Academic literature on the topic 'Ti2AlNb alloys'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ti2AlNb alloys.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Ti2AlNb alloys"
Wu, Jie, Lei Xu, Rui Peng Guo, Zheng Guan Lu, Yu You Cui, and Rui Yang. "Microstructure and Mechanical Properties of Powder Metallurgy Ti-22Al-24Nb-0.5Mo Alloys Joints with Electron Beam Welding." Materials Science Forum 849 (March 2016): 321–26. http://dx.doi.org/10.4028/www.scientific.net/msf.849.321.
Full textHang, Ye Chao, Hong Yan Wu, and Shi Juan Li. "Microstructure and Hot Corrosion Properties of Surface Plasma Alloyed Ti2AlNb-Based Alloys." Advanced Materials Research 744 (August 2013): 388–91. http://dx.doi.org/10.4028/www.scientific.net/amr.744.388.
Full textPolozov, Igor, Kirill Starikov, Anatoly Popovich, and Vadim Sufiiarov. "Mitigating Inhomogeneity and Tailoring the Microstructure of Selective Laser Melted Titanium Orthorhombic Alloy by Heat Treatment, Hot Isostatic Pressing, and Multiple Laser Exposures." Materials 14, no. 17 (August 30, 2021): 4946. http://dx.doi.org/10.3390/ma14174946.
Full textWang, Wei, Ziru Han, Qingjuan Wang, Baojia Wei, Shewei Xin, and Yuan Gao. "Tribological Properties of Ti2AlNb Matrix Composites Containing Few-Layer Graphene Fabricated by Spark Plasma Sintering." Metals 10, no. 7 (July 9, 2020): 924. http://dx.doi.org/10.3390/met10070924.
Full textLi, Shi Qiong, Yun Jun Cheng, Xiao Bo Liang, and Jian Wei Zhang. "Recent Work on Alloy and Process Development of Ti2AlNb Based Alloys." Materials Science Forum 475-479 (January 2005): 795–800. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.795.
Full textChen, Wei, Lei Huang, Yaoyao Liu, Yanfei Zhao, Zhe Wang, and Zhiwen Xie. "Oxidative Corrosion Mechanism of Ti2AlNb-Based Alloys during Alternate High Temperature-Salt Spray Exposure." Coatings 12, no. 10 (September 20, 2022): 1374. http://dx.doi.org/10.3390/coatings12101374.
Full textPolozov, Igor, Anna Gracheva, and Anatoly Popovich. "Interface Characterization of Bimetallic Ti-6Al-4V/Ti2AlNb Structures Prepared by Selective Laser Melting." Materials 15, no. 23 (November 30, 2022): 8528. http://dx.doi.org/10.3390/ma15238528.
Full textIllarionov, Anatoliy G., Stepan I. Stepanov, Inna A. Naschetnikova, Artemiy A. Popov, Prasanth Soundappan, K. H. Thulasi Raman, and Satyam Suwas. "A Review—Additive Manufacturing of Intermetallic Alloys Based on Orthorhombic Titanium Aluminide Ti2AlNb." Materials 16, no. 3 (January 20, 2023): 991. http://dx.doi.org/10.3390/ma16030991.
Full textBraun, R., and C. Leyens. "Protective coatings on orthorhombic Ti2AlNb alloys." Materials at High Temperatures 22, no. 3-4 (January 2005): 437–47. http://dx.doi.org/10.1179/mht.2005.052.
Full textJiao, Xueyan, Zhiqiang Liu, Yong Wu, and Gang Liu. "Investigation on precision and performance for hot gas forming of thin-walled components of Ti2AlNb-based alloy." MATEC Web of Conferences 190 (2018): 07001. http://dx.doi.org/10.1051/matecconf/201819007001.
Full textDissertations / Theses on the topic "Ti2AlNb alloys"
Mallick, Robin. "Effet des traitements thermomécaniques sur la microstructure d'un alliage de titane Ti2AlNb." Electronic Thesis or Diss., Université Paris sciences et lettres, 2022. http://www.theses.fr/2022UPSLM078.
Full textDue to their excellent properties, especially, high temperature mechanical strength and low density, Ti2AlNb-based alloys are considered as promising materials for rotating parts in aircraft engines. Such properties are obtained through appropriate thermomechanical treatment which should result in optimal microstructure for a specific application. Different stages of thermomechanical treatments of Ti2AlNb alloys are still required to be optimized to guarantee the best alloys performance. Therefore, the understanding of microstructure evolution of Ti2AlNb alloys during high temperature processing is of particular industrial interest.The aim of the present work was to investigate the microstructure changes in a Ti2AlNb alloy induced by high temperature plastic deformation in the temperature range of 1010-1204 °C, in order to further optimize high temperature alloy processing. The dynamic evolution of the microstructure was analysed through compression and torsion tests followed by quenching, and hot extrusion tests were used to generate a first stage of post-dynamic recrystallization of the alloy. Finally, post-deformation isothermal heat treatments were used to study the static recrystallization phenomenon. The microstructure was characterized by means of optical microscopy and electron backscatter diffraction (EBSD) in scanning electron microscope. The effect of high-temperature deformation parameters on the microstructure evolution was studied. It is revealed that continuous dynamic recrystallization leads to the formation of a low volume fraction of recrystallized grains in the area close to the initial grain boundaries. Some of these grains will further become nuclei for post-dynamic or static recrystallization. Post-deformation isothermal heat treatments allowed to study the kinetics of static recrystallization and to investigate the effect of initial grain size, temperature and strain rate
Book chapters on the topic "Ti2AlNb alloys"
Malecka, Joanna. "Oxidation Behavior of Orthorhombic Ti2AlNb Alloy." In High Temperature Corrosion. InTech, 2016. http://dx.doi.org/10.5772/63998.
Full textConference papers on the topic "Ti2AlNb alloys"
Lin, Xin, Mocong Yang, Xiaojing Xu, Haiou Yang, Jing Chen, and Weidong Huang. "Phase evolution in laser solid formed compositionally graded Ti60-Ti2AlNb alloys." In ICALEO® 2009: 28th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2009. http://dx.doi.org/10.2351/1.5061597.
Full textWu, Yang Wu, Hong-Chao Kou, De-Gui Liu, Ji-Zhen LI Li, and Bin Tang. "Finite Element Modeling of Power Spinning of Thin-walled Ti2AlNb Alloy Shell." In 2nd Annual International Conference on Advanced Material Engineering (AME 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/ame-16.2016.195.
Full textTang, Caixian, Stefan Gulizia, and Mahnaz Jahedi. "Post Treatment of Cold Sprayed Metallic Ti-Al to Achieve Thick Ti2AlN Coating." In ITSC2009, edited by B. R. Marple, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. ASM International, 2009. http://dx.doi.org/10.31399/asm.cp.itsc2009p0337.
Full textPOLOZOV, Igor, Anatoly POPOVICH, and Vadim SUFIIAROV. "effects of heat treatment and hot isostaTic pressing on microstructure and mechanical properties of ti2alnb-based alloy fabricated by slm." In METAL 2021. TANGER Ltd., 2021. http://dx.doi.org/10.37904/metal.2021.4239.
Full text