Journal articles on the topic 'THz spintronics'

To see the other types of publications on this topic, follow the link: THz spintronics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'THz spintronics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Wang, Maorong, Yifan Zhang, Leilei Guo, Mengqi Lv, Peng Wang, and Xia Wang. "Spintronics Based Terahertz Sources." Crystals 12, no. 11 (November 18, 2022): 1661. http://dx.doi.org/10.3390/cryst12111661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Terahertz (THz) sources, covering a range from about 0.1 to 10 THz, are key devices for applying terahertz technology. Spintronics-based THz sources, with the advantages of low cost, ultra-broadband, high efficiency, and tunable polarization, have attracted a great deal of attention recently. This paper reviews the emission mechanism, experimental implementation, performance optimization, manipulation, and applications of spintronic THz sources. The recent advances and existing problems in spintronic THz sources are fully present and discussed. This review is expected to be an introduction of spintronic terahertz sources for novices in this field, as well as a comprehensive reference for experienced researchers.
2

Huisman, Thomas Jarik, and Theo Rasing. "THz Emission Spectroscopy for THz Spintronics." Journal of the Physical Society of Japan 86, no. 1 (January 15, 2017): 011009. http://dx.doi.org/10.7566/jpsj.86.011009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walowski, Jakob, and Markus Münzenberg. "Perspective: Ultrafast magnetism and THz spintronics." Journal of Applied Physics 120, no. 14 (October 14, 2016): 140901. http://dx.doi.org/10.1063/1.4958846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Buryakov, Arseniy, Pavel Avdeev, Dinar Khusyainov, Nikita Bezvikonnyy, Andreas Coclet, Alexey Klimov, Nicolas Tiercelin, Sergey Lavrov, and Vladimir Preobrazhensky. "The Role of Ferromagnetic Layer Thickness and Substrate Material in Spintronic Emitters." Nanomaterials 13, no. 11 (May 23, 2023): 1710. http://dx.doi.org/10.3390/nano13111710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this article, we investigate optically induced terahertz radiation in ferromagnetic FeCo layers of varying thickness on Si and SiO2 substrates. Efforts have been made to account for the influence of the substrate on the parameters of the THz radiation generated by the ferromagnetic FeCo film. The study reveals that the thickness of the ferromagnetic layer and the material of the substrate significantly affect the generation efficiency and spectral characteristics of the THz radiation. Our results also emphasize the importance of accounting for the reflection and transmission coefficients of the THz radiation when analyzing the generation process. The observed radiation features correlate with the magneto-dipole mechanism, triggered by the ultrafast demagnetization of the ferromagnetic material. This research contributes to a better understanding of THz radiation generation mechanisms in ferromagnetic films and may be useful for the further development of THz technology applications in the field of spintronics and other related areas. A key discovery of our study is the identification of a nonmonotonic relationship between the radiation amplitude and pump intensity for thin films on semiconductor substrates. This finding is particularly significant considering that thin films are predominantly used in spintronic emitters due to the characteristic absorption of THz radiation in metals.
5

Telegin, Andrei, and Yurii Sukhorukov. "Magnetic Semiconductors as Materials for Spintronics." Magnetochemistry 8, no. 12 (November 29, 2022): 173. http://dx.doi.org/10.3390/magnetochemistry8120173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
From the various aspects of spintronics the review highlights the area devoted to the creation of new functional materials based on magnetic semiconductors and demonstrates both the main physical phenomena involved and the technical possibilities of creating various devices: maser, p-n diode with colossal magnetoresistance, spin valve, magnetic lens, optical modulators, spin wave amplifier, etc. Particular attention is paid to promising research directions such as ultrafast spin transport and THz spectroscopy of magnetic semiconductors. Special care has been taken to include a brief theoretical background and experimental results for the new spintronics approach employing magnetostrictive semiconductors—strain-magnetooptics. Finally, it presents top-down approaches for magnetic semiconductors. The mechano-physical methods of obtaining and features of the physical properties of high-density nanoceramics based on complex magnetic oxides are considered. The potential possibility of using these nanoceramics as an absorber of solar energy, as well as in modulators of electromagnetic radiation, is shown.
6

Wang, Hang-Tian, Hai-Hui Zhao, Liang-Gong Wen, Xiao-Jun Wu, Tian-Xiao Nie, and Wei-Sheng Zhao. "High-performance THz emission: From topological insulator to topological spintronics." Acta Physica Sinica 69, no. 20 (2020): 200704. http://dx.doi.org/10.7498/aps.69.20200680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lebrun, Romain. "Take Terahertz for a spin." EU Research Winter 2023, no. 36 (December 2023): 48–49. http://dx.doi.org/10.56181/vfzc7876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Despite important developments in photo-conductive switches and quantum cascade lasers for THz generation, THz technologies are used in only a few relatively niche applications. We spoke to Dr. Romain Lebrun, the project coordinator from Thales Research Center, about the work of the s-Nebula project in developing a new approach based on spintronics and exploring the potential applications of this emerging technology.
8

Agarwal, Rekha, Sandeep Kumar, Niru Chowdhury, Kacho Imtiyaz Ali Khan, Ekta Yadav, Sunil Kumar, and P. K. Muduli. "Strong impact of crystalline twins on the amplitude and azimuthal dependence of THz emission from epitaxial NiO/Pt." Applied Physics Letters 122, no. 8 (February 20, 2023): 082403. http://dx.doi.org/10.1063/5.0138949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ultrafast generation of spin currents involving antiferromagnets is currently attracting tremendous interest. Here, we demonstrate broadband THz emission from a [111]-oriented NiO/Pt bilayer grown on MgO and Al2O3 substrates. The NiO films are grown by pulsed laser deposition, whereas the Pt films are grown by magnetron sputtering. While we obtained epitaxial films on both substrates, NiO films on the Al2O3 substrate showed the presence of crystalline twins. We show that the existence of crystalline twins reduces the THz amplitude by an order of magnitude while simultaneously dramatically changing the azimuthal dependency of the THz amplitude. The findings have significant implications for antiferromagnetic spintronics.
9

Tsybrii, Z. F., S. N. Danilov, J. V. Gumenjuk-Sichevska, N. N. Mikhailov, S. A. Dvoretskii, E. O. Melezhik, and F. F. Sizov. "Spintronics phenomena induced by THz radiation in narrow-gap HgCdTe thin films in an external constant electric field." Semiconductor Physics, Quantum Electronics and Optoelectronics 24, no. 02 (June 16, 2021): 185–91. http://dx.doi.org/10.15407/spqeo24.02.185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The responses of uncooled (T = 300 K) and cooled to T = 78 K antenna-coupled Hg1–xCdxTe-based narrow-gap thin-film photoconductors having large spin-orbit coupling and irradiated by the terahertz (THz) radiation (linearly or circularly polarized) have been investigated. Powerful THz radiation excitation causes photocurrents, which signs and magnitudes are controlled by orientation of antenna axes, an external constant electric field direction and orientation of the polarized (circular or linear) radiation electric field falling onto photoconductors. The observed effects seem to be caused by the spin currents observed in devices where spintronic effects are revealed. spintronic phenomena, photoconductors, THz radiation, HgCdTe.
10

Buryakov, Arseniy, Anastasia Gorbatova, Pavel Avdeev, Nikita Bezvikonnyi, Daniil Abdulaev, Alexey Klimov, Sergei Ovcharenko, and Elena Mishina. "Controlled Spintronic Emitter of THz Radiation on an Atomically Thin WS2/Silicon Substrate." Metals 12, no. 10 (October 6, 2022): 1676. http://dx.doi.org/10.3390/met12101676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The control and monitoring of the polarization of terahertz radiation are of interest for numerous applications. Here we present a simple controllable THz emitter with a small coercive magnetic field. It is based on a Co/WS2/silicon structure, in which the presence of uniaxial magnetic anisotropy caused by mechanical stress in a ferromagnetic film was found. Our results show that a ferromagnet/semiconductor emitter can become a technologically simple device for terahertz spintronics.
11

Metzger, T. W. J., K. A. Grishunin, D. Afanasiev, R. M. Dubrovin, E. A. Mashkovich, R. V. Pisarev, and A. V. Kimel. "Effect of antiferromagnetic order on a propagating single-cycle THz pulse." Applied Physics Letters 121, no. 25 (December 19, 2022): 252403. http://dx.doi.org/10.1063/5.0124656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Employing polarization sensitive terahertz (THz) transmission spectroscopy, we explored how the waveform of initially single-cycle linearly polarized THz pulses changes upon propagation through a thick antiferromagnetic crystal of CoF2. The changes upon propagation through CoF2 are found to depend strongly on both the incoming polarization and temperature. In particular, the ellipticity and polarization rotation acquired by initially linearly polarized light are quantified and explained in terms of magnetic linear birefringence and dichroism. Although the magneto-optical effects are often considered to be relatively weak, our experiments reveal that the polarization of the THz pulse substantially changes along the pulse duration. The pulse shape is further complicated by features assigned to the formation of magnon-polaritons. The findings clearly show the importance of accounting for propagation effects in antiferromagnetic spintronics and magnonics.
12

Meer, H., O. Gomonay, A. Wittmann, and M. Kläui. "Antiferromagnetic insulatronics: Spintronics in insulating 3d metal oxides with antiferromagnetic coupling." Applied Physics Letters 122, no. 8 (February 20, 2023): 080502. http://dx.doi.org/10.1063/5.0135079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Antiferromagnetic transition metal oxides are an established and widely studied materials system in the context of spin-based electronics, commonly used as passive elements in exchange bias-based memory devices. Currently, major interest has resurged due to the recent observation of long-distance spin transport, current-induced switching, and THz emission. As a result, insulating transition metal oxides are now considered to be attractive candidates for active elements in future spintronic devices. Here, we discuss some of the most promising materials systems and highlight recent advances in reading and writing antiferromagnetic ordering. This article aims to provide an overview of the current research and potential future directions in the field of antiferromagnetic insulatronics.
13

Huminiuc, Teodor, Oliver Whear, Andrew J. Vick, David C. Lloyd, Gonzalo Vallejo-Fernandez, Kevin O’Grady, and Atsufumi Hirohata. "Growth and Characterisation of Antiferromagnetic Ni2MnAl Heusler Alloy Films." Magnetochemistry 7, no. 9 (September 13, 2021): 127. http://dx.doi.org/10.3390/magnetochemistry7090127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Recent rapid advancement in antiferromagnetic spintronics paves a new path for efficient computing with THz operation. To date, major studies have been performed with conventional metallic, e.g., Ir-Mn and Pt-Mn, and semiconducting, e.g., CuMnAs, antiferromagnets, which may suffer from their elemental criticality and high resistivity. In order to resolve these obstacles, new antiferromagnetic films are under intense development for device operation above room temperature. Here, we report the structural and magnetic properties of an antiferromagnetic Ni2MnAl Heusler alloy with and without Fe and Co doping in thin film form, which has significant potential for device applications.
14

LV, XIAO-RONG, SHI-HENG LIANG, LING-LING TAO, and XIU-FENG HAN. "ORGANIC SPINTRONICS: PAST, PRESENT AND FUTURE." SPIN 04, no. 02 (June 2014): 1440013. http://dx.doi.org/10.1142/s201032471440013x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Organic spintronics, extended the conventional spintronics with metals, oxides and semiconductors, has opened new routes to explore the important process of spin-injection, transport, manipulation and detection, holding significant promise of revolutionizing future spintronic applications in high density information storage, multi-functional devices, seamless integration, and quantum computing. Here we survey this fascinating field from some new viewpoints on research hotspots and emerging trends. The main achievements and challenges arising from spin injection and transport, in organic materials are highlighted, as well as prospects of novel organic spintronic devices are also emphasized.
15

Tsysar, Kseniya M., Dmitry I. Bazhanov, and Ekaterina M. Smelova. "Effect of Magnetic Coupling on the Optical Properties of Oxide Co Nanowires on Vicinal Pt Surfaces." Magnetochemistry 9, no. 3 (March 2, 2023): 72. http://dx.doi.org/10.3390/magnetochemistry9030072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Nowadays, modern scientific research has sparked a renewed interest to study the interaction of electromagnetic field (EM) with magnetic nanostructures and in particular in nanophotonics and spintronics. The current work is devoted to an ab initio study of the magneto-optical properties of step-decorated oxide Co nanowires (1D oxides) on vicinal Pt surfaces. Theoretical calculations of the magnetic moments are based on ab initio spin-polarized density-functional theory (DFT) including a self-consistent treatment of spin-orbit coupling. The first-principles calculations revealed the effect of magnetic coupling between cobalt spins on refractivity and extinction spectra of these 1D oxides governed by atomic structure and cobalt-oxygen interaction within a nanowire at the step edge. The emergence of a sharp pronounced peak in the spectral difference of the refractive indexes has been observed between ferromagnetic and antiferromagnetic configurations of the nanowire. Anisotropy of an extinction coefficient in the terahertz (THz) range of the spectra was established for oxide Co nanowires in an antiferromagnetic state in contrast with a ferromagnetic one.
16

Zlobin, I. S., V. V. Novikov, and Yu V. Nelyubina. "Coordination Compounds in Devices of Molecular Spintronics." Координационная химия 49, no. 1 (January 1, 2023): 3–12. http://dx.doi.org/10.31857/s0132344x22700013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Spintronics, being one of the youngest fields of microelectronics, is applied already for several decades to enhance the efficiency of components of computer equipment and to develop units of quantum computer and other electronic devices. The use of molecular material layers in a spintronic device makes it possible to substantially deepen the understanding of the spin transport mechanisms and to form foundation for a new trend at the nexus of physics and chemistry: molecular spintronics. Since the appearance of this trend, various coordination compounds, including semiconductors, single-molecule magnets, complexes with spin transitions, and metal-organic frameworks, are considered as molecular materials of spintronic devices with diverse unusual characteristics imparted by these materials. Specific features of using the earlier described representatives of the listed classes of compounds or their analogs, which are still “kept on the shelves” in chemical laboratories, for manufacturing polyfunctional devices of molecular spintronics are briefly reviewed.
17

Wang, Chenying, Yujing Du, Yifan Zhao, Zhexi He, Song Wang, Yaxin Zhang, Yuxuan Jiang, et al. "Solar-Powered Switch of Antiferromagnetism/Ferromagnetism in Flexible Spintronics." Nanomaterials 13, no. 24 (December 17, 2023): 3158. http://dx.doi.org/10.3390/nano13243158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The flexible electronics have application prospects in many fields, including as wearable devices and in structural detection. Spintronics possess the merits of a fast response and high integration density, opening up possibilities for various applications. However, the integration of miniaturization on flexible substrates is impeded inevitably due to the high Joule heat from high current density (1012 A/m2). In this study, a prototype flexible spintronic with device antiferromagnetic/ferromagnetic heterojunctions is proposed. The interlayer coupling strength can be obviously altered by sunlight soaking via direct photo-induced electron doping. With the assistance of a small magnetic field (±125 Oe), the almost 180° flip of magnetization is realized. Furthermore, the magnetoresistance changes (15~29%) of flexible spintronics on fingers receiving light illumination are achieved successfully, exhibiting the wearable application potential. Our findings develop flexible spintronic sensors, expanding the vision for the novel generation of photovoltaic/spintronic devices.
18

Barla, Prashanth, Vinod Kumar Joshi, and Somashekara Bhat. "Spintronic devices: a promising alternative to CMOS devices." Journal of Computational Electronics 20, no. 2 (January 19, 2021): 805–37. http://dx.doi.org/10.1007/s10825-020-01648-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractThe field of spintronics has attracted tremendous attention recently owing to its ability to offer a solution for the present-day problem of increased power dissipation in electronic circuits while scaling down the technology. Spintronic-based structures utilize electron’s spin degree of freedom, which makes it unique with zero standby leakage, low power consumption, infinite endurance, a good read and write performance, nonvolatile nature, and easy 3D integration capability with the present-day electronic circuits based on CMOS technology. All these advantages have catapulted the aggressive research activities to employ spintronic devices in memory units and also revamped the concept of processing-in-memory architecture for the future. This review article explores the essential milestones in the evolutionary field of spintronics. It includes various physical phenomena such as the giant magnetoresistance effect, tunnel magnetoresistance effect, spin-transfer torque, spin Hall effect, voltage-controlled magnetic anisotropy effect, and current-induced domain wall/skyrmions motion. Further, various spintronic devices such as spin valves, magnetic tunnel junctions, domain wall-based race track memory, all spin logic devices, and recently buzzing skyrmions and hybrid magnetic/silicon-based devices are discussed. A detailed description of various switching mechanisms to write the information in these spintronic devices is also reviewed. An overview of hybrid magnetic /silicon-based devices that have the capability to be used for processing-in-memory (logic-in-memory) architecture in the immediate future is described in the end. In this article, we have attempted to introduce a brief history, current status, and future prospectus of the spintronics field for a novice.
19

Seifert, Tom S., Liang Cheng, Zhengxing Wei, Tobias Kampfrath, and Jingbo Qi. "Spintronic sources of ultrashort terahertz electromagnetic pulses." Applied Physics Letters 120, no. 18 (May 2, 2022): 180401. http://dx.doi.org/10.1063/5.0080357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Spintronic terahertz emitters are broadband and efficient sources of terahertz radiation, which emerged at the intersection of ultrafast spintronics and terahertz photonics. They are based on efficient spin-current generation, spin-to-charge-current conversion, and current-to-field conversion at terahertz rates. In this Editorial, we review the recent developments and applications, the current understanding of the physical processes, and the future challenges and perspectives of broadband spintronic terahertz emitters.
20

Coileáin, Cormac Ó., and Han Chun Wu. "Materials, Devices and Spin Transfer Torque in Antiferromagnetic Spintronics: A Concise Review." SPIN 07, no. 03 (September 2017): 1740014. http://dx.doi.org/10.1142/s2010324717400148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
From historical obscurity, antiferromagnets are recently enjoying revived interest, as antiferromagnetic (AFM) materials may allow the continued reduction in size of spintronic devices. They have the benefit of being insensitive to parasitic external magnetic fields, while displaying high read/write speeds, and thus poised to become an integral part of the next generation of logical devices and memory. They are currently employed to preserve the magnetoresistive qualities of some ferromagnetic based giant or tunnel magnetoresistance systems. However, the question remains how the magnetic states of an antiferromagnet can be efficiently manipulated and detected. Here, we reflect on AFM materials for their use in spintronics, in particular, newly recognized antiferromagnet Mn2Au with its in-plane anisotropy and tetragonal structure and high Néel temperature. These attributes make it one of the most promising candidates for AFM spintronics thus far with the possibility of architectures freed from the need for ferromagnetic (FM) elements. Here, we discuss its potential for use in ferromagnet-free spintronic devices.
21

Mladenov, G., E. Koleva, V. Spivak, A. Bogdan, and S. Zelensky. "Prospects of spin transport electronics." Electronics and Communications 16, no. 3 (March 28, 2011): 9–13. http://dx.doi.org/10.20535/2312-1807.2011.16.3.264053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This review provides basic information on spintronics. Briefly described the effects on which the development of spintronic nanoscale devices are based: giant magneto-resistance, spin-dependent tunnelling effect, transport of spin-polarized current, the creation of spinpolarized current torque for a magnetic switch and the motion of the magnetization of magnetic domains. As a example of successive applications spin-dependent devices are given parameters of magnetic memories based on use of spintronics components. It is shown that such memory is competitive to nowadays standard memories (at 90 nm) and has the potential for future development (for example, reducing the critical size to 32 nm)
22

Pawar, Shweta, Hamootal Duadi, and Dror Fixler. "Recent Advances in the Spintronic Application of Carbon-Based Nanomaterials." Nanomaterials 13, no. 3 (February 2, 2023): 598. http://dx.doi.org/10.3390/nano13030598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The term “carbon-based spintronics” mostly refers to the spin applications in carbon materials such as graphene, fullerene, carbon nitride, and carbon nanotubes. Carbon-based spintronics and their devices have undergone extraordinary development recently. The causes of spin relaxation and the characteristics of spin transport in carbon materials, namely for graphene and carbon nanotubes, have been the subject of several theoretical and experimental studies. This article gives a summary of the present state of research and technological advancements for spintronic applications in carbon-based materials. We discuss the benefits and challenges of several spin-enabled, carbon-based applications. The advantages include the fact that they are significantly less volatile than charge-based electronics. The challenge is in being able to scale up to mass production.
23

Polley, Debanjan, Akshay Pattabi, Jyotirmoy Chatterjee, Sucheta Mondal, Kaushalya Jhuria, Hanuman Singh, Jon Gorchon, and Jeffrey Bokor. "Progress toward picosecond on-chip magnetic memory." Applied Physics Letters 120, no. 14 (April 4, 2022): 140501. http://dx.doi.org/10.1063/5.0083897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We offer a perspective on the prospects of ultrafast spintronics and opto-magnetism as a pathway to high-performance, energy-efficient, and non-volatile embedded memory in digital integrated circuit applications. Conventional spintronic devices, such as spin-transfer-torque magnetic-resistive random-access memory (STT-MRAM) and spin–orbit torque MRAM, are promising due to their non-volatility, energy-efficiency, and high endurance. STT-MRAMs are now entering into the commercial market; however, they are limited in write speed to the nanosecond timescale. Improvement in the write speed of spintronic devices can significantly increase their usefulness as viable alternatives to the existing CMOS-based devices. In this article, we discuss recent studies that advance the field of ultrafast spintronics and opto-magnetism. An optimized ferromagnet–ferrimagnet exchange-coupled magnetic stack, which can serve as the free layer of a magnetic tunnel junction (MTJ), can be optically switched in as fast as ∼3 ps. Integration of ultrafast magnetic switching of a similar stack into an MTJ device has enabled electrical readout of the switched state using a relatively larger tunneling magnetoresistance ratio. Purely electronic ultrafast spin–orbit torque induced switching of a ferromagnet has been demonstrated using ∼6 ps long charge current pulses. We conclude our Perspective by discussing some of the challenges that remain to be addressed to accelerate ultrafast spintronics technologies toward practical implementation in high-performance digital information processing systems.
24

Huang, Y. Q., V. Polojärvi, S. Hiura, P. Höjer, A. Aho, R. Isoaho, T. Hakkarainen, et al. "(Invited) Quest for Fully Spin and Optically Polarized Semiconductor Nanostructures for Room-Temperature Opto-Spintronics." ECS Meeting Abstracts MA2023-02, no. 34 (December 22, 2023): 1666. http://dx.doi.org/10.1149/ma2023-02341666mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Spintronics represents a new paradigm for future electronics, photonics and information technology, which explores the spin degree of freedom of the electron for information storage, processing and transfer. Since 1990s, we have witnessed great success of metal-based spintronics that has revolutionized the mass data storage industry. There has also been an enormous push for semiconductor spintronics during the past three decades, with the aim to capitalize the past and current success of charge-based semiconductor technology and to make its spin counterpart the backbone of future spintronics just like semiconductors have done in today’s electronics/photonics. An exclusive advantage of semiconductor spintronics is its potential for opto-spintronics that will allow integration of spin-based information processing and storage with photon-based information transfer and communications. Unfortunately, progresses of semiconductor spintronics have so far been severely hampered by the failure to generate nearly fully spin-polarized charge carriers in semiconductors at and above room temperature (RT) at which today’s devices operate. In this work, we succeed to achieve conduction electron spin polarization exceeding 90% at RT in a semiconductor nanostructure, which remains steadily high even up to 110°C [1]. This represents the highest RT electron spin polarization ever reported in any semiconductor by any approach! This breakthrough is accomplished by a conceptually new approach of defect-engineered remote spin filtering and amplification of InAs quantum-dot (QD) electrons via an adjacent tunneling-coupled GaNAs quantum well acting as a spin filter. The extraordinary spin filtering effect in GaNAs is enabled by spin-dependent recombination via spin-polarized defects, i.e. grown-in Ga self-interstitials, which selectively deplete conduction electrons with an opposite spin orientation to that of the defect electron. In sharp contrast to the general trend of deteriorating spin polarization with increasing temperature seen in all other approaches of spin generation, our approach is gifted with an opposite temperature dependence up to RT thanks to a thermally accelerated remote spin-filtering effect as a result of thermally activated recombination via the defects [2]. We further show that the QD electron spin can be remotely manipulated by spin control in the adjacent spin filter, paving the way for remote spin encoding and writing of quantum memory as well as for remote spin control of spin-photon interfaces. This work demonstrates the feasibility to implement opto-spintronic functionality under practical device operation conditions in a semiconductor nanostructure system based on the mature III-V semiconductor technology commonly used for today’s optoelectronics and photonics. It could also pave the way for a range of potential spintronic and opto-spintronic applications exploiting the state-of-the-art GaAs technology platform, such as spin-LEDs, spin lasers, spin-polarized single-photon sources, quantum spin-photon interfaces, spin qubits, etc. References [1] Y.Q. Huang, V. Polojärvi, S. Hiura, P. Höjer, A. Aho, R. Isoaho, T. Hakkarainen, M. Guina, S. Sato, J. Takayama, A. Murayama, I.A. Buyanova and W.M. Chen, Nature Photonics 15, 475 (2021). [2] Y.Q. Huang, Y. Puttisong, P. Höjer, A. Aho, R. Isoaho, T. Hakkarainen, M. Guina, I.A. Buyanova and W.M. Chen, unpublished
25

Fan, Yabin, and Kang L. Wang. "Spintronics Based on Topological Insulators." SPIN 06, no. 02 (June 2016): 1640001. http://dx.doi.org/10.1142/s2010324716400014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Spintronics using topological insulators (TIs) as strong spin–orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin–orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin–torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.
26

Wolf, S. A., Daryl Treger, and Almadena Chtchelkanova. "Spintronics: The Future of Data Storage?" MRS Bulletin 31, no. 5 (May 2006): 400–403. http://dx.doi.org/10.1557/mrs2006.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractReasearch and technology developments in the field of spintronics have grown tremendously in the past 10-15 years and already have had a major impact on the data storage industry.The future looks even brighter, as many new spintronic discoveries have been recently made that promise an even bigger impact in the future.This article summarizes the past accomplishments, describes some of the major discoveries that will have a lasting impact on the field, and discusses some of the technologies that may revolutionize data storage in the next decade.
27

Kumar, Prashant, Ravi Kumar, Sanjeev Kumar, Manoj Kumar Khanna, Ravinder Kumar, Vinod Kumar, and Akanksha Gupta. "Interacting with Futuristic Topological Quantum Materials: A Potential Candidate for Spintronics Devices." Magnetochemistry 9, no. 3 (March 2, 2023): 73. http://dx.doi.org/10.3390/magnetochemistry9030073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Spintronics, also known as magneto-electronics or spin transport electronics, uses the magnetic moment of the electron due to intrinsic spin along with its electric charge. In the present review, the topological insulators (2D, 3D, and hydride) were discussed including the conducting edge of 2D topological insulators (TIs). Preparation methods of TIs along with fundamental properties, such as low power dissipation and spin polarized electrons, have been explored. Magnetic TIs have been extensively discussed and explained. Weyl phases, topological superconductors, and TIs are covered in this review. We have focused on creating novel spintronic gadgets based on TIs which have metallic topological exterior facades that are topologically defended and have an insulating bulk. In this review, topological phases are discussed as a potential candidate for novel quantum phenomena and new technological advances for fault-tolerant quantum computation in spintronics, low-power electronics, and as a host for Majorana fermions are elucidated. Room temperature stable magnetic skyrmions and anti-skyrmions in spintronics for next-generation memory/storage devices have been reported.
28

Chen, Aitian, Yuelei Zhao, Yan Wen, Long Pan, Peisen Li, and Xi-Xiang Zhang. "Full voltage manipulation of the resistance of a magnetic tunnel junction." Science Advances 5, no. 12 (December 2019): eaay5141. http://dx.doi.org/10.1126/sciadv.aay5141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
One of the motivations for multiferroics research is to find an energy-efficient solution to spintronic applications, such as the solely electrical control of magnetic tunnel junctions. Here, we integrate spintronics and multiferroics by depositing MgO-based magnetic tunnel junctions on ferroelectric substrate. We fabricate two pairs of electrodes on the ferroelectric substrate to generate localized strain by applying voltage. This voltage-generated localized strain has the ability to modify the magnetic anisotropy of the free layer effectively. By sequentially applying voltages to these two pairs of electrodes, we successively and unidirectionally rotate the magnetization of the free layer in the magnetic tunnel junctions to complete reversible 180° magnetization switching. Thus, we accomplish a giant nonvolatile solely electrical switchable high/low resistance in magnetic tunnel junctions at room temperature without the aid of a magnetic field. Our results are important for exploring voltage control of magnetism and low-power spintronic devices.
29

Popoola, Adewumi I., and S. Babatunde Akinpelu. "Numerical Investigation of the Stability and Spintronic Properties of Selected Quaternary Alloys." European Journal of Applied Physics 3, no. 4 (July 8, 2021): 6–12. http://dx.doi.org/10.24018/ejphysics.2021.3.4.86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The use of electronic charge and spins (spintronics) has been proposed for much better data storage. This class of material is believed to have excellent capability for data integrity, low dynamic power consumption and high-density storage that showcases excellent protection against data loss. The spintronic and related properties have been investigated on four newly proposed quaternary alloys (NbRhGeCo, NbRhGeCr, NbRhGeFe and NbRhGeNi) through the first-principles calculation method of the Density Functional Theory (DFT). Specifically, the phonon frequencies, elastic stabilities, and the electronic structure were systematically studied in the full Heusler structure. The results predict that NbRhGeFe and NbRhGeCr are elastically and structurally stable. Both NbRhGeFe and NbRhGeCo are half-metals with ferromagnetic character, but NbRhGeCo is unfortunately elastically unstable. NbRhGeCr and NbRhGeNi are non-magnetic metallic alloys in their spin channels. All the results predict NbRhGeFe to be the only suitable among all the four alloys for spintronic application.
30

Li, Jing, Shuai-Shuai Ding, and Wen-Ping Hu. "Research of spinterface in organic spintronic devices." Acta Physica Sinica 71, no. 6 (2022): 067201. http://dx.doi.org/10.7498/aps.71.20211786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Spintronics are attractive to the utilization in next-generation quantum-computing and memory. Compared with inorganic spintronics, organic spintronics not only controls the spin degree-of-freedom but also possesses advantages such as chemical tailorability, flexibility, and low-cost fabrication process. Besides, the organic spin valve with a sandwich configuration that is composed of two ferromagnetic electrodes and an organic space layer is one of the classical devices in organic spintronics. Greatly enhanced or inversed magnetoresistance (MR) sign appearing in organic spin valve is induced by the unique interfacial effect an organic semiconductor/ferromagnetic interface. The significant enhancement or inversion of MR is later proved to be caused by the spin-dependent hybridization between molecular and ferromagnetic interface, <i>i.e.</i>, the spinterface. The hybridization is ascribed to spin-dependent broadening and shifting of molecular orbitals. The spinterface takes place at one molecular layer when attaching to the surface of ferromagnetic metal. It indicates that the MR response can be modulated artificially in a specific device by converting the nature of spinterface. Despite lots of researches aiming at exploring the mechanism of spinterface, several questions need urgently to be resolved. For instance, the spin polarization, which is difficult to identify and observe with the surface sensitive technique and the inversion or enhancement of MR signal, which is also hard to explain accurately. The solid evidence of spinterface existing in real spintronic device also needs to be further testified. Besides, the precise manipulation of the MR sign by changing the nature of spinterface is quite difficult. According to the above background, this review summarizes the advance in spinterface and prospects future controllable utilization of spinterface. In Section 2, we introduce the basic principle of spintronic device and spinterface. The formation of unique spinterface in organic spin valve is clarified by using the difference in energy level alignment between inorganic and organic materials. Enhancement and inversion of MR sign are related to the broadening and shifting of the molecular level. In Section 3, several examples about identification of spinterface are listed, containing characterization by surface sensitive techniques and identification in real working devices. In Section 4 some methods about the manipulation of spinterface are exhibited, including modulation of ferroelectric organic barrier, interface engineering, regulation of electronic phase separation in ferromagnetic electrodes, etc. Finally, in this review some unresolved questions in spintronics are given, such as multi-functional and room-temperature organic spin valve and improvement of the spin injection efficiency. Spinterface is of great importance for both scientific research and future industrial interest in organic spintronics. The present study paves the way for the further development of novel excellent organic spin valves.
31

Kumar, Rajat, Divyanshu Divyanshu, Danial Khan, Selma Amara, and Yehia Massoud. "Polymorphic Hybrid CMOS-MTJ Logic Gates for Hardware Security Applications." Electronics 12, no. 4 (February 10, 2023): 902. http://dx.doi.org/10.3390/electronics12040902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Various hardware security concerns, such as hardware Trojans and IP piracy, have sparked studies in the security field employing alternatives to CMOS chips. Spintronic devices are among the most-promising alternatives to CMOS devices for applications that need low power consumption, non-volatility, and ease of integration with silicon substrates. This article looked at how hardware can be made more secure by utilizing the special features of spintronics devices. Spintronic-based devices can be used to build polymorphic gates (PGs), which conceal the functionality of the circuits during fabrication. Since spintronic devices such as magnetic tunnel junctions (MTJs) offer non-volatile properties, the state of these devices can be written only once after fabrication for correct functionality. Symmetric circuits using two-terminal MTJs and three-terminal MTJs were designed, analyzed, and compared in this article. The simulation results demonstrated how a single control signal can alter the functionality of the circuit, and the adversary would find it challenging to reverse-engineer the design due to the similarity of the logic blocks’ internal structures. The use of spintronic PGs in IC watermarking and fingerprinting was also explored in this article. The TSMC 65nm MOS technology was used in the Cadence Spectre simulator for all simulations in this work. For the comparison between the structures based on different MTJs, the physical dimension of the MTJs were kept precisely the same.
32

Wang, Xiao-Lin. "Dirac spin-gapless semiconductors: promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects." National Science Review 4, no. 2 (November 13, 2016): 252–57. http://dx.doi.org/10.1093/nsr/nww069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract It is proposed that the new generation of spintronics should be ideally massless and dissipationless for the realization of ultra-fast and ultra-low-power spintronic devices. We demonstrate that the spin-gapless materials with linear energy dispersion are unique materials that can realize these massless and dissipationless states. Furthermore, we propose four new types of spin Hall effects that consist of spin accumulation of equal numbers of electrons and holes having the same or opposite spin polarization at the sample edge in Hall effect measurements, but with vanishing Hall voltage. These new Hall effects can be classified as (quantum) anomalous spin Hall effects. The physics for massless and dissipationless spintronics and the new spin Hall effects are presented for spin-gapless semiconductors with either linear or parabolic dispersion. New possible candidates for Dirac-type or parabolic-type spin-gapless semiconductors are proposed in ferromagnetic monolayers of simple oxides with either honeycomb or square lattices.
33

Li, Xinlu, Meng Zhu, Yaoyuan Wang, Fanxing Zheng, Jianting Dong, Ye Zhou, Long You, and Jia Zhang. "Tremendous tunneling magnetoresistance effects based on van der Waals room-temperature ferromagnet Fe3GaTe2 with highly spin-polarized Fermi surfaces." Applied Physics Letters 122, no. 8 (February 20, 2023): 082404. http://dx.doi.org/10.1063/5.0136180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Recently, van der Waals (vdW) magnetic heterostructures have received increasing research attention in spintronics. However, the lack of room-temperature magnetic order of vdW materials has largely impeded its development in practical spintronic devices. Inspired by the lately discovered vdW ferromagnet Fe3GaTe2, which has been shown to have magnetic order above room temperature and sizable perpendicular magnetic anisotropy, we investigate the basic electronic structure and magnetic properties of Fe3GaTe2 as well as tunneling magnetoresistance effect in magnetic tunnel junctions (MTJs) with structure of Fe3GaTe2/insulator/Fe3GaTe2 by using first-principles calculations. It is found that Fe3GaTe2 with highly spin-polarized Fermi surface ensures that such magnetic tunnel junctions may have prominent tunneling magnetoresistance effect at room temperature even comparable to existing conventional AlOx and MgO-based MTJs. Our results suggest that Fe3GaTe2-based MTJs may be the promising candidate for realizing long-waiting full magnetic vdW spintronic devices.
34

Ning, Weihua, Jinke Bao, Yuttapoom Puttisong, Fabrizo Moro, Libor Kobera, Seiya Shimono, Linqin Wang, et al. "Magnetizing lead-free halide double perovskites." Science Advances 6, no. 45 (November 2020): eabb5381. http://dx.doi.org/10.1126/sciadv.abb5381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Spintronics holds great potential for next-generation high-speed and low–power consumption information technology. Recently, lead halide perovskites (LHPs), which have gained great success in optoelectronics, also show interesting magnetic properties. However, the spin-related properties in LHPs originate from the spin-orbit coupling of Pb, limiting further development of these materials in spintronics. Here, we demonstrate a new generation of halide perovskites, by alloying magnetic elements into optoelectronic double perovskites, which provide rich chemical and structural diversities to host different magnetic elements. In our iron-alloyed double perovskite, Cs2Ag(Bi:Fe)Br6, Fe3+ replaces Bi3+ and forms FeBr6 clusters that homogenously distribute throughout the double perovskite crystals. We observe a strong temperature-dependent magnetic response at temperatures below 30 K, which is tentatively attributed to a weak ferromagnetic or antiferromagnetic response from localized regions. We anticipate that this work will stimulate future efforts in exploring this simple yet efficient approach to develop new spintronic materials based on lead-free double perovskites.
35

Huang, L., C. F. Li, Y. S. Tang, L. Lin, W. J. Zhai, X. M. Cui, G. Z. Zhou, et al. "Magnetotransport around the Morin transition in α-Fe2O3 single crystals." Journal of Applied Physics 132, no. 16 (October 28, 2022): 163903. http://dx.doi.org/10.1063/5.0099242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Antiferromagnetic spintronics has been receiving attention recently, while spin-texture dependent magnetoresistance (MR) represents one of the main mechanisms for magnetic data storage. In particular, sufficiently large MR with high operating temperatures would be highly required for advanced spintronic applications. In this work, we experimentally investigate the MR effect of well-known antiferromagnet α-Fe2O3 (hematite) in a single crystal form, which has the Morin transition temperature as high as Tm ∼ 260 K. It is revealed that the MR effect associated with the spin-texture re-alignment, i.e., the spin-flop from the out-of-plane direction ( c axis) to the in-plane direction, driven by sufficiently low magnetic fields inclined along the [012] direction, reaches up to ∼2.5% at temperature T ∼ 250 K. The first-principles calculations suggest that this MR effect originates from the reduced bandgap due to the spin-flop and the finite spin–orbital coupling. The present work sheds light on the possibility of α-Fe2O3 as a favored MR-based candidate for near-room temperature spintronics.
36

Ren, Ceng-Ceng, Wei-Xiao Ji, Shu-Feng Zhang, Chang-Wen Zhang, Ping Li, and Pei-Ji Wang. "Strain-Induced Quantum Spin Hall Effect in Two-Dimensional Methyl-Functionalized Silicene SiCH3." Nanomaterials 8, no. 9 (September 7, 2018): 698. http://dx.doi.org/10.3390/nano8090698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Quantum Spin Hall (QSH) has potential applications in low energy consuming spintronic devices and has become a researching hotspot recently. It benefits from insulators feature edge states, topologically protected from backscattering by time-reversal symmetry. The properties of methyl functionalized silicene (SiCH3) have been investigated using first-principles calculations, which show QSH effect under reasonable strain. The origin of the topological characteristic of SiCH3, is mainly associated with the s-pxy orbitals band inversion at Γ point, whilst the band gap appears under the effect of spin-orbital coupling (SOC). The QSH phase of SiCH3 is confirmed by the topological invariant Z2 = 1, as well as helical edge states. The SiCH3 supported by hexagonal boron nitride (BN) film makes it possible to observe its non-trivial topological phase experimentally, due to the weak interlayer interaction. The results of this work provide a new potential candidate for two-dimensional honeycomb lattice spintronic devices in spintronics.
37

Ioannou, Marinos. "The role of ferromagnets and antiferromagnets for spintronic memory applications and their impact in data storage." Emerging Minds Journal for Student Research 1 (July 3, 2023): 1–6. http://dx.doi.org/10.59973/emjsr.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The manipulation of multifunctional properties associated with ferromagnetic and antiferromagnetic materials has a great impact in information technology and digital data storage. A relatively recent field called spintronics is a promising alternative technology to store data more efficiently and to overcome obstacles that conventional electronics face. This article provides a small introduction to spintronic devices used for memory applications such as hard disk drives and MRAM, and details ways by which magnetization inside magnetic layers such as ferromagnets can be flipped. The giant magnetoresistance (GMR) effect and its successor in developing memory devices; the tunnelling magnetoresistance (TMR) effect are also discussed since they are key in developing magnetic memory devices.
38

Xu, Zhen, Jing Liu, Shimin Hou, and Yongfeng Wang. "Manipulation of Molecular Spin State on Surfaces Studied by Scanning Tunneling Microscopy." Nanomaterials 10, no. 12 (November 30, 2020): 2393. http://dx.doi.org/10.3390/nano10122393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The adsorbed magnetic molecules with tunable spin states have drawn wide attention for their immense potential in the emerging fields of molecular spintronics and quantum computing. One of the key issues toward their application is the efficient controlling of their spin state. This review briefly summarizes the recent progress in the field of molecular spin state manipulation on surfaces. We focus on the molecular spins originated from the unpaired electrons of which the Kondo effect and spin excitation can be detected by scanning tunneling microscopy and spectroscopy (STM and STS). Studies of the molecular spin-carriers in three categories are overviewed, i.e., the ones solely composed of main group elements, the ones comprising 3d-metals, and the ones comprising 4f-metals. Several frequently used strategies for tuning molecular spin state are exemplified, including chemical reactions, reversible atomic/molecular chemisorption, and STM-tip manipulations. The summary of the successful case studies of molecular spin state manipulation may not only facilitate the fundamental understanding of molecular magnetism and spintronics but also inspire the design of the molecule-based spintronic devices and materials.
39

Zhang, Yue, Xueqiang Feng, Zhenyi Zheng, Zhizhong Zhang, Kelian Lin, Xiaohan Sun, Guanda Wang, et al. "Ferrimagnets for spintronic devices: From materials to applications." Applied Physics Reviews 10, no. 1 (March 2023): 011301. http://dx.doi.org/10.1063/5.0104618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Spintronic devices use spin instead of charge to process information and are widely considered as promising candidates for next-generation electronic devices. In past decades, the main motivation in spintronics has been to discover new mechanisms and novel material systems to improve both device performance and the application prospects of spintronics. Recently, researchers have found that ferrimagnetic materials—in which sublattices are coupled antiferromagnetically—offer an emerging platform for realizing high-density, high-speed, and low-power-consumption memory and logic functions. Within such a ferrimagnetic class, vanishing magnetization and ultrafast magnetic dynamics can be achieved by adjusting chemical composition and temperature, among other parameters. Meanwhile, unlike for antiferromagnets, conventional electrical read–write methods remain suitable for ferrimagnets, which is beneficial for applications. In this review, an abundant class of ferrimagnets including oxides and alloys is surveyed, and unique magnetic dynamics and effective methods for manipulating the magnetic states of ferrimagnets are discussed. Finally, novel storage and computing devices based on ferrimagnets are considered, as there are some challenges to be addressed in future applications of ferrimagnets.
40

Papaioannou, Evangelos Th, and René Beigang. "THz spintronic emitters: a review on achievements and future challenges." Nanophotonics, December 18, 2020. http://dx.doi.org/10.1515/nanoph-2020-0563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractThe field of THz spintronics is a novel direction in the research field of nanomagnetism and spintronics that combines magnetism with optical physics and ultrafast photonics. The experimental scheme of the field involves the use of femtosecond laser pulses to trigger ultrafast spin and charge dynamics in thin films composed of ferromagnetic and nonmagnetic thin layers, where the nonmagnetic layer features a strong spin–orbit coupling. The technological and scientific key challenges of THz spintronic emitters are to increase their intensity and to shape the frequency bandwidth. To achieve the control of the source of the radiation, namely the transport of the ultrafast spin current is required. In this review, we address the generation, detection, efficiency and the future perspectives of THz emitters. We present the state-of-the-art of efficient emission in terms of materials, geometrical stack, interface quality and patterning. The impressive so far results hold the promise for new generation of THz physics based on spintronic emitters.
41

Liu, Sheng, Iftikhar Ahmed Malik, Vanessa Li Zhang, and Ting Yu. "Lightning the Spin: Harnessing the Potential of 2D Magnets in Opto‐Spintronics." Advanced Materials, October 31, 2023. http://dx.doi.org/10.1002/adma.202306920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractSince the emergence of two‐dimensional (2D) magnets in 2017, the diversity of these materials has greatly expanded. Their 2D nature (atomic‐scale thickness) endows these magnets with strong magnetic anisotropy, layer‐dependent and switchable magnetic order, and quantum‐confined quasiparticles, which distinguish them from conventional three‐dimensional (3D) magnetic materials. Moreover, the 2D geometry facilitates light incidence for opto‐spintronic applications and potential on‐chip integration. In analogy to optoelectronics based on optical‐electronic interactions, opto‐spintronics use light‐spin interactions to process spin information stored in the solid state. In this review, we divide opto‐spintronics into three types with respect to the wavelengths of radiation interacting with 2D magnets: (1) GHz (microwave) to THz (mid‐infrared), (2) visible, and (3) UV to X‐rays. We focus on the recent research advancements on the newly discovered mechanisms of light‐spin interactions in 2D magnets and introduce the potential design of novel opto‐spintronic applications based on these interactions.This article is protected by copyright. All rights reserved
42

Walowski, Jakob, and Markus Muenzenberg. "ChemInform Abstract: Perspective: Ultrafast Magnetism and THz Spintronics." ChemInform 47, no. 48 (November 2016). http://dx.doi.org/10.1002/chin.201648262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Levchuk, Artem, Vincent Juvé, Tadele Orbula Otomalo, Théophile Chirac, Olivier Rousseau, Aurélie Solignac, Gwenaëlle Vaudel, Pascal Ruello, Jean-Yves Chauleau, and Michel Viret. "Pump wavelength-dependent terahertz spin-to-charge conversion in CoFeB/MgO Rashba interface." Applied Physics Letters 123, no. 1 (July 3, 2023). http://dx.doi.org/10.1063/5.0144645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Spin/charge interconversion mechanisms provide an essential handle to generate and detect spin currents. Their applications at different timescales are critical in spintronics since they cover a technologically relevant broadband spectrum. While the inverse spin Hall effect is known to be robust from quasi-static to sub-picosecond timescales, the conversion efficiency evolution of the inverse Edelstein effect has not been addressed yet. In this work, we report that while the quasi-static response of the inverse Edelstein effect can be comparable to that of the most efficient inverse spin Hall systems, a drastic drop of efficiency is observed in the terahertz (THz) regime. This behavior at the sub-picosecond timescale is qualitatively understood from the dependence of the inverse Edelstein effect on the energy distribution of spin-carrier entities, which is different between thermalized carriers in the quasi-static regime and hot carriers generated by light pulses. This finding is supported by the pump-laser wavelength dependence in the THz regime for the inverse Edelstein effect, which offers a promising route for tunability of spintronic devices.
44

Nivedan, Anand, and SUNIL KUMAR. "Excitation wavelength-dependent ultrafast THz emission from surface and bulk of three-dimensional topological insulators." Journal of Physics D: Applied Physics, April 11, 2023. http://dx.doi.org/10.1088/1361-6463/accbcb.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Three-dimensional topological insulators possess various interesting properties that are promising for various modern applications, including in the recently emerging fields of ultrafast THz photonics and spintronics. Their gapless spin-momentum-locked topological surface states with the presence of chiral spin structure are relevant for the development of light helicity-sensitive THz emitters and detectors. In this paper, we report femtosecond excitation pulse wavelength and helicity-dependent response of Bi2Te3 and Bi2Se3 for an enhanced broadband THz pulse emission from the surface and bulk states. Specifically, the excitation wavelength has been varied in a large range from near UV to near IR, where it was observed that the photoexcitation at shorter wavelengths enhances the THz emission from both the surface and bulk states but more rapidly from the surface states. These results will be highly relevant for developing chirality-sensitive efficient THz emitters and detectors.
45

Formisano, F., T. T. Gareev, D. I. Khusyainov, A. E. Fedianin, R. M. Dubrovin, P. P. Syrnikov, D. Afanasiev, et al. "Coherent THz spin dynamics in antiferromagnets beyond the approximation of the Néel vector." APL Materials 12, no. 1 (January 1, 2024). http://dx.doi.org/10.1063/5.0180888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Controlled generation of coherent spin waves with highest possible frequencies and shortest possible wavelengths is a cornerstone of spintronics and magnonics. Here, using Heisenberg antiferromagnet RbMnF3, we demonstrate that laser-induced THz spin dynamics corresponding to pairs of mutually coherent counter-propagating spin waves with the wavevectors up to the edge of the Brillouin zone cannot be understood in terms of magnetization and antiferromagnetic (Néel) vectors, conventionally used to describe spin waves. Instead, we propose to model such spin dynamics using the spin correlation function. We derive a quantum-mechanical equation of motion for the latter and emphasize that unlike the magnetization and antiferromagnetic vectors the spin correlations in antiferromagnets do not exhibit inertia.
46

Sharma, Sangeeta, Peter Elliott, and Samuel Shallcross. "THz induced giant spin and valley currents." Science Advances 9, no. 11 (March 17, 2023). http://dx.doi.org/10.1126/sciadv.adf3673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Spin and valley indices represent the key quantum labels of quasi-particles in a wide class of two-dimensional materials and form the foundational elements of the fields of spintronics and valleytronics. Control over these degrees of freedom, therefore, remains the central challenge in these fields. Here, we show that femtosecond laser light combining optical frequency circularly polarized pulse and a terahertz (THz) frequency linearly polarized pulse, a so-called “hencomb” pulse, can generate precisely tailored and 90% pure spin currents for the dichalcogenide WSe 2 and >75% pure valley currents for bilayer graphene with gaps greater than 120 millielectron volts (dephasing time, 20 femtoseconds). The frequency of the circular light component and the polarization vector of the THz light component are shown to represent the key control parameters of these pulses. Our results thus open a route toward light control over spin/valley current states at ultrafast times.
47

Huang, C., L. Luo, M. Mootz, J. Shang, P. Man, L. Su, I. E. Perakis, Y. X. Yao, A. Wu, and J. Wang. "Extreme terahertz magnon multiplication induced by resonant magnetic pulse pairs." Nature Communications 15, no. 1 (April 13, 2024). http://dx.doi.org/10.1038/s41467-024-47471-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractNonlinear interactions of spin-waves and their quanta, magnons, have emerged as prominent candidates for interference-based technology, ranging from quantum transduction to antiferromagnetic spintronics. Yet magnon multiplication in the terahertz (THz) spectral region represents a major challenge. Intense, resonant magnetic fields from THz pulse-pairs with controllable phases and amplitudes enable high order THz magnon multiplication, distinct from non-resonant nonlinearities such as the high harmonic generation by below-band gap electric fields. Here, we demonstrate exceptionally high-order THz nonlinear magnonics. It manifests as 7th-order spin-wave-mixing and 6th harmonic magnon generation in an antiferromagnetic orthoferrite. We use THz two-dimensional coherent spectroscopy to achieve high-sensitivity detection of nonlinear magnon interactions up to six-magnon quanta in strongly-driven many-magnon correlated states. The high-order magnon multiplication, supported by classical and quantum spin simulations, elucidates the significance of four-fold magnetic anisotropy and Dzyaloshinskii-Moriya symmetry breaking. Moreover, our results shed light on the potential quantum fluctuation properties inherent in nonlinear magnons.
48

Kholid, Farhan Nur, Dominik Hamara, Ahmad Faisal Bin Hamdan, Guillermo Nava Antonio, Richard Bowen, Dorothée Petit, Russell Cowburn, et al. "The importance of the interface for picosecond spin pumping in antiferromagnet-heavy metal heterostructures." Nature Communications 14, no. 1 (February 1, 2023). http://dx.doi.org/10.1038/s41467-023-36166-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractInterfaces in heavy metal (HM) - antiferromagnetic insulator (AFI) heterostructures have recently become highly investigated and debated systems in the effort to create spintronic devices that function at terahertz frequencies. Such heterostructures have great technological potential because AFIs can generate sub-picosecond spin currents which the HMs can convert into charge signals. In this work we demonstrate an optically induced picosecond spin transfer at the interface between AFIs and Pt using time-domain THz emission spectroscopy. We select two antiferromagnets in the same family of fluoride cubic perovskites, KCoF3 and KNiF3, whose magnon frequencies at the centre of the Brillouin zone differ by an order of magnitude. By studying their behaviour with temperature, we correlate changes in the spin transfer efficiency across the interface to the opening of a gap in the magnon density of states below the Néel temperature. Our observations are reproduced in a model based on the spin exchange between the localized electrons in the antiferromagnet and the free electrons in Pt. Through this comparative study of selected materials, we are able to shine light on the microscopy of spin transfer at picosecond timescales between antiferromagnets and heavy metals and identify a key figure of merit for its efficiency: the magnon gap. Our results are important for progressing in the fundamental understanding of the highly discussed physics of the HM/AFI interfaces, which is the necessary cornerstone for the designing of femtosecond antiferromagnetic spintronics devices with optimized characteristics.
49

Zhang, Zhenya, Fumiya Sekiguchi, Takahiro Moriyama, Shunsuke C. Furuya, Masahiro Sato, Takuya Satoh, Yu Mukai, et al. "Generation of third-harmonic spin oscillation from strong spin precession induced by terahertz magnetic near fields." Nature Communications 14, no. 1 (March 31, 2023). http://dx.doi.org/10.1038/s41467-023-37473-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractThe ability to drive a spin system to state far from the equilibrium is indispensable for investigating spin structures of antiferromagnets and their functional nonlinearities for spintronics. While optical methods have been considered for spin excitation, terahertz (THz) pulses appear to be a more convenient means of direct spin excitation without requiring coupling between spins and orbitals or phonons. However, room-temperature responses are usually limited to small deviations from the equilibrium state because of the relatively weak THz magnetic fields in common approaches. Here, we studied the magnetization dynamics in a HoFeO3 crystal at room temperature. A custom-made spiral-shaped microstructure was used to locally generate a strong multicycle THz magnetic near field perpendicular to the crystal surface; the maximum magnetic field amplitude of about 2 T was achieved. The observed time-resolved change in the Faraday ellipticity clearly showed second- and third-order harmonics of the magnetization oscillation and an asymmetric oscillation behaviour. Not only the ferromagnetic vector M but also the antiferromagnetic vector L plays an important role in the nonlinear dynamics of spin systems far from equilibrium.
50

Hemmat, Minoosh, Sabrine Ayari, Martin Mičica, Hadrien Vergnet, Shasha Guo, Mehdi Arfaoui, Xuechao Yu, et al. "Layer‐controlled nonlinear terahertz valleytronics in two‐dimensional semimetal and semiconductor PtSe2." InfoMat, September 4, 2023. http://dx.doi.org/10.1002/inf2.12468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractPlatinum diselenide () is a promising two‐dimensional (2D) material for the terahertz (THz) range as, unlike other transition metal dichalcogenides (TMDs), its bandgap can be uniquely tuned from a semiconductor in the near‐infrared to a semimetal with the number of atomic layers. This gives the material unique THz photonic properties that can be layer‐engineered. Here, we demonstrate that a controlled THz nonlinearity—tuned from monolayer to bulk —can be realized in wafer size polycrystalline through the generation of ultrafast photocurrents and the engineering of the bandstructure valleys. This is combined with the layer interaction with the substrate for a broken material centrosymmetry, permitting a second order nonlinearity. Further, we show layer dependent circular dichroism, where the sign of the ultrafast currents and hence the phase of the emitted THz pulse can be controlled through the excitation of different bandstructure valleys. In particular, we show that a semimetal has a strong dichroism that is absent in the monolayer and few layer semiconducting limit. The microscopic origins of this TMD bandstructure engineering are highlighted through detailed DFT simulations, and shows the circular dichroism can be controlled when becomes a semimetal and when the K‐valleys can be excited. As well as showing that is a promising material for THz generation through layer controlled optical nonlinearities, this work opens up a new class of circular dichroism materials beyond the monolayer limit that has been the case of traditional TMDs, and impacting a range of domains from THz valleytronics, THz spintronics to harmonic generation.image

To the bibliography