOR PARTS OF THE GAS TURBINE ENGINE." Proceedings of VIAM, no. 12 (2021): 3–13. http://dx.doi.org/10.18577/2307-6046-2021-0-12-3-13.
Full textHe, Dongsheng, Liuhe Li, Wei Guo, Guangzhi He, Peng Peng, Tianwei Shao, Heng Huan, Gongxuan Zhang, Guofeng Han, and Jianfeng Yan. "Improvement in oxidation resistance of Ti2AlNb alloys at high temperatures by laser shock peening." Corrosion Science 184 (May 2021): 109364. http://dx.doi.org/10.1016/j.corsci.2021.109364.
Full text