Academic literature on the topic 'THz frequency range'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'THz frequency range.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "THz frequency range"
Kleine-Ostmann, Thomas, Christian Jastrow, Kai Baaske, Bernd Heinen, Michael Schwerdtfeger, Uwe Karst, Henning Hintzsche, Helga Stopper, Martin Koch, and Thorsten Schrader. "Field Exposure and Dosimetry in the THz Frequency Range." IEEE Transactions on Terahertz Science and Technology 4, no. 1 (January 2014): 12–25. http://dx.doi.org/10.1109/tthz.2013.2293115.
Full textNazarov, Maxim, O. P. Cherkasova, and A. P. Shkurinov. "Spectroscopy of solutions in the low frequency extended THz frequency range." EPJ Web of Conferences 195 (2018): 10008. http://dx.doi.org/10.1051/epjconf/201819510008.
Full textYashchyshyn, Yevhen, and Konrad Godziszewski. "A New Method for Dielectric Characterization in Sub-THz Frequency Range." IEEE Transactions on Terahertz Science and Technology 8, no. 1 (January 2018): 19–26. http://dx.doi.org/10.1109/tthz.2017.2771309.
Full textPuc, Uroš, Andreja Abina, Anton Jeglič, Aleksander Zidanšek, Irmantas Kašalynas, Rimvydas Venckevičius, and Gintaras Valušis. "Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range." Sensors 18, no. 12 (November 23, 2018): 4098. http://dx.doi.org/10.3390/s18124098.
Full textCherkasova, O., M. Nazarov, and A. Shkurinov. "Properties of aqueous solutions in THz frequency range." Journal of Physics: Conference Series 793 (January 2017): 012005. http://dx.doi.org/10.1088/1742-6596/793/1/012005.
Full textFärber, E., N. Bachar, H. Castro, E. Zhukova, and B. Gorshunov. "Ca Doped YBCO Films in THz Frequency range." Journal of Physics: Conference Series 400, no. 2 (December 17, 2012): 022018. http://dx.doi.org/10.1088/1742-6596/400/2/022018.
Full textIndrisiunas, Simonas, Evaldas Svirplys, Heiko Richter, Andrzej Urbanowicz, Gediminas Raciukaitis, Till Hagelschuer, Heinz-Wilhelm Hubers, and Irmantas Kasalynas. "Laser-Ablated Silicon in the Frequency Range From 0.1 to 4.7 THz." IEEE Transactions on Terahertz Science and Technology 9, no. 6 (November 2019): 581–86. http://dx.doi.org/10.1109/tthz.2019.2939554.
Full textMontofre, Daniel Arturo, Rocio Molina, Andrey Khudchenko, Ronald Hesper, Andrey M. Baryshev, Nicolas Reyes, and Fausto Patricio Mena. "High-Performance Smooth-Walled Horn Antennas for THz Frequency Range: Design and Evaluation." IEEE Transactions on Terahertz Science and Technology 9, no. 6 (November 2019): 587–97. http://dx.doi.org/10.1109/tthz.2019.2938985.
Full textGuseva, Victoria, Sviatoslav Gusev, Petr Demchenko, Egor Sedykh, and Mikhail Khodzitsky. "Optical properties of human nails in THz frequency range." Journal of Biomedical Photonics & Engineering 2, no. 4 (December 31, 2016): 040306. http://dx.doi.org/10.18287/jbpe16.02.040306.
Full textVaks, Vladimir L. "High precision spectroscopy and imaging in THz frequency range." Journal of Physics: Conference Series 486 (March 18, 2014): 012002. http://dx.doi.org/10.1088/1742-6596/486/1/012002.
Full textDissertations / Theses on the topic "THz frequency range"
Thoma, Petra [Verfasser]. "Ultra-fast YBa2Cu3O7-x direct detectors for the THz frequency range / Petra Thoma." Karlsruhe : KIT Scientific Publishing, 2013. http://www.ksp.kit.edu.
Full textSung, Chieh. "Interaction of a relativistic electron beam with radiation in the THz frequency range." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1679290761&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textBeneš, Adam. "Plazmonické antény pro vysoké vlnové délky." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443226.
Full textMorgan, Matthew James. "Extending the tuning range of electrostatic actuators." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/11016.
Full textBlom, Peter. "Magneto-sensitive rubber in the audible frequency range." Doctoral thesis, Stockholm : Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4024.
Full textHerron, David. "Vibration of railway bridges in the audible frequency range." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/151141/.
Full textHoefener, Carl E., and James Stone. "THE ADVANTAGES OF APPLYING GPS FREQUENCY TRANSLATORS TO RANGE TRACKING." International Foundation for Telemetering, 1985. http://hdl.handle.net/10150/615741.
Full textWhen applying the Global Positioning System (GPS) to Time, Space, and Position Information (TSPI), the use of GPS frequency translators should be considered. The primary space positioning problem in the test and evaluation applications is trajectory reconstruction. Although this can be accomplished by flying a GPS receiver on the test vehicle and telemetering its position to the ground, there are significant advantages to translating the “L” band GPS signals to “S” band, and transmitting the broad band signal to the ground for processing. A translator-based system offers several advantages. Physical advantages include smaller size, lower weight, and lower cost. Technical advantages include: 1) ground station data aiding that provides a 6 dB advantage, 2) elimination of system bias errors, 3) computation complexity at the ground station vs. the vehicle under test, and 4) the ability to reconstruct a test scenario enabling flexibility in data analysis techniques.
Paik, Steve Sunghwan 1974. "The design and implementation of a new wide-range frequency detector." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9471.
Full textIncludes bibliographical references (p. 65).
In this thesis, I designed and implemented a wide range frequency detector for use in clock recovery and data retiming applications. The new detector works in conjunction with the existing "mid-range" frequency detector to accurately lock the VCO to the incoming data rate. The new detector consists of two halves: one to detect when the VCO is too fast, and one to detect when the VCO is too slow. The design and analysis of the new frequency detectors, in addition to a method for integrating it with the existing detector, is discussed. Simulation data of the new and original frequency detectors are used to support the concepts upon which the new detector is designed. Some topics for future work are suggested at the end of this thesis.
by Steve Sunghwan Paik.
M.Eng.
Green, Sean David. "Improving the range information of high frequency over-the-horizon skywave radar." Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268265.
Full textMackall, Dale A., Robert Sakahara, and Steven E. Kremer. "THE X-33 EXTENDED FLIGHT TEST RANGE." International Foundation for Telemetering, 1998. http://hdl.handle.net/10150/609678.
Full textDevelopment of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.
Books on the topic "THz frequency range"
Biendel, K. Development of ultrasonic standard transducers in the frequency range 1MHz-10MHz. Luxembourg: Commission of the European Communities, 1986.
Find full textNordby, Kjetil. Between the tag and the screen: Redesigning short-range RFID as design material. Oslo: Arkitektur- og designhøgskolen i Oslo, 2011.
Find full textFiore, Mark Steven. High power reflection amplifier design in the 8-12 GHz frequency range. Ithaca, NY: Cornell University, 1988.
Find full textChabane, G. The detection of chromatic and achromatic patterns by mechanismsworking in the spatial frequency range. Manchester: UMIST, 1993.
Find full textKuehner, Nathanael P. Extension of transiently evoked otoacoustic emission measurements to cover the entire audiometric frequency range. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Find full textHufford, G. A. Tabulations of propagation data over irregular terrain in the 75- to 8400-MHz frequency range. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1991.
Find full textHufford, G. A. Tabulations of propogation data over irregular terrain in the 75- to 8400-MHz frequency range. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1991.
Find full textSzabo, J. P. A forced vibration non-resonant method for the determination of complex modulus in the audio frequency range. Dartmouth, N.S: Defence Research Establishment Atlantic, 1992.
Find full textDirectorate, Canada Environmental Health. Limits of human exposure to radiofrequency electromagnetic fields in the frequency range from 3 kHz to 300 GHz. [Ottawa]: Health Canada, 1999.
Find full textStager, Robert. A121/RENO/XMONITOR: An interactive program to analyze frequency and cover monitoring data for the Bureau of Land Management : user's guide. [Nevada]: U.S. Dept. of the Interior, Bureau of Land Management, Nev. State Office, 1985.
Find full textBook chapters on the topic "THz frequency range"
Vaks, V., A. Panin, S. Pripolsin, and D. Paveliev. "Advancing of Methods and Technique of mm Wavelength Range to THz Frequency Range." In NATO Science for Peace and Security Series B: Physics and Biophysics, 189–93. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0769-6_27.
Full textVieweg, Nico, Christian Jansen, and Martin Koch. "Liquid Crystals and their Applications in the THz Frequency Range." In Terahertz Spectroscopy and Imaging, 301–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29564-5_12.
Full textClairon, A., O. Acef, C. Chardonnet, and C. J. Bordé. "State-of-the-Art for High Accuracy Frequency Standards in the 28 THz Range Using Saturated Absorption Resonances of OsO4 and CO2." In Frequency Standards and Metrology, 212–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_38.
Full textSemchenko, Igor, Sergei Khakhomov, Andrey Samofalov, Maksim Podalov, Vitaliy Solodukha, Alyaxandr Pyatlitski, and Natalya Kovalchuk. "Omega-Structured Substrate-Supported Metamaterial for the Transformation of Wave Polarization in THz Frequency Range." In Advances in Intelligent Systems and Computing, 72–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67459-9_10.
Full textEbberg, Alfred, Jürgen Meggers, Kai Rathjen, Gerhard Fotheringham, Ivan Ndip, Florian Ohnimus, Christian Tschoban, et al. "Thin Glass Characterization in the Radio Frequency Range." In Ceramic Transactions Series, 35–50. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118771402.ch4.
Full textKim, J. I., V. V. Ogurtsov, G. Bonnet, L. P. Yatsenko, and K. Bergmann. "Ranging with Frequency-Shifted Feedback Lasers: From μm-Range Accuracy to MHz-Range Measurement Rate." In Exploring the World with the Laser, 701–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64346-5_38.
Full textMarkov, M. S. "Dosimetry of Magnetic Fields in the Radiofrequency Range." In Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields, 239–45. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4191-8_26.
Full textNwagboso, Christopher O. "Beacon-vehicle link in the 1–10 GHz frequency range." In Automotive Sensory Systems, 271–91. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1508-7_13.
Full textWang, Weicai, Di Chen, and Xiaowen Chen. "A WSN Range Method Based on the Frequency Difference Measurement." In Recent Advances in Computer Science and Information Engineering, 219–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25769-8_32.
Full textEargle, John M. "Frequency Ranges of Musical Instruments and the Human Voice." In Electroacoustical Reference Data, 324–25. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2027-6_156.
Full textConference papers on the topic "THz frequency range"
Huang, Yindong, Zhigang Zheng, Quan Guo, Chao Meng, Zhihui Lv, Dongwen Zhang, Jianmin Yuan, and Zengxiu Zhao. "Air-Plasma characterization at THz frequency range." In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2017. http://dx.doi.org/10.1109/irmmw-thz.2017.8067078.
Full textPavelyev, Dmitry, Yuri Kochurinov, Yuan Ren, Jian Rong Gao, Niels Hovenier, Darren Hayton, Andrey Baryshev, and Andrey Khudchenko. "Superlattice devices applications in THz frequency range." In 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012). IEEE, 2012. http://dx.doi.org/10.1109/irmmw-thz.2012.6380134.
Full textDerntl, C., S. Schoenhuber, M. Kainz, M. Wenclawiak, B. Limbacher, J. Darmo, and K. Unterrainer. "Generating and Shaping Light in the THz Frequency Range." In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8509896.
Full textDunaevskii, G. E., I. O. Dorofeev, and A. V. Badin. "Anisotropy of electrical properties of rocks at THz frequency range." In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327438.
Full textPeskov, Nikolai Yu, Ilya V. Bandurkin, Denis E. Donets, Alim K. Kaminsky, Sergei V. Kuzikov, Elkuno A. Perelstein, Andrei V. Savilov, and Sergey N. Sedykh. "Powerful broadband FEM-amplifier operating over Ka frequency range." In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758362.
Full textPolley, Debanjan, Animesh Patra, Anjan Barman, and Rajib K. Mitra. "Modulating conductivity of Au/CNT composites in THz frequency range: A THz resistor." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6955998.
Full textRutz, F., N. Krumbholz, L. Micele, G. de Portu, D. M. Mittleman, and M. Koch. "Improved dielectric mirrors for the THz frequency range." In Photonics Europe, edited by Dieter Jäger and Andreas Stöhr. SPIE, 2006. http://dx.doi.org/10.1117/12.661610.
Full textMasyukov, Maxim S., Anna V. Vozianova, Kseniia V. Gubaidullina, Alexander N. Grebenchukov, and Mikhail K. Khodzitsky. "Optical Activity of Graphene-Based Chiral Metasurface in THz Frequency Range." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874144.
Full textCherkasova, O. P., M. M. Nazarov, P. M. Solyankin, and A. P. Shkurinov. "The low protein concentration study in an extended THz frequency range." In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510288.
Full textDunaevskii, G. E., V. I. Suslyaev, V. A. Zhuravlev, A. V. Badin, and K. V. Dorozhkin. "Ferromagnetic resonance in hexagonal ferrite Ba3Co2Fe24O41 at the THz frequency range." In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758771.
Full textReports on the topic "THz frequency range"
Lanza, Robert Jr. Experimental Limits on Gravitational Waves in the MHz frequency Range. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1329051.
Full textKammer, Daniel C., and Aaron Nimityongskul. A Frequency Domain Approach to Pretest Analysis Model Correlation and Model Updating for the Mid-Frequency Range. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada495365.
Full textJenkins, Ruth. The Affects of Vocal Fatigue on Fundamental Frequency and Frequency Range in Actresses as Opposed to Non-Actresses. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6938.
Full textHantao Ji, Russell Kulsrud, William Fox, and Masaaki Yamada. An Obliquely Propagating Electromagnetic Drift Instability in the Lower Hybrid Frequency Range. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/841011.
Full textTaylor, G., M. G. Bell, H. Biglari, M. Bitter, N. L. Bretz, R. Budny, L. Chen, et al. Ion cyclotron range of frequency heating on the Tokamak Fusion Test Reactor. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10169582.
Full textDE BAAR, Jouke H. S., Richard P. DWIGHT, and Hester BIJL. Fast maximum likelihood estimate of the Kriging correlation range in the frequency domain. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0268.
Full textHamill, Daniel, and Gabrielle David. Hydrologic analysis of field delineated ordinary high water marks for rivers and streams. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41681.
Full textRuggiero, A. G. The longitudinal coupling impedance of a toroidal vacuum chamber in the low frequency range. Office of Scientific and Technical Information (OSTI), May 1988. http://dx.doi.org/10.2172/1118920.
Full textKim, Eun, and J. R. Johnson. Comment on "Mode Conversion of Waves In The Ion-Cyclotron Frequency Range in Magnetospheric Plasmas". Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1128922.
Full textLehrman, I. S., P. L. Colestock, D. H. McNeill, G. J. Greene, S. Bernabei, J. C. Hosea, M. Ono, J. L. Shohet, and J. R. Wilson. Edge measurements during ICRF (ion cyclotron range of frequency) heating on the PLT (Princeton Large Torus) tokamak. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6211995.
Full text