Academic literature on the topic 'THz near field'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'THz near field.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "THz near field"

1

Niessen, Katherine, Yanting Deng, and A. G. Markelz. "Near-field THz micropolarimetry." Optics Express 27, no. 20 (September 18, 2019): 28036. http://dx.doi.org/10.1364/oe.27.028036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hunsche, S., M. Koch, I. Brener, and M. C. Nuss. "THz near-field imaging." Optics Communications 150, no. 1-6 (May 1998): 22–26. http://dx.doi.org/10.1016/s0030-4018(98)00044-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

von Ribbeck, H. G., M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann. "Spectroscopic THz near-field microscope." Optics Express 16, no. 5 (2008): 3430. http://dx.doi.org/10.1364/oe.16.003430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Dong-Kyu, Giyoung Kim, Chulki Kim, Young Min Jhon, Jae Hun Kim, Taikjin Lee, Joo-Hiuk Son, and Minah Seo. "Ultrasensitive Detection of Residual Pesticides Using THz Near-Field Enhancement." IEEE Transactions on Terahertz Science and Technology 6, no. 3 (May 2016): 389–95. http://dx.doi.org/10.1109/tthz.2016.2538731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schade, U., K. Holldack, P. Kuske, G. Wüstefeld, and H. W. Hübers. "THz near-field imaging employing synchrotron radiation." Applied Physics Letters 84, no. 8 (February 23, 2004): 1422–24. http://dx.doi.org/10.1063/1.1650034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adam, Aurèle J. L., Janne M. Brok, Paul C. M. Planken, Min Ah Seo, and Dai Sik Kim. "THz near-field measurements of metal structures." Comptes Rendus Physique 9, no. 2 (March 2008): 161–68. http://dx.doi.org/10.1016/j.crhy.2007.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stantchev, Rayko I., David B. Phillips, Peter Hobson, Samuel M. Hornett, Miles J. Padgett, and Euan Hendry. "Compressed sensing with near-field THz radiation." Optica 4, no. 8 (August 17, 2017): 989. http://dx.doi.org/10.1364/optica.4.000989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Junkin, Gary. "PHASE SHIFTING HOLOGRAPHY FOR THZ NEAR-FIELD/FAR-FIELD PREDICTION." Progress In Electromagnetics Research Letters 44 (2014): 15–21. http://dx.doi.org/10.2528/pierl13093006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Zhongbo, Dongyun Tang, Jiao Hu, Mingjie Tang, Mingkun Zhang, Hong‐Liang Cui, Lihua Wang, et al. "THz Near‐Field Imaging: Near‐Field Nanoscopic Terahertz Imaging of Single Proteins (Small 3/2021)." Small 17, no. 3 (January 2021): 2170008. http://dx.doi.org/10.1002/smll.202170008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar, Nishant, Andrew C. Strikwerda, Kebin Fan, Xin Zhang, Richard D. Averitt, Paul C. M. Planken, and Aurèle J. L. Adam. "THz near-field Faraday imaging in hybrid metamaterials." Optics Express 20, no. 10 (May 2, 2012): 11277. http://dx.doi.org/10.1364/oe.20.011277.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "THz near field"

1

von, Ribbeck Hans-Georg. "THz Near-Field Microscopy and Spectroscopy." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-163917.

Full text
Abstract:
Imaging with THz radiation at nanoscale resolution is highly desirable for specific material investigations that cannot be obtained in other parts of the electromagnetic spectrum. Nevertheless, classical free-space focusing of THz waves is limited to a >100 μm spatial resolution, due to the diffraction limit. However, the scattering- type scanning near-field optical microscopy (s-SNOM) promises to break this diffraction barrier. In this work, the realization of s-SNOM and spectroscopy for the THz spectral region from 30–300 μm (1–10 THz) is presented. This has been accomplished by using two inherently different radiation sources at distinct experimental setups: A femtosecond laser driven photoconductive antenna, emitting pulsed broadband THz radiation from 0.2–2 THz and a free-electron laser (FEL) as narrow-band high-intensity source, tunable from 1.3–10 THz. With the photoconductive antenna system, it was demonstrated for the first time that near-field spectroscopy using broadband THz-pulses, is achievable. Hereby, Terahertz time-domain spectroscopy with a mechanical delay stage (THz-TDS) was realized to obtain spectroscopic s-SNOM information, with an additional asynchronous optical sampling (ASOPS) option for rapid far-field measurements. The near-field spectral capabilities of the microscope are demonstrated with measurements on gold and on variably doped silicon samples. Here it was shown that the spectral response follows the theoretical prediction according to the Drude and the dipole model. While the broadband THz-TDS based s-SNOM in principle allows for the parallel recording of the full spectral response, the weak average power of the THz source ultimately limits the technique to optically investigate selected sample locations only. Therefore, for true THz near-field imaging, a FEL as a high-intensity narrow- band but highly-tunable THz source in combination with the s-SNOM technique, has been explored. Here, the characteristic near-field signatures at wavelengths from 35–230 μm are shown. Moreover, the realization of material sensitive THz near-field imaging is demonstrated by optically resolving, a structured gold rod with a reso- lution of up to 60 nm at 98 μm wavelength. Not only can the gold be distinguished from the silica substrate but moreover parts of the structure have been identified to be residual resin from the fabrication process. Furthermore, in order to explore the resolution capabilities of the technique, the near-fields of patterned gold nano- structures (Fischer pattern) were imaged with a 50 nm resolution at wavelengths up to 230 μm (1.2 THz). Finally, the imaging of a topography-independent optical material contrast of embedded organic structures, at exemplary 150 μm wavelength is shown, thereby demonstrating that the recorded near-field signal alone allows us to identify materials on the nanometer scale. The ability to measure spectroscopic images by THz-s-SNOM, will be of benefit to fundamental research into nanoscale composites, nano-structured conductivity phenomena and metamaterials, and furthermore will enable applications in the chemical and electronics industries
Die Bildgebung mit THz Strahlung im Nanobereich ist höchst wünschenswert für genaue Materialuntersuchungen, welche nicht in anderen Spektralbereichen durchgeführt werden kann. Aufgrund des Beugungslimits ist kann jedoch mit klassischen Methoden keine bessere Auflösung als etwa 100 μm für THz-Strahlung erreicht werden. Die Methode der Streulicht-Nahfeldmikroskopie (s-SNOM) verspricht jedoch dieses Beugungslimit zu durchbrechen. In der vorliegenden Arbeit wird die Realisierung der Nahfeld-Mikroskopie und Spektroskopie im THz-Spektralbereich von 30–1500 μm (0.2–10 THz) präsentiert. Dies wurde mittels zweier grundsätzlich unterschiedlichen Strahlungsquellen an separaten Experimentaufbauten erreicht: Einer photoleitenden Antenne welche gepulste breitbandige THz-Strahlung von 0.2–2 THz emittiert, sowie einem Freie- Elektronen Laser (FEL) als schmalbandige hochleistungs Quelle, durchstimmbar von 1.3–10 THz. Mit dem photoleitenden Antennensystem konnte zum ersten mal demonstriert werden, dass mit breitbandigen THz-Pulsen Nahfeldspektroskopie möglich ist. Dazu wurde die übliche THz-Time-Domain-Spektroskopie (THz-TDS) zur Erhaltung der spektroskopischen s-SNOM Informationen, sowie asynchrones optisches Abtasten (ASOPS) für schnelle Fernfeld Spektroskopie eingesetzt. Die nahfeldspektroskopischen Fähigkeiten des Mikroskops wurden anhand von Messungen an Gold sowie unterschiedlich dotierten Siliziumproben demonstriert. Dabei konnte gezeigt werden, dass die spektrale Antwort den theoretischen Voraussagen des Drude- sowie Dipol Modells folgt. Während das breitband THz-TDS basierte s-SNOM spektroskopische Nahfelduntersuchungen zulässt, limitiert jedoch die schwache Ausgangsleistung der THz-quelle diese Technik insofern, dass praktisch nur Punktspektroskopie an ausgesuchten Probenstellen möglich ist. Für echte nanoskopische Nahfeldbildgebung wurde daher ein FEL als durchstimmbare hochleistungs THz-Quelle in Kombination mit der s-SNOM-Technik erforscht. Hierzu wurden die charakteristischen Nahfeld-Signaturen bei Wellenlängen von 35–230 μm untersucht, gefolgt von die Verwirklichung materialsensitiver THz Nahfeldbildgebung gezeigt an Goldstreifen mit bis zu 60 nm Auflösung. Dabei kann nicht nur das Gold von dem Glassubstrat unterschieden werden, sondern auch Ablagerungen als Überreste des Fabrikationsprozesses identifiziert werden. Um die Grenzen der Auflösungsmöglichkeiten dieser Technik zu sondieren, wurden weiterhin die Nahfelder von gemusterten Gold-Nanostrukturen (Fischer-Pattern) bei Wellenlängen bis zu 230 μm (1.2 THz) abgebildet. Hierbei wurde eine Auflösung von 50 nm festgestellt. Schliesslich konnte der topographieunabhängige Materialkontrast von eingebetteten organischen Strukturen, exemplarisch bei 150 μm Wellenlänge, gezeigt werden. Die Fähigkeit, spektroskopische Aufnahmen mittels der THZ-s-SNOM Technik zu erzeugen, wird der Grundlagenforschung und in der Nanotechnologie zu Gute kommen, und weiterhin Anwendungen in der Chemischen- und Halbleiterindustrie ermöglichen
APA, Harvard, Vancouver, ISO, and other styles
2

Tuo, Mingguang, Min Liang, Jitao Zhang, and Hao Xin. "Time-Domain THz Near-Field Imaging Incorporating Hadamard Multiplexing Method." IEEE, 2016. http://hdl.handle.net/10150/622785.

Full text
Abstract:
Photoconductive antenna (PCA) array based THz near-field imager incorporating Hadamard multiplexing method is developed in this work. By using a 2 × 2 dipole antenna array as the THz transmitter, the system signal-to-noise ratio (SNR) is demonstrated to be improved by a factor of 2 as the theory predicts. Additionally, a 2-D scanning of a metallic structure on a THz-transparent substrate (with a total scanning area of 1 × 1 mm2) is experimentally implemented. Correlation coefficient estimation is made afterwards to quantify the reconstructed image quality.
APA, Harvard, Vancouver, ISO, and other styles
3

Szelc, Jedrzej. "THz imaging and microscopy : a multiplexed near-field TeraHertz microscope." Thesis, University of Southampton, 2011. https://eprints.soton.ac.uk/209643/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stantchev, Rayko Ivanov. "Non-invasive near-field THz imaging using a single pixel detector." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/27766.

Full text
Abstract:
The terehertz radiation potentially has many interesting applications. From air port security, non-destructive evaluations of electronics and space shuttle panels, to non-ionizing photon energies with the potential to detect cancer growths and quality control of pharmaceutical tables, the list of potential applications is vast as shown in chapter 1. However, there is a lack of cheap, robust and efficient THz sources, detectors and modulators. Further, the long wavelengths render micron sized details unseeable with far-field imaging techniques. This has rendered most imaging applications unusable in the real world. This thesis is based around demonstrating an imaging technique that uses a near-field THz modulator to obtain sub-wavelength images. There are five distinct experimental demonstrations that show the full capacity of the imaging technique developed here. Chapter 2 gives an outline of the background physics knowledge needed to understand the entirety of the thesis. An outline of the mathematics used for modellingis given in the latter part of the chapter as well. Chapter 3 gives a background on the THz generation and detection techniques used in our THz-TDS system, optical rectification and electro-optic sampling in ZnTe. Further more, our system is capable of photoexciting a sample in conjunction to it being probed with a THz pulse. For the most part, we photoexcite a silicon wafer in order to use its photoconductive properties to modulate our THz pulse. Our photoexcitation pulse is spatially modulated, via a digital micromirror device, which in turn spatially modulates our THz pulse. This patterned THz pulse can then be used with a single-element detector to perform imaging. How to do this and the type of patterns needed is described in the latter part of chapter 3. Chapter 4 is the first demonstration that photo-induced conductivity in silicon can be used to manipulate evanescent THz fields for sub-wavelength imaging. For this, we imaged a 1D sub-wavelength slit and were able to obtain the slit profile with 65μm (λ/6 at 0.75T Hz) resolution. Chapter 5 demonstrates what limits the resolution in our imaging system. Namely, the distance which the patterned THz pulse propagates to the object from where itwas spatially modulated. We demonstrate 9μm (λ/45 at 0.75T Hz) resolution using an ultra-thin (6μm) silicon wafer. At such sub-wavelength scales polarization becomes an important factor. We show how one can use polarization in order to detect 8μm breaks in a circuit board hidden by 115μm of silicon. Chapter 6 concerns itself with showing how noise affects our images. Further more, our imaging system is compatible with compressed sensing where one can obtain an image using fewer measurements than the number of pixels. We investigate how different under-sampling techniques perform in our system. Note under-sampling at sub-wavelength resolutions, as is done here, is rather unusual and is of yet to be demonstrated for other part of the electro-magnetic spectrum. Chapter 7 shows that one does not need to photoexcite silicon. One can in principle illuminate any material, hence we photoexcite graphene with our spatially modulated optical pulses. This allows us to obtain the THz photoconductive response of our graphene sample with sub-wavelength resolution (75μm ≈ λ/5 at 0.75T Hz). We compare our results with Raman spectra maps. We find a clear correlation between THz photoconductivity and carrier concentration (extracted from Raman). Chapter 8 exploits the full capacity of our imaging system by performing hyper-spectral near-field THz imaging on a biological sample. For this, in our imaged field of view, we measured the full temporal trace of our THz pulse at a sub-wavelength spatial resolution. This has allowed us to extract the frequency dependent permittivity of our biological sample, articular cartilage, over our spectral range (0.2-2T Hz). We find the permittivity to change on a sub-wavelength scale in correlation with changes in the structure of our sample. However, the permittivity extraction procedures that have been developed make a far-field approximation. We mathematically show the presence of the THz near-fields to render the long wavelength spectral parts of our extracted permittivity to be wrong. Chapter 9 is where we conclude and point out the main problem that needs to be addressed in order to make the measurements presented here more accessible to others. Namely, the cost of the laser system powering the THz-TDS and how to further reduce the acquisition time.
APA, Harvard, Vancouver, ISO, and other styles
5

Pan, Yi. "Terahertz time-domain spectroscopy and near-field imaging of microstructured waveguides." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607613.

Full text
Abstract:
This thesis presents studies of novel terahertz photonic devices, including photoconductive optoelectronic devices and guided-wave components, aimed at the development of next-generation terahertz systems. In chapter 2, a scalable interdigitated THz transmitter is designed to increase the output power and compared with a conventional 50 μm coplanar transmitter. In chapter 3, we compare four different receivers with different antenna geometries in terms of bandwidth and sensitivity. Then we describe a photoconductive near-field detector with a subwavelength aperture and its system integration and characterization. In chapter 4, a parallel metal plate waveguide is designed with an integrated step inside the waveguide that can couple to higher order TM modes efficiently from the TEM mode. In this chapter, we also experimentally and numerically study a 2-dimensionally tapered parallel plate waveguide, by which a free-space THz beam can be focused into a deep subwavelength-scale volume. In chapter 5, a parallel thin dielectric film waveguide is used to explore the guiding mechanism of an antiresonant optical reflection waveguide. Cylindrical silica single capillaries and a microstructured capillary, which guide in a similar way, are characterized in terms of mode profiles and attenuation. In chapter 6, we study oblique transmission through freestanding thin nickel films, which are perforated with periodic conical hole arrays. Surface modes can be supported by both metallic surfaces with different nonlinear dispersion curves, which results in spectral interferences in a near-field region when the surface modes couple out of the waveguide into free space.
APA, Harvard, Vancouver, ISO, and other styles
6

von, Ribbeck Hans-Georg [Verfasser], Lukas [Akademischer Betreuer] Eng, and Thomas [Akademischer Betreuer] Dekorsy. "THz Near-Field Microscopy and Spectroscopy / Hans-Georg von Ribbeck. Gutachter: Lukas Eng ; Thomas Dekorsy. Betreuer: Lukas Eng." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://d-nb.info/106951828X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ben, Mbarek Sofiane. "Etude et réalisation d’antennes à concentration de champ pour la génération et la détection locale de champs électromagnétiques." Thesis, Besançon, 2011. http://www.theses.fr/2011BESA2018.

Full text
Abstract:
L’objectif de cette thèse est le développement des détecteurs pour la microscopie champproche électromagnétique pour deux domaines fréquentiels. Pour le domaine des microondesnous présentons des micro-antennes non conventionnelles basées sur un guidagecoplanaire et l’effet de pointe. Nous pr´esentons les différentes étapes de la conceptionet de la réalisation avec les techniques de micro-fabrication. L’évaluation de leur performancea été obtenue avec une confrontation des résultats de mesure et de cartographie surdes éléments passifs et ceux d’une modélisation d’intégration finie. Pour le domaine desTérahertz, nous avons réalisé des micro-bolométres à température ambiante. Dans le butd’améliorer l’absorption de ces d´etecteurs, leur conception a été basée sur l’étude théoriquede l’absorption d’une onde électromagnétique en incidence normale sur un empilement descouches métalliques et diélectrique. Deux versions ont été réalisées et caractérisées é l’aidedes sources électroniques qui peuvent atteindre 1, 1 THz en continue. Les performancesde ces d´etecteurs en termes de bruit, de sensibilit´e et de temps de r´eponse sont mises enexergue
The objective of this thesis is the development of detectors for near-field microscopy fortwo electromagnetic frequency domains. For microwave domain we present unconventionalmicro-antennas based on coplanar line and point effect. We present the different stages ofthe design and implementation with micro-fabrication technique. The evaluation of theirperformance was obtained with a comparison of measurement results and mapping ofpassive elements and those of a model of finite integration. For the THz domain, we performedroom temperature micro-bolometers. In order to improve the absorption of thesedetectors, their design was based on the theoretical study of the absorption of an electromagneticwave normally incident on a stack of metal and dielectric layers. Two versionswere prepared and characterized using electronic sources that can reach continuous 1,1THz. The performance of these detectors in terms of noise, sensitivity and time responseare highlighted
APA, Harvard, Vancouver, ISO, and other styles
8

Dovelos, Konstantinos. "Terahertz communications: Physical layer enablers and analysis." Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/673252.

Full text
Abstract:
Undoubtedly, spectrum scarcity constitutes the main bottleneck of current wireless networks. It is therefore imperative to move beyond the sub-6 GHz band in order to overcome this limitation. Toward this direction, terahertz (THz) communication is deemed a promising solution for future wireless systems owing to the abundant spectrum resources at these frequencies. Despite the prospect of terabit- per-second wireless links, THz signals suffer from severe propagation losses, which can undermine the communication range and performance of THz systems. In this dissertation, we tackle this challenge by putting forward two key physical layer technologies, namely massive multiple-input multiple-output (MIMO) and intelligent reflecting surfaces (IRSs). More particularly, this dissertation consists of two parts. In the first part, we thoroughly study the spatialwideband effect in THz massive MIMO. We commence by demonstrating that conventional narrowband beamforming/combining leads to substantial performance degradation for large antenna arrays and high transmission bandwidths. With this in mind, we propose a wideband array architecture based on true-timedelay and virtual subarrays. For the channel estimation problem, we introduce a wideband dictionary along with a novel variant of the orthogonal matching pursuit algorithm. Numerical simulations are provided showcasing that the proposed design enables: i) nearly squint-free beamforming/combining with a small number of true-time-delay elements; and ii) accurate channel acquisition with reduced pilot overhead even in the low signal-to-noise-ratio regime. In the second part, we focus on the fundamentals of IRSs at THz frequencies. Specifically, we show that an IRS has the potential to improve the energy efficiency of THz MIMO, when it is placed close to one of the link ends. As a result, electrically large IRSs are expected to operate in the radiating near-field zone, where the spherical wavefront of the emitted electromagnetic (EM) waves cannot be neglected. To this end, we introduce a spherical wave channel model by leveraging EM theory, which includes far-field as special case. Furthermore, we discuss the importance of using EM principles to characterize the path loss of IRS-aided links, as simplistic models may wrongly estimate the link budget and actual system performance. Our analysis reveals that: i) conventional far-field beamforming is highly suboptimal in terms of power gain, and hence beamfocusing is the optimal mode of operation for THz IRSs; and ii) frequencydependent beamfocusing is required in wideband THz transmissions, as beam squint can substantially reduce the achievable data rate.
APA, Harvard, Vancouver, ISO, and other styles
9

Waselikowski, Stefan [Verfasser], and Markus [Akademischer Betreuer] Walther. "Investigation of interaction of THz-radiation with metallic subwavelength sized structures in far- and near-field = Untersuchung der Wechselwirkung von THz-Strahlung mit metallischen subwellenlängengroßenStrukturen im Fern- und Nahfeld." Freiburg : Universität, 2014. http://d-nb.info/1123479976/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Beneš, Adam. "Plazmonické antény pro vysoké vlnové délky." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443226.

Full text
Abstract:
Tato diplomová práce se zabývá vlastnostmi plazmonických antén v oblasti vysokých vlnových délek. Důraz je kladen na popis rezonančních vlastností jednotlivých antén i antén uspořádaných do periodických polí. Těžiště práce spočívá v počítačovém modelování navýšení magnetického pole v blízkosti antén, které lze využít ve vysokofrekvenční elektronové paramagnetické rezonanci (HFEPR) k zesílení měřeného signálu. Autor se zabývá kvantifikací zesílení v anténách s odlišnou geometrií a navrhuje i geometrii vlastní. Značná část práce se také věnuje snaze rozlišit příspěvky k navýšení magnetického pole od různých zdrojů při měření HFEPR v uspořádání s dvojitou transmisí záření.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "THz near field"

1

Electromagnetic field measurements in the near field. Atlanta, Ga: Noble Pub., 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sulaiman, Ali Haidar. The Near-Saturn Magnetic Field Environment. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49292-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hubert, Trzaska, and Trzaska Hubert, eds. Electromagnetic measurements in the near field. 2nd ed. Raleigh, NC: SciTech Pub., 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Conference on Near-rings and Near-fields (1993 Fredericton, N.B.). Near-rings and near-fields: Proceedings of the Conference on Near-Rings and Near-Fields, Fredericton, New Brunswick, Canada, July 18-24, 1993. Dordrecht ; Boston: Kluwer Academic Publishers, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nearrings and nearfields: Proceedings of the Conference on Nearrings and Nearfields, Hamburg, Germany, July 27 - August 3, 2003. Dordrecht: Springer, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

1960-, Kiechle Hubert, Thomsen Momme Johs, and Kreuzer Alexander, eds. Nearrings and nearfields: Proceedings of the Conference on Nearrings and Nearfields, Hamburg, Germany, July 27-August 3, 2003. Dordrecht: Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yuen, Fong, ed. Near-rings and near-fields: Proceedings of the Conference on Near-rings and Near-fields, Stellenbosch, South Africa, July 9-16, 1997. Dordrecht: Kluwer Academic Publishers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1890-1957, Synge Edward Hutchinson, ed. Hutchie: The life and works of Edward Hutchinson Synge (1890-1957). Pöllauberg, Austria: Living Edition, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Muth, Lorant A. Displacement errors in antenna near-field measurements and their effect on the far field. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Smith, P. A. Some variations of the kristallin-I near-field model. Würenlingen: Paul Scherrer Institut (PSI), 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "THz near field"

1

Zhang, X. C., and Jingzhou Xu. "THz Wave Near-Field Imaging." In Introduction to THz Wave Photonics, 149–74. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0978-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yuan, Tao, Hongkyu Park, Jingzhou Xu, Haewook Han, and X. C. Zhang. "THz Wave Near-Field Emission Microscope." In Springer Series in Chemical Physics, 759–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27213-5_232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Merbold, Hannes, and Thomas Feurer. "Near-Field Imaging of Single-Cycle THz Pulses Transmitted Through Sub-Wavelength Metallic Slit Structures." In Springer Series in Chemical Physics, 714–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saha, Abhirupa, Sanjib Sil, Srikanta Pal, Bhaskar Gupta, and Piyali Basak. "THz Meta-Atoms Versus Lattice to Non-invasively Sense MDAMB 231 Cells in Near Field." In Advances in Terahertz Technology and Its Applications, 363–76. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5731-3_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

van der Valk, N. C. J., W. Th Wenckebach, and P. C. M. Planken. "Electro-optic detection of sub-wavelength THz spot sizes in the near-field of a metal tip." In Ultrafast Phenomena XIII, 295–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59319-2_92.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Smolyaninov, I. I. "Light Emission from the Tunnel Junction of the STM. Possible Role of Tcherenkov Effect." In Near Field Optics, 353–60. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bielefeldt, H., B. Hecht, S. Herminghaus, J. Mlynek, and O. Marti. "Direct Measurement of the Field Enhancement Caused by Surface Plasmons with the Scanning Tunneling Optical Microscope." In Near Field Optics, 281–86. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maystre, D. "A New Kind of Surface Wave: The Localiton." In Near Field Optics, 367–76. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pohl, D. W. "Some Remarks on the History of Near-Field Optics." In Near Field Optics, 1–5. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Keller, O., S. Bozhevolnyi, and M. Xiao. "On the Resolution Limit of Near-Field Optical Microscopy." In Near Field Optics, 229–37. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1978-8_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "THz near field"

1

Adam, A. J. L., J. M. Brok, P. C. M. Planken, M. A. Seo, and D. S. Kim. "Near-field microscopy of THz fields near metal structures." In Optical Terahertz Science and Technology. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/otst.2007.tua6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Trukhin, V. N., A. O. Golubok, and L. L. Samoilov. "Probe shape effect on near-field enhancement in apertureless terahertz near-field microscope." In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6104848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hunsche, S., M. Koch, I. Brener, and M. C. Nuss. "Near-Field THz Imaging." In Ultrafast Electronics and Optoelectronics. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/ueo.1997.uf6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Planken, Paul C. M. "THz near-field imaging and micro-spectroscopy." In 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2013). IEEE, 2013. http://dx.doi.org/10.1109/irmmw-thz.2013.6665552.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Herink, G., L. Wimmer, D. R. Solli, K. E. Echternkamp, S. V. Yalunin, and C. Ropers. "Enhanced THz-near-field controls nanotip photoemission." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pagies, A., G. Deokar, D. Ducatteau, D. Vignaud, and J. F. Lampin. "THz near-field nanoscopy of graphene layers." In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Do, Youngwoong, Soonsung Lee, Kiwon Moon, Jin-Woo Kim, and Haewook Han. "THz near-field microscopes: Optimum operation conditions." In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2017. http://dx.doi.org/10.1109/irmmw-thz.2017.8067204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Qureshi, Naser, Angelica Yesenia Garcia Jomaso, Joel Perez Urquizo, Gaudencio Paz Martinez, Jesus Garduno Mejia, and Carlos Trevino Palacios. "Integrated probes for near field THz microscopy." In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2017. http://dx.doi.org/10.1109/irmmw-thz.2017.8067246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

van Hoof, N. J. J., S. E. T. ter Huurne, J. Gomez Rivas, and A. Halpin. "THz Transient Photoconductivity with Near-Field Detection." In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kajihara, Yusuke, Keishi Kosaka, and Susumu Komiyama. "Probing thermal evanescent fields with a near-field microscope." In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6105044.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "THz near field"

1

Grbic, Anthony. Tailoring the Electromagnetic Near Field with Patterned Surfaces: Near-Field Plates. Fort Belvoir, VA: Defense Technical Information Center, December 2014. http://dx.doi.org/10.21236/ada619873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brungart, Douglas S., and William M. Rabinowitz. Head-Related Transfer Functions in the Near Field. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada399561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Samuel A. Cohen and Alan H. Glasser. Ion heating in the field-reversed configuration (FRC) by rotating magnetic fields (RMF) near cyclotron resonance. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/758642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Chih-Feng. The localized surface plasmonic effects: from far-field to near-field optical measurements. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1503180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muth, Lorant A. Displacement errors in antenna near-field measurements and their effect on the far field. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.tn.1306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kelkar, Sharad M., Philip H. Stauffer, and Bruce Alan Robinson. Mechanical Behavior of the Near-field Host Rock Surrounding Excavations. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1167232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arthur, Joy L., and Glenn Brown. Anomalies Incurred by E3 Tests Made in the Near Field. Fort Belvoir, VA: Defense Technical Information Center, February 1999. http://dx.doi.org/10.21236/ada360773.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roberts, Thomas M. Time-Domain Deconvolution Removes the Effects of Near-Field Scatterers. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada361850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ray, Laura, Madeleine Jordan, Steven Arcone, Lynn Kaluzienski, Benjamin Walker, Peter Ortquist Koons, James Lever, and Gordon Hamilton. Velocity field in the McMurdo shear zone from annual ground penetrating radar imaging and crevasse matching. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42623.

Full text
Abstract:
The McMurdo shear zone (MSZ) is strip of heavily crevassed ice oriented in the south-north direction and moving northward. Previous airborne surveys revealed a chaotic crevasse structure superimposed on a set of expected crevasse orientations at 45 degrees to the south-north flow (due to shear stress mechanisms). The dynamics that produced this chaotic structure are poorly understood. Our purpose is to present our field methodology and provide field data that will enable validation of models of the MSZ evolution, and here, we present a method for deriving a local velocity field from ground penetrating radar (GPR) data towards that end. Maps of near-surface crevasses were derived from two annual GPR surveys of a 28 km² region of the MSZ using Eulerian sampling. Our robot-towed and GPS navigated GPR enabled a dense survey grid, with transects of the shear zone at 50 m spacing. Each survey comprised multiple crossings of long (> 1 km) crevasses that appear in echelon on the western and eastern boundaries of the shear zone, as well as two or more crossings of shorter crevasses in the more chaotic zone between the western and eastern boundaries. From these maps, we derived a local velocity field based on the year-to-year movement of the same crevasses. Our velocity field varies significantly from fields previously established using remote sensing and provides more detail than one concurrently derived from a 29-station GPS network. Rather than a simple velocity gradient expected for crevasses oriented approximately 45 degrees to flow direction, we find constant velocity contours oriented diagonally across the shear zone with a wavy fine structure. Although our survey is based on near-surface crevasses, similar crevassing found in marine ice at 160 m depth leads us to conclude that this surface velocity field may hold through the body of meteoric and marine ice. Our success with robot-towed GPR with GPS navigation suggests we may greatly increase our survey areas.
APA, Harvard, Vancouver, ISO, and other styles
10

Rhinefrank, Kenneth E., Merrick C. Haller, and H. Tuba Ozkan-Haller. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography