Academic literature on the topic 'THz Spintronic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'THz Spintronic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "THz Spintronic"

1

Wang, Maorong, Yifan Zhang, Leilei Guo, Mengqi Lv, Peng Wang, and Xia Wang. "Spintronics Based Terahertz Sources." Crystals 12, no. 11 (November 18, 2022): 1661. http://dx.doi.org/10.3390/cryst12111661.

Full text
Abstract:
Terahertz (THz) sources, covering a range from about 0.1 to 10 THz, are key devices for applying terahertz technology. Spintronics-based THz sources, with the advantages of low cost, ultra-broadband, high efficiency, and tunable polarization, have attracted a great deal of attention recently. This paper reviews the emission mechanism, experimental implementation, performance optimization, manipulation, and applications of spintronic THz sources. The recent advances and existing problems in spintronic THz sources are fully present and discussed. This review is expected to be an introduction of spintronic terahertz sources for novices in this field, as well as a comprehensive reference for experienced researchers.
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, Sandeep, and Sunil Kumar. "Ultrafast light-induced THz switching in exchange-biased Fe/Pt spintronic heterostructure." Applied Physics Letters 120, no. 20 (May 16, 2022): 202403. http://dx.doi.org/10.1063/5.0091934.

Full text
Abstract:
The ultrafast optical control of magnetization in spintronic structures enables one to access to the high-speed information processing, approaching the realm of terahertz (THz). Femtosecond visible/near-infrared laser-driven ferromagnetic/nonmagnetic metallic spintronic heterostructures-based THz emitters combine the aspects from the ultrafast photo-induced dynamics and spin-charge inter-conversion mechanisms through the generation of THz electromagnetic pulses. In this Letter, we demonstrate photoexcitation density-dependent induced exchange-bias tunability and THz switching in an annealed Fe/Pt thin-film heterostructure, which otherwise is a widely used conventional spintronic THz emitter. By combining the exchange-bias effect along with THz emission, the photo-induced THz switching is observed without any applied magnetic field. These results pave the way for an all-optical ultrafast mechanism to exchange-bias tuning in spintronic devices for high-density storage, read/write magnetic memory applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Weipeng, Charles Yaw Ameyaw, Matthew F. Doty, and M. Benjamin Jungfleisch. "Principles of spintronic THz emitters." Journal of Applied Physics 130, no. 9 (September 7, 2021): 091101. http://dx.doi.org/10.1063/5.0057536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schneider, Robert, Mario Fix, Jannis Bensmann, Steffen Michaelis de Vasconcellos, Manfred Albrecht, and Rudolf Bratschitsch. "Spintronic GdFe/Pt THz emitters." Applied Physics Letters 115, no. 15 (October 7, 2019): 152401. http://dx.doi.org/10.1063/1.5120249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Agarwal, Piyush, Yingshu Yang, James Lourembam, Rohit Medwal, Marco Battiato, and Ranjan Singh. "Terahertz spintronic magnetometer (TSM)." Applied Physics Letters 120, no. 16 (April 18, 2022): 161104. http://dx.doi.org/10.1063/5.0079989.

Full text
Abstract:
A ferromagnetic metal consists of localized electrons and conduction electrons coupled through strong exchange interaction. Together, these localized electrons contribute to the magnetization of the system, while conduction electrons lead to the formation of spin and charge current. Femtosecond out of equilibrium photoexcitation of ferromagnetic thin films generates a transient spin current at ultrafast timescales that have opened a route to probe magnetism offered by the conduction electrons. In the presence of a neighboring heavy metal layer, the non-equilibrium spin current is converted into a pulsed charge current and gives rise to terahertz (THz) emission. Here, we propose and demonstrate a tool known as the terahertz spintronic magnetometry. The hysteresis loop obtained by sweeping terahertz (THz) pulse amplitude as a function of the magnetic field is in excellent agreement with the vibrating-sample magnetometer measurements. Furthermore, a modified transfer-matrix method employed to model the THz propagation within the heterostructure theoretically elucidates a linear relationship between the THz pulse amplitude and sample magnetization. The strong correlation, thus, reveals spintronic terahertz emission as an ultrafast magnetometry tool with reliable in-plane magnetization detection, highlighting its technological importance in the characterization of ferromagnetic thin-films through terahertz spintronic emission spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Shaojie, Chenhui Lu, Zhengquan Fan, Shixiang Wang, Peiyan Li, Xinhou Chen, Jun Pan, Yong Xu, Yi Liu, and Xiaojun Wu. "Modulated terahertz generation in femtosecond laser plasma filaments by high-field spintronic terahertz pulses." Applied Physics Letters 120, no. 17 (April 25, 2022): 172404. http://dx.doi.org/10.1063/5.0080234.

Full text
Abstract:
Strong-field terahertz (THz) light-matter interaction provides various nonlinear control approaches in condensed matter physics, energy and material sciences, electron acceleration, and manipulation. Recently developed spintronic THz emission with minimum complexities has been demonstrated to have the capability for generating high field strengths. Up to now, nonlinear applications based on the spintronic THz transients have yet been realized. Here, we report THz emission from two-color femtosecond laser plasma filaments modulated by a 60-kV/cm THz pulse from W/CoFeB/Pt heterostructures. Enhanced THz radiation based on electron acceleration in plasma is recorded when the direction of the spintronic THz modulating field is in line with that of the electron movement. This behavior is quantitatively reproduced by a local current model of the plasma THz source. Our experimental and theoretical results may inspire further nonlinear THz investigation and accelerate ultrafast THz engineering in matter.
APA, Harvard, Vancouver, ISO, and other styles
7

Armelles, Gaspar, and Alfonso Cebollada. "Active photonic platforms for the mid-infrared to the THz regime using spintronic structures." Nanophotonics 9, no. 9 (July 13, 2020): 2709–29. http://dx.doi.org/10.1515/nanoph-2020-0250.

Full text
Abstract:
AbstractSpintronics and Photonics constitute separately two disciplines of huge scientific and technological impact. Exploring their conceptual and practical overlap offers vast possibilities of research and a clear scope for the corresponding communities to merge and consider innovative ideas taking advantage of each other’s potentials. As an example, here we review the magnetic field modification of the optical response of photonic systems fabricated out of spintronic materials, or in which spintronic components are incorporated. This magnetic actuation is due to the Magneto Refractive Effect (MRE), which accounts for the change in the optical constants of a spintronic system due to the magnetic field induced modification of the electrical resistivity. Due to the direct implication of conduction electrons in this phenomenon, this change in the optical constants covers from the mid-infrared to the THz regime. After introducing the non-expert reader into the spintronic concepts relevant to this work, we then present the MRE exhibited by a variety of spintronic systems, and finally show the different applications of this property in the generation of active spintronic-photonic platforms.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Peiyan, Shaojie Liu, Zheng Liu, Min Li, Hao Xu, Yong Xu, Heping Zeng, and Xiaojun Wu. "Laser terahertz emission microscopy of nanostructured spintronic emitters." Applied Physics Letters 120, no. 20 (May 16, 2022): 201102. http://dx.doi.org/10.1063/5.0080397.

Full text
Abstract:
Laser terahertz (THz) emission spectroscopy has broken the diffraction limit of THz frequencies and offers multifaceted spectroscopic and imaging capabilities for understanding the light–matter interaction in various quantum and energy materials. However, this advanced technique has not yet been applied in the recently extensively studied spintronic THz emission process, in which the material surface morphology may play an important role. Here, we conduct THz emission microscopy on 5.4-nm thick Pt/CoFeB/W heterostructures and obtain twice enhanced THz by tightly focusing the pumping laser, delicately choosing the radiation location on nanofilms and coating gold nanorods. Through THz emission mapping, the material surface morphology and its modification have a strong correlation with THz emission performance from spintronic emitters. Our proposed femtosecond fiber laser driven spintronic THz emission microscopy can provide exciting possibilities for studying surface morphology sensitive THz emission materials and microdomain ultrafast dynamics for low-dimensional small samples via further coupling optical microscopy.
APA, Harvard, Vancouver, ISO, and other styles
9

Buryakov A.M., Gorbatova A. V., Avdeev P. Yu., Bezvikonny N. V., Ovcharenko S. V., Klimov A. A., Stankevich K. L., and Mishina E. D. "Spintronic emitter of terahertz radiation based on two-dimensional semiconductor tungsten diselenide." Technical Physics Letters 48, no. 9 (2022): 53. http://dx.doi.org/10.21883/tpl.2022.09.55084.19246.

Full text
Abstract:
We propose a new spintronic emitter based on the Co/WSe2 heterostructure. The time of ultrafast demagnetization is estimated. It is shown that the two-dimensional ferromagnet/semiconductor interface exhibits strong spin-orbit coupling. Approaches to the description of the mechanism of generation of THz radiation are implemented. It is shown that the polarization orientation of THz radiation depends on the direction of magnetization Keywords: Spintronic emitter, THz radiation, two-dimensional semiconductors, Co/WSe2, THz polarization.
APA, Harvard, Vancouver, ISO, and other styles
10

Hewett, S. M., C. Bull, A. M. Shorrock, C. H. Lin, R. Ji, M. T. Hibberd, T. Thomson, P. W. Nutter, and D. M. Graham. "Spintronic terahertz emitters exploiting uniaxial magnetic anisotropy for field-free emission and polarization control." Applied Physics Letters 120, no. 12 (March 21, 2022): 122401. http://dx.doi.org/10.1063/5.0087282.

Full text
Abstract:
We explore the terahertz (THz) emission from CoFeB/Pt spintronic structures in the below-magnetic-saturation regime and reveal an orientation dependence in the emission, arising from in-plane uniaxial magnetic anisotropy (UMA) in the ferromagnetic layer. Maximizing the UMA during the film deposition process and aligning the applied magnetic field with the easy axis of the structure allow the THz emission to reach saturation under weaker applied fields. In addition, the THz emission amplitude remains at saturation levels when the applied field is removed. The development of CoFeB/Pt spintronic structures that can emit broadband THz pulses without the need for an applied magnetic field is beneficial to THz magneto-optical spectroscopy and facilitates the production of large-area spintronic emitters. Furthermore, by aligning the applied field along the hard axis of the structure, the linear polarization plane of the emitted THz radiation can be manipulated by changing the magnitude of the applied field. We, therefore, demonstrate THz polarization control without the need for mechanical rotation of external magnets.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "THz Spintronic"

1

Hawecker, Jacques. "Terahertz time resolved spectroscopy of Intersubband Polaritons and Spintronic Emitters." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS101.

Full text
Abstract:
Le domaine térahertz (THz) inclut une riche variété d’applications pratiques et fondamentales où la basse énergie des photons permettent l’investigation de nouveaux phénomènes d’interaction lumière-matière. Ces travaux se focalisent sur deux thématiques émergentes où la spectroscopie THz ultra-rapide représente un outil particulièrement adapté à l’étude de phénomènes fondamentaux ainsi qu’à la conception de nouvelles sources THz. La première thématique concerne la spintronique THz capable de générer des ondes THz équivalentes à celles obtenues au sein des cristaux non-linéaires. Cette technologie est basée sur des hétérostructures constituées de matériaux ferromagnétiques – métaux de transitions possédant des épaisseurs nanométriques permettant une émission THz par excitation ultrarapide de la structure, induisant un courant de spin et via l’effet Hall de spin, une conversion de courant de spin en courant de charge. Au-delà de ces structures métalliques, des matériaux « quantiques » faisant intervenir des phénomènes tel que l’effet inverse Edelstein au sein des isolants topologiques sont également étudiés. La seconde thématique abordée est celle des polaritons intersous-bandes dans le domaine THz. Les polaritons sont des quasi-particules résultant d’un couplage lumière-matière fort provenant d’un mode de cavité couplé à une transition intersous-bande. Leur nature bosonique représente une perspective pertinente à long terme pour développer de nouvelles sources THz lasers basées sur le principe de condensat de Bose-Einstein. Dans ces travaux, nous étudions le pompage optique monofréquence et résonant d’une branche polaritonique par une sonde large bande constituée d’impulsions THz. Cette investigation révèle de fortes indications d’effets non-linéaires et potentiellement des signatures de diffusions polaritoniques. Enfin, nous présentons également des optimisations technologiques de sources THz existantes utiles à l’études des deux thématiques abordées. Notamment de sources THz de type antennes photoconductrices haute puissance en cavités, qui ont permis la première démonstration d’imagerie THz en temps réel obtenue avec de tel dispositifs
The terahertz (THz) domain provides a rich playground for many practical and fundamental applications, where the low energy of THz photons permits to probe novel light-matter interactions. This work investigates two recent and emerging scientific areas where ultrafast THz spectroscopy can be used as a probe of fundamental phenomena, as well as potentially enabling the conception of new THz sources. In the first case, ultrafast THz spintronics are studied where ultrafast excitations of spintronic heterojunctions result in efficient pulse generation. These structures consist of nanometer thick ferromagnetic - heavy metal junctions, where an optically generated spin-charge in the former is converted to a charge-current in the latter via the Inverse Spin Hall Effect. Beyond these metal-based junctions, ultrafast THz spintronics based on “quantum” materials is also investigated, where THz pulses are generated using quantum phenomena such as the Inverse Edelstein Effect in Topological Insulators, shown to be a promising research direction. The second subject area is focused on THz intersubband polaritons, quasi-particles that emerge from the strong light-matter coupling of a THz photonic cavity and an intersubband transition. Here we are interested in the bosonic nature of the intersubband polaritons, as a long-term aim of realizing a novel THz laser based on Bose-Einstein condensation. In this work, we investigate resonant narrowband pumping of a polariton branch and probe using spectrally broad THz pulses. This shows strong indications of nonlinear effects and potential signatures of scattering processes that could eventually lead to the demonstration of THz polaritonic gain. Finally, to support our work in the above subject areas, technological developments were made in existing THz sources. This included high power THz photoconductive switches using cavities, which permitted the first demonstrations of real time THz imaging with such devices, and high power THz quantum cascade lasers as narrowband laser pumps
APA, Harvard, Vancouver, ISO, and other styles
2

Eivarsson, Nils, Malin Bohman, Emil Grosfilley, and Axel Lundberg. "Design and Simulation of Terahertz Antenna for Spintronic Applications." Thesis, Uppsala universitet, Institutionen för materialvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412982.

Full text
Abstract:
Spintronics is a spin-electronic field where the electron spinangular momentum, in conjunction with charge, is used to read andwrite information in magnetic sensors and logic circuits, e.g. hard disk drive (HDD), magnetic random access memory (MRAM) and broadband TeraHertz (THz) emitters. To realize the THz operations of the spin logic circuits THz manipulation of the magnetic state is pivotal. This THz manipulation of the magnetic state in anti-ferromagnetic magnetic materials can be realized by coupling the materials with THz antennas. On the other hand, these antennas enhance the THz amplitude of spin-electronic THz emitters when coupled with its output. Therefore, these THz antennas can not only be coupled with the input of magnetic logics to improve the efficiency of magnetic sate manipulation in logic devices but also with the output of the spintronic THz emitters to enhance the generated THz signal amplitude. In this project, we have examined four types of antennas: h-dipole, spiral, bow-tie, and a sub-THz antenna. All the antennas are placed on top of a MgO substrate material for simplicity. However, a bow-tie antenna is also fabricated on an antiferromagnetic substrate of TmFeO3 to check this antenna’s reliability to manipulate its magnetic state. We have studied the impact of antenna geometries on the generated electric field amplitude. We have optimized each antenna for maximum electric field norm profile, with an increase of 30% for the h-dipole and spiral antennas, and an increase of 100% for the bow-tie antenna. However, in this project we were not able to find any general conclusions about what geometrical parameters can further amplify the generated electric field. None of the antennas generated a large enough peak-to-peak electric field amplitude to manipulate the magnetic state of anti-ferromagnetic materials. However, they did successfully amplify the spintronic THz emitter output and could certainly be useful in that regard.
APA, Harvard, Vancouver, ISO, and other styles
3

LONGO, EMANUELE MARIA. "HETEROSTRUCTURES BASED ON THE LARGE-AREA Sb2Te3 TOPOLOGICAL INSULATOR FOR SPIN-CHARGE CONVERSION." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/311358.

Full text
Abstract:
I dispositivi elettronici che sfruttano proprietà legate allo spin elettronico costituiscono un settore molto promettente per lo sviluppo della nanoelettronica del futuro. Recentemente, gli isolanti topologici tridimensionali (IT-3D), quando posti a contatto con materiali ferromagnetici (FM), giocano un ruolo centrale nel contesto del miglioramento dell’efficienza di conversione tra spin e carica elettronici in eterostrutture di tipo FM/TI. L’oggetto principale di questa tesi è lo studio delle interazioni chimico-fisiche tra l’IT-3D Sb2Te3, nelle sue forme granulare ed epitassiale, con film di Fe e Co attraverso l’uso di tecniche di Diffrazione/Riflettività di raggi-X, spettroscopia di risonanza ferromagnetica (FMR) e pompaggio di spin in risonanza ferromagnetica (SP-FMR). In concomitanza con l’ottimizzazione delle proprietà dei materiali, un particolare interesse è stato rivolto verso l’impatto industriale della ricerca presentata. Per questo motivo, per la produzione di Sb2Te3 e di alcuni dei FM impiegati, sono state impiegate tecniche di deposizione di materiali su larga scala ( 4 pollici), quali la Metal Organic Chemical Vapor Deposition (MOCVD) e l’Atomic Layer Deposition (ALD) rispettivamente. Una approfondita caratterizzazione chimica, strutturale e magnetica dell’interfaccia Fe/ Sb2Te3-granulare ha evidenziato un marcato intermixing tra i materiali e una generale tendenza degli atomi di Fe nel legare con l’elemento calcogenuro quando presente in un IT. Attraverso trattamenti termici rapidi e a bassa temperatura sottoposti sui film di Sb2Te3 granulare prima della crescita del Fe, l’interfaccia Fe/Sb2Te3-granulare è risultata morfologicamente più netta e chimicamente stabile. Lo studio di film sottili di Co cresciuti attraverso ALD su Sb2Te3 granulare ha permesso la produzione di interfacce Co/Sb2Te3-granulare di alta qualità, con la possibilità inoltre di modificare le proprietà magneto-strutturali dei film di Co attraverso una selezione appropriata di substrati. Con l’obbiettivo di migliorare le proprietà dei film di Sb2Te3, dei trattamenti termici specifici sono stati condotti su Sb2Te3 granulare appena cresciuto, ottenendo film di Sb2Te3 altamente orientati con una qualità cristallina vicina al cristallo singolo di tipo epitassiale. Questi substrati di Sb2Te3 sono stati utilizzati per produrre eterostrutture di Au/Co/Sb2Te3-epitassiale e Au/Co/Au/Sb2Te3-epitassiale per studiare la loro risposta di FMR. I dati di FMR per il campione Au/Co/Sb2Te3-epitassiale sono stati interpretati considerando un contributo di Two Magnon Scattering (TMS) dominante, verosimilmente a causa della presenza di rugosità magnetica all’interfaccia Co/Sb2Te3-epitassiale. L’introduzione di un interlayer di Au per evitare il contatto diretto tra Co e Sb2Te3 si è dimostrato vantaggioso per la totale eliminazione del contributo di TMS. Misure di SP-FMR sono state condotte sulla struttura ottimizzata Au/Co/Au/Sb2Te3-epitassiale, sottolineando il ruolo giocato dallo strato di Sb2Te3-epitassiale nel processo di SP. I segnali di SP ricavati da campioni di Au/Co/Au/Si(111) e Co/Au/Si(111) sono stati utilizzati per determinare l’efficienza di conversione spin-carica ottenuta dall’introduzione dello strato di Sb2Te3. L’efficienza estratta è stata calcolata interpretando i dati di SP-FMR attraverso i modelli di effetto Edelstein inverso ed effetto di Spin-Hall inverso, i quali hanno dimostrato che l’IT-3D Sb2Te3 è un candidato promettente per essere impiegato nella prossima generazione di dispositivi spintronici.
Spin-based electronic devices constitute an intriguing area in the development of the future nanoelectronics. Recently, 3D topological insulators (TI), when in contact with ferromagnets (FM), play a central role in the context of enhancing the spin-to-charge conversion efficiency in FM/TI heterostructures. The main subject of this thesis is the study of the chemical-physical interactions between the granular and epitaxial Sb2Te3 3D-TI with Fe and Co thin films by means of X-ray Diffraction/Reflectivity, Ferromagnetic Resonance spectroscopy (FMR) and Spin Pumping-FMR. Beside the optimization of the materials properties, particular care was taken on the industrial impact of the presented results, thus large-scale deposition processes such as Metal Organic Chemical Vapor Deposition (MOCVD) and Atomic Layer Deposition (ALD) were adopted for the growth of the Sb2Te3 3D-TI and part of the FM thin films respectively. A thorough chemical, structural and magnetic characterization of the Fe/granular Sb2Te3 interface evidenced a marked intermixing between the materials and a general bonding mechanism between Fe atoms and the chalcogen element in chalcogenide-based TIs. Through rapid and mild thermal treatments performed on the granular Sb2Te3 substrate prior to Fe deposition, the Fe/granular-Sb2Te3 interface turned out to be sharper and chemically stable. The study of ALD-grown Co thin films deposited on top of the granular-Sb2Te3 allowed the production of high-quality Co/granular-Sb2Te3interfaces, with also the possibility to tune the magneto-structural properties of the Co layer through a proper substrate selection. In order to improve the structural properties of the Sb2Te3, specific thermal treatments were performed on the as deposited granular Sb2Te3, achieving highly oriented films with a nearly epitaxial fashion. The latter substrates were used to produce Au/Co/epitaxial-Sb2Te3 and Au/Co/Au/epitaxial-Sb2Te3 and the dynamic of the magnetization in these structures was investigated studying their FMR response. The FMR data for the Au/Co/Sb2Te3 samples were interpreted considering the presence of a dominant contribution attributed to the Two Magnon Scattering (TMS), likely due to the presence of an unwanted magnetic roughness at the Co/epitaxial-Sb2Te3 interface. The introduction of a Au interlayer to avoid the direct contact between Co and Sb2Te3 layers was shown to be beneficial for the total suppression of the TMS effect. SP-FMR measurements were conducted on the optimized Au/Co/Au/epitaxial-Sb2Te3 structure, highlighting the role played by the epitaxial Sb2Te3substrate in the SP process. The SP signals for the Au/Co/Au/Si(111) and Co/Au/Si(111) reference samples were measured and used to determine the effective spin-to-charge conversion efficiency achieved with the introduction of the epitaxial Sb2Te3 layer. The extracted SCC efficiency was calculated interpreting the SP-FMR data using the Inverse Edelstein effect and Inverse Spin-Hall effect models, which demonstrated that the Sb2Te3 3D-TI is a promising candidate to be employed in the next generation of spintronic devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Tseng, Hsiang-Han. "Towards controlling the coercivity in molecular thin films for spintronic applications." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/33845.

Full text
Abstract:
Organic semiconductors have attracted worldwide interest for the past two decades. The properties of these molecules can be easily manipulated and exploited, and furthermore benefit from chemical versatility, mechanical flexibility and low cost. This has led to a remarkable success in the field of plastic electronics and molecules have found numerous device applications such as photovoltaic cells (PV), organic light emitting diode (OLED), organic field effect transistor (OFET) and sensors. Organic semiconductors have recently become of considerable interest for spintronic applications, due to the long spin relaxation times and magneto-resistive effects observed in these systems. In order to fully exploit the advantages of these molecules for spintronic applications, it is essential to explore molecular routes towards all organic spin valves and search for molecule-based magnets as alternatives to conventional spin injector/detector such as La0.67Sr0.33 MnO3 (LMSO) and Co. The scope of this thesis is to investigate the way to control the functional properties and in particular the magnetic interactions and coercivities in molecular thin films, with an emphasis on the charge-transfer salt, [MnTPP][TCNQ], and a ferromagnetic system, FePc (including mixed H2Pc:FePc), respectively, fabricated by organic molecular beam deposition (OMBD). Although the magnetic couplings are currently limited to cryogenic temperature, it is shown that it is possible to engineer exotic physical properties in these mixed films, where the magnetism seen as an intrinsic property to the functional molecules shows a strong dependence on the local chemical structure and spatial displacement for the magnetic ions, which can be manipulated by addition of electron acceptor and non-magnetic substituent. Compared to conventional magnetic semiconductors, this approach is a molecular route towards tuneable magnetic properties, allowing one to directly control the magnetic interactions by varying the film composition via co-deposition, a desirable property that is obtained in the film form and readily exploited in all organic spintronic applications.
APA, Harvard, Vancouver, ISO, and other styles
5

Bruneel, Pierre. "Electronic and spintronic properties of the interfaces between transition metal oxides." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP047.

Full text
Abstract:
Cette thèse porte sur les propriétés de transport anormal des oxydes de métaux de transition, en particulier de la surface de SrTiO₃ ou de l’interface entre SrTiO₃ et LaAlO₃. Dans ces systèmes on observe l’apparition de gaz d’électrons bidimensionnels. Des mesures d’Effet Hall non linéaire indiquent que ces gaz sont constitués de plusieurs sortes de porteurs de charge, et que leurs populations varient de manière non monotone sous l’effet du dopage électrostatique. L’effet des propriétés électrostatiques et des corrélations électroniques sur ces variations sont discutées. Celles-ci sont à l’origine de réponses remarquables en ce qui concerne la conversion du spin en charge dans ces systèmes à l’aide d’un modèle de liaisons fortes et de la théorie de la réponse linéaire. Les effets conjoints du spin-orbite atomique et de la brisure de symétrie d’inversion à l’interface verrouille les nombres quantiques de spin, de caractère orbital et d’impulsion des électrons, et induit des textures de spin complexe dans l’espace réciproque. Ces textures sont responsables de l’apparition des effets Edelstein et Hall de spin dans ces hétérostructures et sont caractéristiques de la nature multi-orbitale de ces systèmes électroniques. Enfin nous conduirons une étude ab initio des hétérostructures STO/LAO/STO pour expliquer les observations expérimentales de nouvelles manières de former un gaz d’électrons à ces interfaces d’oxydes. Nous discuterons des rôles respectifs de la chimie, de l’électrostatique et des défauts dans l’apparition de ce gaz
The anomalous transport properties of transition metal oxides, in particular the surface of SrTiO₃ or at the interface between SrTiO₃ and LaAlO₃ is investigated in this thesis. These systems host two-dimensional electron gases. Nonlinear Hall Effect measurements suggest that several species of carriers are present in these systems, and that their population is varying on a nontrivial manner upon electrostatic doping. The role of the electrostatics properties of the electron gas and of the electronic correlations are discussed in this light. Next we discuss the spin to charge conversion of these systems thanks to tight-binding modeling and linear response theory. The complex interplay between atomic spin-orbit coupling and the inversion symmetry breaking at the interface leads to a complex spin-orbital-momentum locking of the electrons, inducing spin textures. These spin textures are responsible for the appearance of the Edelstein and Spin Hall Effect in these heterostructures and are characteristic of the multi-orbital character of these electronic systems. Finally an ab initio study of STO/LAO/STO heterostructures is performed to explain experimental evidence of new ways to produce an electron gas at this interface. The respective roles of the chemistry, electrostatics and defects are discussed
APA, Harvard, Vancouver, ISO, and other styles
6

Lacoste, Bertrand. "Mastering the influence of thermal fluctuations on the magnetization switching dynamics of spintronic devices." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENY039/document.

Full text
Abstract:
Les mémoires magnétiques à couple de transfert de spin (STTRAM) sont des mémoires vives non-volatiles et endurantes très prometteuses pour remplacer les mémoires à base de condensateurs. Cependant, pour les technologies actuelles de STTRAM à aimantation planaire ou hors-du-plan, le temps de commutation est limité à 10~ns car le processus de renversement de l'aimantation est stochastique, déclenché par les fluctuations thermiques. Dans l'optique de rendre la commutation déterministe et plus rapide, une approche consiste à ajouter à la jonction tunnel magnétique une autre couche polarisante en spin, avec une aimantation orthogonale à celle de la couche de référence. Nous nous sommes intéressé plus particulièrement aux jonctions tunnels magnétiques planaires avec un polariseur perpendiculaire (à aimantation hors du plan). Le STT du polariseur perpendiculaire amorce le retournement d'aimantation, mais il provoque aussi des oscillations de la résistance de la jonction entre ses valeurs extrêmes. Cette particularité est mise à profit pour la réalisation de nano-oscillateurs (STO). Dans cette thèse, la dynamique d'aimantation du système comprenant une couche libre planaire, une couche de référence planaire et un polariseur perpendiculaire est étudiée, aussi bien expérimentalement que théoriquement (analytiquement et en simulations), dans l'approximation de macrospin. Dans le cas d'une couche libre oscillante sous l'action du STT du polariseur perpendiculaire, une description précise de ces oscillations est présentée, dans laquelle le champ d'anisotropie, le champ appliqué et le STT de la couche de référence planaire sont traités en perturbations. Dans le cas d'une couche libre ferrimagnétique synthétique (SyF), les expressions analytiques des courants critiques et des équations du mouvement sont calculées et comparées aux simulations. Ces résultats sont ensuite utilisés pour réaliser le diagramme de phase du système complet. L'anisotropie uniaxiale joue un role important, ce qui est confirmé par des mesures de retournement en temps réel réalisées sur des échantillons de nano-piliers à base de MgO. L'influence relative des STT provenant de la couche de référence et du polariseur perpendiculaire peut être ajsutée en jouant sur le rapport d'aspect des cellules, ce qui permet d'obtenir un retournement controlé en moins d'une nanoseconde avec une STTRAM
Spin-transfer torque magnetic random-access memory (STTRAM) are very promising non-volatile and enduring memories to replace charged-based RAM. However, in conventional in-plane or out-of-plane STTRAM technologies, the switching time is limited to about 10~ns because the reversal process is stochastic i.e. it is triggered by thermal fluctuations. In order to render the reversal deterministic and faster, an approach consists in adding to the magnetic tunnel junction (MTJ) stack another spin-polarizing layer whose magnetization is orthogonal to that of the MTJ reference layer. We particularly investigated the case where a perpendicular polarizer is added to an in-plane magnetized tunnel junction. The STT from the perpendicular polarizer initiates the reversal, but it also creates oscillations of the resistance between its two extremal values. This behavior is usually interesting to realize STT nano-oscillators (STO). In this thesis, the dynamics of the system comprising an in-plane free layer, an in-plane reference layer and a perpendicular polarizer is studied both experimentally and theoretically (analytically and by simulations) in the framework of the macrospin approximation. For a single layer free layer oscillating due to the STT of the perpendicular polarizer, an accurate description of the oscillations is presented, in which the anisotropy field, the applied field and the in-plane STT are treated as perturbations. In the particular case of a synthetic ferrimagnetic (SyF) free layer, analytical expressions of the critical currents and of the oscillations equation of motion are computed and compared to simulations. These results are used to determine the phase diagram of the complete system. The in-plane anisotropy field is found to play a dramatic role, which is confirmed by experimental data from real-time measurements on MgO-based nano-pillars. It is shown that the cell aspect ratio can be used to tune the relative influence of the STT from the in-plane reference layer and from the out-of-plane polarizer. This allows achieving well controlled sub-nanosecond switching in STTRAM
APA, Harvard, Vancouver, ISO, and other styles
7

Kane, Matthew Hartmann. "Investigaton of the Suitability of Wide Bandgap Dilute Magnetic Semiconductors for Spintronics." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16166.

Full text
Abstract:
New semiconductor materials may enable next-generation â spintronicâ devices which exploit both the spin and charge of an electron for data processing, storage, and transfer. The realization of such devices would benefit greatly from room temperature ferromagnetic dilute magnetic semiconductors. Theoretical predictions have suggested that room temperature ferromagnetism may be possible in the wide bandgap semiconductors GaMnN and ZnMnO, though the existing models require input from the growth of high-quality materials. This work focuses on an experimental effort to develop high-quality materials in both of these wide bandgap materials systems. ZnMnO and ZnCoO single crystals have been grown by a modified melt growth technique. X-ray diffraction was used to examine the structural quality and demonstrate the single crystal character of these devices. Substitutional transition metal incorporation has been verified by optical transmission and electron paramagnetic resonance measurements. No indications of ferromagnetic hysteresis are observed from the bulk single crystal samples, and temperature dependent magnetization studies demonstrate a dominant antiferromagnetic exchange interaction. Efforts to introduce ferromagnetic ordering were only successful through processing techniques which significantly degraded the material quality. GaMnN thin films were grown by metalorganic chemical vapor deposition. Good crystalline quality and a consistent growth mode with Mn incorporation were verified by several independent characterization techniques. Substitutional incorporation of Mn on the Ga lattice site was confirmed by electron paramagnetic resonance. Mn acted as a deep acceptor in GaN. Nevertheless, ferromagnetic hysteresis was observed in the GaMnN films. The apparent strength of the magnetization correlated with the relative ratio of trivalent to divalent Mn. Valence state control through codoping with additional donors such as silicon was observed. Additional studies on GaFeN also showed a magnetic hysteresis. A comparison with implanted samples showed that the common origin to the apparent strong ferromagnetic hysteresis related to contribution from Mn substitutional ions. The observed magnetic hysteresis is due to the formation of Mn-rich regions during the growth process. This work demonstrated that the original intrinsic models for room temperature ferromagnetism in the wide bandgap semiconductors do not hold and the room temperature ferromagnetism in these materials results from extrinsic contributions.
APA, Harvard, Vancouver, ISO, and other styles
8

Hope, B. T. "The electronic structure and spintronic potential of carbon nanotubes and transition metal nanowires : a theoretical investigation." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604218.

Full text
Abstract:
The new technology of spintronics seeks to employ the quantum mechanical spin of electrons to encode and process information. For the construction of spintronic devices, a wide range of possible materials is available. Two highly promising candidates are carbon nanotubes (CNTs) and transition metals (TMs). The former are famous for their long coherence-lengths and novel electronic properties; the latter bring strong exchange forces and ferromagnetism. In this thesis I investigate, theoretically, a number of CNT and TM-nanowire systems to characterize their potential for use in spintronics. First the idea of using applied magnetic fields to influence spin in CNTs is studied to see if they could act either as polarizers or to rotate the polarization angel. Then the spin-dependent electronic structure of free-standing and CNT-encapsulated Co nanowires is examined for signs of spin-polarization under the density of states (DOS), ballistic and diffusive definitions. A variety of methods are used in the investigation. Tight-binding, elementary energy-scale analysis and free-electron rectangular-barrier models are applied to study CNTs in magnetic fields. To compute magnetic moments, energy bands and DOS of the Co nanowires, density-functional theory is used, implemented by the Vienna ab initio Simulation Package (VASP). It is shown that magnetic fields of feasible strength, applied to CNTs, do have potential in certain specialized schemes, most relevant to the quantum computation (QC) regime, but in general are too weak to have an impact on the spin ensembles relevant to classical computation (CC) applications. Unless acting upon isolated resonances, the system is inefficient both as a polarizer and as a spin processor. In contrast, very significant spin-polarization, with CC potential, is found to arise spontaneously in CO nanowires, albeit in a highly definition-dependent manner. For all but the monatomic wire, there is stark disagreement between the DOS, ballistic and diffusive degree of spin-polarization (DSPs). This is shown to result from the intrinsic nature of d and sp bands together with hybridization effects. Magnetism is also a central theme in nanoscience, in particular for high-density information storage. Magnetic moments tend to increase at reduced dimensionality but long-range order is more sensitive to temperature effects which can result in superparamagnetism unless it is supported by magnetic anisotropy. With relevance to this, the analysis of Co nanowires encompasses the mechanisms of ferromagnetism and the degree of magnetic apisotropy. An inverse correlation between magnetic moment and coordination number is found and discussed with reference to the Stoner model, the second moment theorem, and sp-d hybridization. The magnetocrystalline anisotropy is found to be much larger than in bulk Co and the easy axis depends sensitivity on wire diameter. Encapsulating Co wires inside CNTs provides a way of protecting the Co against oxidation. It also has the potential to unify the desirable properties of the component systems in a novel approach to inducing spin-polarization in CNTs. By repeating the VASP simulations on these hybrid nanostructures, I show that a high DSP can be associated with a CNT in this way, but it is argued that the transport length-scales of pure CNTs are no longer applicable.
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Chunlei. "Studies of the spintronic systems of ferromagnetic GaMnAs and non-magnetic InGaAs/InAlAs two dimensional electron gas /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?PHYS%202005%20YANG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Davesne, Vincent. "Organic spintronics : an investigation on spin-crossover complexes from isolated molecules to the device." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-01062266.

Full text
Abstract:
We have studied by STM, SQUID, X-ray reflectivity, X-ray diffraction, optical absorption and XAS Fe(phen)2(NCS)2 and Fe{[3,5-dimethylpyrazolyl]3BH}2 samples deposited by thermal evaporation on Cu(100), Co(100) and SiO2 substrates, and compared with results on powder samples. We have confirmed the existence of the soft X-ray induced excited spin state trapping (SOXIESST), and investigated its properties, in particular dynamic aspects. The effect is sensitive to the intensity and the structure of the applied X-ray beam, and is non-resonant. We suggest that its efficiency is also governed by metal-ligand charge transfer states (MLCT). The study of single molecules has revealed that they could be switched by voltage pulses, and by this way building memristive devices, but only if the influence of the substrate is sufficiently reduced. We have then investigated thin films with the help from a simple thermodynamic model, and evidenced that the cooperativity was reduced and the transition temperature is modified (higher for Fe-phen, and lower for Fe-pyrz). Finally, we use these results to build multilayer vertical devices Au/Fe-phen/Au, and its electrical properties depends, according to our preliminary results, on the external stimuli (temperature, magnetic field). Notably, they present a "diode" effect at the spin transition.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "THz Spintronic"

1

(Hideaki), Takayanagi H., Nitta Junsaku, and Nakano Hayato, eds. Controllable quantum states: Mesoscopic Superconductivity and Spintronics : proceedings of the International Symposium. New Jersey: World Scientific Publishing Co., 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

H, Takayanagi, and Nitta Junsaku, eds. Towards the controllable quantum states: Mesoscopic superconductivity and spintronics : Atsugi, Kanagawa, Japan, 4-6 March 2002. River Edge, N.J: World Scientific, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

International Symposium on Mesoscopic Superconductivity and Spintronics (2004 Atsugi, Kanagawa, Japan). Realizing controllable quantum states: Mesoscopic superconductivity and spintronics ın the light of quantum computation : Atsugi, Kanagawa, Japan, 1-4 March 2004. Edited by Takayanagi H and Nitta Junsaku. Singapore: World Scientific, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

The elements of continuum mechanics. 2nd ed. New York: Springer-Verlag, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

IFF-Ferienkurs (34th 2003 Forschungszentrum Jülich). Fundamentals of nanoelectronics: Lecture manuscripts of the 34th Spring School of the Department of Solid State Research : this spring school was organized on March 10-21, 2003 in the Forschungszentrum Jülich GmbH by the Institut für Festkörperforschung in collaboration with universities, research institutes and the industry. Jülich: Forschungszentrum Jülich, Institut für Festkörperforschung, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

International Winter School on New Developments in Solid State Physics (13th 2004 Mauterndorf, Austria). Proceedings of the Thirteenth International Winterschool on New Developments in Solid State Physics: Low-dimensional systems : held in Mauterndorf, Austria, 15-20 February 2004. Edited by Bauer G. 1942-, Jantsch W. 1946-, and Kuchar F. 1941-. Amsterdam, The Netherlands: Elsevier, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

International Winter School on New Developments in Solid State Physics (13th 2004 Mauterndorf, Austria). Proceedings of the Thirteenth International Winterschool on New Developments in Solid State Physics: Low-dimensional systems : held in Mauterndorf, Austria, 15-20 February 2004. Edited by Bauer G. 1942-, Jantsch W. 1946-, and Kuchar F. 1941-. Amsterdam, The Netherlands: Elsevier, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dieter, Dahmen Hans, and SpringerLink (Online service), eds. The Picture Book of Quantum Mechanics. 4th ed. New York, NY: Springer New York, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

service), SpringerLink (Online, ed. Atomic Scale Interconnection Machines: Proceedings of the 1st AtMol European Workshop Singapore 28th-29th June 2011. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lorente, Nicolas. Architecture and Design of Molecule Logic Gates and Atom Circuits: Proceedings of the 2nd AtMol European Workshop. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "THz Spintronic"

1

Papaioannou, Evangelos, Garik Torosyan, and Rene Beigang. "Spintronic THz Emitters." In Advances in Terahertz Source Technologies, 143–79. New York: Jenny Stanford Publishing, 2024. http://dx.doi.org/10.1201/9781003459675-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mattana, Richard, Nicolas Locatelli, and Vincent Cros. "Spintronics and Synchrotron Radiation." In Springer Proceedings in Physics, 131–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64623-3_5.

Full text
Abstract:
AbstractHaving access to the electronic and magnetic properties of spintronic systems is of crucial importance in view of their future technological developments. Our purpose in this chapter is to elaborate how a variety of synchrotron radiation-based measurements provides powerful and often unique techniques to probe them. We first introduce general concepts in spintronics and present some of the important scientific advances achieved in the last 30 years. Then we will describe some of the key investigations using synchrotron radiation concerning voltage control of magnetism, spin-charge conversion and current-driven magnetization dynamics.
APA, Harvard, Vancouver, ISO, and other styles
3

Gao, Haitao, Alexandra Jung, Irene Bonn, Vadim Ksenofontov, Sergey Reiman, Claudia Felser, Martin Panthöfer, and Wolfgang Tremel. "Substitution Effects in Double Perovskites: How the Crystal Structure Influences the Electronic Properties." In Spintronics, 61–70. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-90-481-3832-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fecher, Gerhard H., Stanislav Chadov, and Claudia Felser. "Theory of the Half-Metallic Heusler Compounds." In Spintronics, 115–65. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-90-481-3832-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wüstenberg, Jan-Peter, Martin Aeschlimann, and Mirko Cinchetti. "Characterization of the Surface Electronic Properties of Co2Cr1−xFexAl." In Spintronics, 271–84. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-90-481-3832-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Galbiati, Marta. "State of the Art in Organic and Molecular Spintronics." In Molecular Spintronics, 29–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22611-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Galbiati, Marta. "State of the Art in Alq3-Based Spintronic Devices." In Molecular Spintronics, 139–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22611-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jin, Hanmin, and Terunobu Miyazaki. "Technology that Accompanies the Development of Spintronics Devices." In The Physics of Ferromagnetism, 447–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25583-0_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pershin, I., A. Knizhnik, V. Levchenko, A. Ivanov, and B. Potapkin. "The Fouriest: High-Performance Micromagnetic Simulation of Spintronic Materials and Devices." In Advances in Intelligent Systems and Computing, 209–31. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22871-2_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Atanasova, Pavlina Kh, Stefani A. Panayotova, Elena V. Zemlyanaya, Yury M. Shukrinov, and Ilhom R. Rahmonov. "Numerical Simulation of the Stiff System of Equations Within the Spintronic Model." In Numerical Methods and Applications, 301–8. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10692-8_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "THz Spintronic"

1

Feng, Zheng, Dacheng Wang, Haifeng Ding, Jianwang Cai, and Wei Tan. "Photonic Structure Enhanced Spintronic Terahertz Emitter." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schneider, Robert, Mario Fix, Jannis Bensmann, Steffen Michaelis de Vasconcellos, Manfred Albrecht, and Rudolf Bratschitsch. "Switchable ultrafast spintronic THz emitters." In 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2021. http://dx.doi.org/10.1109/irmmw-thz50926.2021.9567227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scheuer, L., G. Torosyan, S. Keller, E. Th Pappaioannou, and R. Beigang. "Enhancement of THz Generation Using Multilayer Spintronic Emitters." In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rathje, Christopher, Rieke von Seggern, Nina Meyer, Christian Denker, Markus Munzenberg, and Sascha Schafer. "Emission Properties of Structured Spintronic Terahertz Emitters." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8873811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Awari, N., S. Kovalev, C. Fowley, K. Rode, Y. C. Lau, D. Betto, N. Thiyagarajah, et al. "Narrow band tunable spintronic THz emission from ferromagnetic nanofilms." In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schneider, Robert, Mario Fix, Jannis Bensmann, Steffen Michaelis de Vasconcellos, Manfred Albrecht, and Rudolf Bratschitsch. "Spintronic GdFe/Pt THz Emitter Systems." In 2020 45th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz). IEEE, 2020. http://dx.doi.org/10.1109/irmmw-thz46771.2020.9370724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bratschitsch, Rudolf. "Ultrafast spintronic THz emitters (Conference Presentation)." In Spintronics XV, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2022. http://dx.doi.org/10.1117/12.2633298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shorrock, A., M. T. Hibberd, T. Thomson, P. W. Nutter, and D. M. Graham. "Role of magnetic field in THz emission from a spintronic source." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fiorentini, S., M. Bendra, J. Ender, T. Hadámek, W. J. Loch, N. P. Jθrstad, R. Orio, W. Goes, S. Selberherr, and V. Sverdlov. "Modeling advanced spintronic based magnetoresistive memory." In International Conference on Microwave & THz Technologies, Wireless Communications and OptoElectronics (IRPhE 2022). Institution of Engineering and Technology, 2022. http://dx.doi.org/10.1049/icp.2022.2795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Yang, Jungang Miao, Li Wang, Yutong Li, Weisheng Zhao, Xiaojun Wu, Yanbin He, et al. "Enhanced Spintronic Terahertz Emission in W/CoFeB Heterostructures Through Annealing Effect." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874416.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "THz Spintronic"

1

Guha, Supratik, H. S. Philip Wong, Jean Anne Incorvia, and Srabanti Chowdhury. Future Directions Workshop: Materials, Processes, and R&D Challenges in Microelectronics. Defense Technical Information Center, June 2022. http://dx.doi.org/10.21236/ad1188476.

Full text
Abstract:
Microelectronics is a complex field with ever-evolving technologies and business needs, fueled by decades of continued fundamental materials science and engineering advancement. Decades of dimensional scaling have led to the point where even the name microelectronics inadequately describes the field, as most modern devices operate on the nanometer scale. As we reach physical limits and seek more efficient ways for computing, research in new materials may offer alternative design approaches that involve much more than electron transport e.g. photonics, spintronics, topological materials, and a variety of exotic quasi-particles. New engineering processes and capabilities offer the means to take advantage of new materials designs e.g. 3D integration, atomic scale fabrication processes and metrologies, digital twins for semiconductor processes and microarchitectures. The wide range of potential technological approaches provides both opportunities and challenges. The Materials, Processes, and R and D Challenges in Microelectronics Future Directions workshop was held June 23-24, 2022, at the Basic Research Innovation Collaboration Center in Arlington, VA, to examine these opportunities and challenges. Sponsored by the Basic Research Directorate of the Office of the Under Secretary of Defense for Research and Engineering, it is intended as a resource for the S and T community including the broader federal funding community, federal laboratories, domestic industrial base, and academia.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography