Academic literature on the topic 'THz frequency range'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'THz frequency range.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "THz frequency range"

1

Kleine-Ostmann, Thomas, Christian Jastrow, Kai Baaske, Bernd Heinen, Michael Schwerdtfeger, Uwe Karst, Henning Hintzsche, Helga Stopper, Martin Koch, and Thorsten Schrader. "Field Exposure and Dosimetry in the THz Frequency Range." IEEE Transactions on Terahertz Science and Technology 4, no. 1 (January 2014): 12–25. http://dx.doi.org/10.1109/tthz.2013.2293115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nazarov, Maxim, O. P. Cherkasova, and A. P. Shkurinov. "Spectroscopy of solutions in the low frequency extended THz frequency range." EPJ Web of Conferences 195 (2018): 10008. http://dx.doi.org/10.1051/epjconf/201819510008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yashchyshyn, Yevhen, and Konrad Godziszewski. "A New Method for Dielectric Characterization in Sub-THz Frequency Range." IEEE Transactions on Terahertz Science and Technology 8, no. 1 (January 2018): 19–26. http://dx.doi.org/10.1109/tthz.2017.2771309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Puc, Uroš, Andreja Abina, Anton Jeglič, Aleksander Zidanšek, Irmantas Kašalynas, Rimvydas Venckevičius, and Gintaras Valušis. "Spectroscopic Analysis of Melatonin in the Terahertz Frequency Range." Sensors 18, no. 12 (November 23, 2018): 4098. http://dx.doi.org/10.3390/s18124098.

Full text
Abstract:
There is a need for fast and reliable quality and authenticity control tools of pharmaceutical ingredients. Among others, hormone containing drugs and foods are subject to scrutiny. In this study, terahertz (THz) spectroscopy and THz imaging are applied for the first time to analyze melatonin and its pharmaceutical product Circadin. Melatonin is a hormone found naturally in the human body, which is responsible for the regulation of sleep-wake cycles. In the THz frequency region between 1.5 THz and 4.5 THz, characteristic melatonin spectral features at 3.21 THz, and a weaker one at 4.20 THz, are observed allowing for a quantitative analysis within the final products. Spectroscopic THz imaging of different concentrations of Circadin and melatonin as an active pharmaceutical ingredient in prepared pellets is also performed, which permits spatial recognition of these different substances. These results indicate that THz spectroscopy and imaging can be an indispensable tool, complementing Raman and Fourier transform infrared spectroscopies, in order to provide quality control of dietary supplements and other pharmaceutical products.
APA, Harvard, Vancouver, ISO, and other styles
5

Cherkasova, O., M. Nazarov, and A. Shkurinov. "Properties of aqueous solutions in THz frequency range." Journal of Physics: Conference Series 793 (January 2017): 012005. http://dx.doi.org/10.1088/1742-6596/793/1/012005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Färber, E., N. Bachar, H. Castro, E. Zhukova, and B. Gorshunov. "Ca Doped YBCO Films in THz Frequency range." Journal of Physics: Conference Series 400, no. 2 (December 17, 2012): 022018. http://dx.doi.org/10.1088/1742-6596/400/2/022018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Indrisiunas, Simonas, Evaldas Svirplys, Heiko Richter, Andrzej Urbanowicz, Gediminas Raciukaitis, Till Hagelschuer, Heinz-Wilhelm Hubers, and Irmantas Kasalynas. "Laser-Ablated Silicon in the Frequency Range From 0.1 to 4.7 THz." IEEE Transactions on Terahertz Science and Technology 9, no. 6 (November 2019): 581–86. http://dx.doi.org/10.1109/tthz.2019.2939554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Montofre, Daniel Arturo, Rocio Molina, Andrey Khudchenko, Ronald Hesper, Andrey M. Baryshev, Nicolas Reyes, and Fausto Patricio Mena. "High-Performance Smooth-Walled Horn Antennas for THz Frequency Range: Design and Evaluation." IEEE Transactions on Terahertz Science and Technology 9, no. 6 (November 2019): 587–97. http://dx.doi.org/10.1109/tthz.2019.2938985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guseva, Victoria, Sviatoslav Gusev, Petr Demchenko, Egor Sedykh, and Mikhail Khodzitsky. "Optical properties of human nails in THz frequency range." Journal of Biomedical Photonics & Engineering 2, no. 4 (December 31, 2016): 040306. http://dx.doi.org/10.18287/jbpe16.02.040306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vaks, Vladimir L. "High precision spectroscopy and imaging in THz frequency range." Journal of Physics: Conference Series 486 (March 18, 2014): 012002. http://dx.doi.org/10.1088/1742-6596/486/1/012002.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "THz frequency range"

1

Thoma, Petra [Verfasser]. "Ultra-fast YBa2Cu3O7-x direct detectors for the THz frequency range / Petra Thoma." Karlsruhe : KIT Scientific Publishing, 2013. http://www.ksp.kit.edu.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sung, Chieh. "Interaction of a relativistic electron beam with radiation in the THz frequency range." Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1679290761&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Beneš, Adam. "Plazmonické antény pro vysoké vlnové délky." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443226.

Full text
Abstract:
Tato diplomová práce se zabývá vlastnostmi plazmonických antén v oblasti vysokých vlnových délek. Důraz je kladen na popis rezonančních vlastností jednotlivých antén i antén uspořádaných do periodických polí. Těžiště práce spočívá v počítačovém modelování navýšení magnetického pole v blízkosti antén, které lze využít ve vysokofrekvenční elektronové paramagnetické rezonanci (HFEPR) k zesílení měřeného signálu. Autor se zabývá kvantifikací zesílení v anténách s odlišnou geometrií a navrhuje i geometrii vlastní. Značná část práce se také věnuje snaze rozlišit příspěvky k navýšení magnetického pole od různých zdrojů při měření HFEPR v uspořádání s dvojitou transmisí záření.
APA, Harvard, Vancouver, ISO, and other styles
4

Morgan, Matthew James. "Extending the tuning range of electrostatic actuators." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/11016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Blom, Peter. "Magneto-sensitive rubber in the audible frequency range." Doctoral thesis, Stockholm : Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Herron, David. "Vibration of railway bridges in the audible frequency range." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/151141/.

Full text
Abstract:
The noise level associated with a train travelling on a bridge is normally greater than that for a train travelling on plain track. It is sometimes the bridge noise that causes the highest levels of disturbance to people in the vicinity or triggers action under regulations such as the Environmental Noise Directive. Consequently, there is a need to study means of predicting noise levels from proposed bridges, noise control measures for existing structures and principles of low-noise bridge design. This thesis describes a programme of work in which an existing calculation model for bridge noise and vibration has been tested and alternative calculation methods have been developed where required. The existing model is based on analytical models for wheel-rail interaction and the calculation of the power input to the bridge. The response of the various component parts of the bridge for this power input is found using a simplified SEA scheme. In this work, the existing model has been tested against measurements made on railway bridges and the results of an advanced method of structural analysis, the Waveguide Finite Element (WFE) method. This method is well-suited to modelling some important types of railway bridge. Specifically, it allows a numerical modelling approach to be used up to higher frequency than conventional Finite Element methods. It has been found to offer some significant advantages over the existing bridge noise model, particularly for concrete-steel composite bridges and concrete box-section viaducts. The track support structure has an important influence on bridge noise and vibration, through its role in the transmission of vibration from the rail to the bridge. Laboratory measurements have been made in this work to characterise the vibration transmission properties of two important types of track support structure on bridges; ballasted track and two-stage resilient baseplate track. Improved methods of modelling the dynamic behaviour of these track forms have been developed from the measurements, which can be used in calculation models for both bridge noise and also for rolling noise.
APA, Harvard, Vancouver, ISO, and other styles
7

Hoefener, Carl E., and James Stone. "THE ADVANTAGES OF APPLYING GPS FREQUENCY TRANSLATORS TO RANGE TRACKING." International Foundation for Telemetering, 1985. http://hdl.handle.net/10150/615741.

Full text
Abstract:
International Telemetering Conference Proceedings / October 28-31, 1985 / Riviera Hotel, Las Vegas, Nevada
When applying the Global Positioning System (GPS) to Time, Space, and Position Information (TSPI), the use of GPS frequency translators should be considered. The primary space positioning problem in the test and evaluation applications is trajectory reconstruction. Although this can be accomplished by flying a GPS receiver on the test vehicle and telemetering its position to the ground, there are significant advantages to translating the “L” band GPS signals to “S” band, and transmitting the broad band signal to the ground for processing. A translator-based system offers several advantages. Physical advantages include smaller size, lower weight, and lower cost. Technical advantages include: 1) ground station data aiding that provides a 6 dB advantage, 2) elimination of system bias errors, 3) computation complexity at the ground station vs. the vehicle under test, and 4) the ability to reconstruct a test scenario enabling flexibility in data analysis techniques.
APA, Harvard, Vancouver, ISO, and other styles
8

Paik, Steve Sunghwan 1974. "The design and implementation of a new wide-range frequency detector." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9471.

Full text
Abstract:
Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.
Includes bibliographical references (p. 65).
In this thesis, I designed and implemented a wide range frequency detector for use in clock recovery and data retiming applications. The new detector works in conjunction with the existing "mid-range" frequency detector to accurately lock the VCO to the incoming data rate. The new detector consists of two halves: one to detect when the VCO is too fast, and one to detect when the VCO is too slow. The design and analysis of the new frequency detectors, in addition to a method for integrating it with the existing detector, is discussed. Simulation data of the new and original frequency detectors are used to support the concepts upon which the new detector is designed. Some topics for future work are suggested at the end of this thesis.
by Steve Sunghwan Paik.
M.Eng.
APA, Harvard, Vancouver, ISO, and other styles
9

Green, Sean David. "Improving the range information of high frequency over-the-horizon skywave radar." Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mackall, Dale A., Robert Sakahara, and Steven E. Kremer. "THE X-33 EXTENDED FLIGHT TEST RANGE." International Foundation for Telemetering, 1998. http://hdl.handle.net/10150/609678.

Full text
Abstract:
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California
Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "THz frequency range"

1

Biendel, K. Development of ultrasonic standard transducers in the frequency range 1MHz-10MHz. Luxembourg: Commission of the European Communities, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nordby, Kjetil. Between the tag and the screen: Redesigning short-range RFID as design material. Oslo: Arkitektur- og designhøgskolen i Oslo, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fiore, Mark Steven. High power reflection amplifier design in the 8-12 GHz frequency range. Ithaca, NY: Cornell University, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chabane, G. The detection of chromatic and achromatic patterns by mechanismsworking in the spatial frequency range. Manchester: UMIST, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kuehner, Nathanael P. Extension of transiently evoked otoacoustic emission measurements to cover the entire audiometric frequency range. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hufford, G. A. Tabulations of propagation data over irregular terrain in the 75- to 8400-MHz frequency range. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hufford, G. A. Tabulations of propogation data over irregular terrain in the 75- to 8400-MHz frequency range. Boulder, Colo: U.S. Dept. of Commerce, National Telecommunications and Information Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Szabo, J. P. A forced vibration non-resonant method for the determination of complex modulus in the audio frequency range. Dartmouth, N.S: Defence Research Establishment Atlantic, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Directorate, Canada Environmental Health. Limits of human exposure to radiofrequency electromagnetic fields in the frequency range from 3 kHz to 300 GHz. [Ottawa]: Health Canada, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stager, Robert. A121/RENO/XMONITOR: An interactive program to analyze frequency and cover monitoring data for the Bureau of Land Management : user's guide. [Nevada]: U.S. Dept. of the Interior, Bureau of Land Management, Nev. State Office, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "THz frequency range"

1

Vaks, V., A. Panin, S. Pripolsin, and D. Paveliev. "Advancing of Methods and Technique of mm Wavelength Range to THz Frequency Range." In NATO Science for Peace and Security Series B: Physics and Biophysics, 189–93. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0769-6_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vieweg, Nico, Christian Jansen, and Martin Koch. "Liquid Crystals and their Applications in the THz Frequency Range." In Terahertz Spectroscopy and Imaging, 301–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29564-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clairon, A., O. Acef, C. Chardonnet, and C. J. Bordé. "State-of-the-Art for High Accuracy Frequency Standards in the 28 THz Range Using Saturated Absorption Resonances of OsO4 and CO2." In Frequency Standards and Metrology, 212–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Semchenko, Igor, Sergei Khakhomov, Andrey Samofalov, Maksim Podalov, Vitaliy Solodukha, Alyaxandr Pyatlitski, and Natalya Kovalchuk. "Omega-Structured Substrate-Supported Metamaterial for the Transformation of Wave Polarization in THz Frequency Range." In Advances in Intelligent Systems and Computing, 72–80. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67459-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ebberg, Alfred, Jürgen Meggers, Kai Rathjen, Gerhard Fotheringham, Ivan Ndip, Florian Ohnimus, Christian Tschoban, et al. "Thin Glass Characterization in the Radio Frequency Range." In Ceramic Transactions Series, 35–50. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118771402.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, J. I., V. V. Ogurtsov, G. Bonnet, L. P. Yatsenko, and K. Bergmann. "Ranging with Frequency-Shifted Feedback Lasers: From μm-Range Accuracy to MHz-Range Measurement Rate." In Exploring the World with the Laser, 701–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-64346-5_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Markov, M. S. "Dosimetry of Magnetic Fields in the Radiofrequency Range." In Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields, 239–45. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4191-8_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nwagboso, Christopher O. "Beacon-vehicle link in the 1–10 GHz frequency range." In Automotive Sensory Systems, 271–91. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1508-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Weicai, Di Chen, and Xiaowen Chen. "A WSN Range Method Based on the Frequency Difference Measurement." In Recent Advances in Computer Science and Information Engineering, 219–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25769-8_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eargle, John M. "Frequency Ranges of Musical Instruments and the Human Voice." In Electroacoustical Reference Data, 324–25. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2027-6_156.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "THz frequency range"

1

Huang, Yindong, Zhigang Zheng, Quan Guo, Chao Meng, Zhihui Lv, Dongwen Zhang, Jianmin Yuan, and Zengxiu Zhao. "Air-Plasma characterization at THz frequency range." In 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2017. http://dx.doi.org/10.1109/irmmw-thz.2017.8067078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pavelyev, Dmitry, Yuri Kochurinov, Yuan Ren, Jian Rong Gao, Niels Hovenier, Darren Hayton, Andrey Baryshev, and Andrey Khudchenko. "Superlattice devices applications in THz frequency range." In 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2012). IEEE, 2012. http://dx.doi.org/10.1109/irmmw-thz.2012.6380134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Derntl, C., S. Schoenhuber, M. Kainz, M. Wenclawiak, B. Limbacher, J. Darmo, and K. Unterrainer. "Generating and Shaping Light in the THz Frequency Range." In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8509896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dunaevskii, G. E., I. O. Dorofeev, and A. V. Badin. "Anisotropy of electrical properties of rocks at THz frequency range." In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peskov, Nikolai Yu, Ilya V. Bandurkin, Denis E. Donets, Alim K. Kaminsky, Sergei V. Kuzikov, Elkuno A. Perelstein, Andrei V. Savilov, and Sergey N. Sedykh. "Powerful broadband FEM-amplifier operating over Ka frequency range." In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Polley, Debanjan, Animesh Patra, Anjan Barman, and Rajib K. Mitra. "Modulating conductivity of Au/CNT composites in THz frequency range: A THz resistor." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6955998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rutz, F., N. Krumbholz, L. Micele, G. de Portu, D. M. Mittleman, and M. Koch. "Improved dielectric mirrors for the THz frequency range." In Photonics Europe, edited by Dieter Jäger and Andreas Stöhr. SPIE, 2006. http://dx.doi.org/10.1117/12.661610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Masyukov, Maxim S., Anna V. Vozianova, Kseniia V. Gubaidullina, Alexander N. Grebenchukov, and Mikhail K. Khodzitsky. "Optical Activity of Graphene-Based Chiral Metasurface in THz Frequency Range." In 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). IEEE, 2019. http://dx.doi.org/10.1109/irmmw-thz.2019.8874144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cherkasova, O. P., M. M. Nazarov, P. M. Solyankin, and A. P. Shkurinov. "The low protein concentration study in an extended THz frequency range." In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dunaevskii, G. E., V. I. Suslyaev, V. A. Zhuravlev, A. V. Badin, and K. V. Dorozhkin. "Ferromagnetic resonance in hexagonal ferrite Ba3Co2Fe24O41 at the THz frequency range." In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758771.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "THz frequency range"

1

Lanza, Robert Jr. Experimental Limits on Gravitational Waves in the MHz frequency Range. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1329051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kammer, Daniel C., and Aaron Nimityongskul. A Frequency Domain Approach to Pretest Analysis Model Correlation and Model Updating for the Mid-Frequency Range. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada495365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jenkins, Ruth. The Affects of Vocal Fatigue on Fundamental Frequency and Frequency Range in Actresses as Opposed to Non-Actresses. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hantao Ji, Russell Kulsrud, William Fox, and Masaaki Yamada. An Obliquely Propagating Electromagnetic Drift Instability in the Lower Hybrid Frequency Range. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/841011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Taylor, G., M. G. Bell, H. Biglari, M. Bitter, N. L. Bretz, R. Budny, L. Chen, et al. Ion cyclotron range of frequency heating on the Tokamak Fusion Test Reactor. Office of Scientific and Technical Information (OSTI), June 1993. http://dx.doi.org/10.2172/10169582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

DE BAAR, Jouke H. S., Richard P. DWIGHT, and Hester BIJL. Fast maximum likelihood estimate of the Kriging correlation range in the frequency domain. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hamill, Daniel, and Gabrielle David. Hydrologic analysis of field delineated ordinary high water marks for rivers and streams. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41681.

Full text
Abstract:
Streamflow influences the distribution and organization of high water marks along rivers and streams in a landscape. The federal definition of ordinary high water mark (OHWM) is defined by physical and vegetative field indicators that are used to identify inundation extents of ordinary high water levels without any reference to the relationship between streamflow and regulatory definition. Streamflow is the amount, or volume, of water that moves through a stream per unit time. This study explores regional characteristics and relationships between field-delineated OHWMs and frequency-magnitude streamflow metrics derived from a flood frequency analysis. The elevation of OHWM is related to representative constant-level discharge return periods with national average return periods of 6.9 years using partial duration series and 2.8 years using annual maximum flood frequency approaches. The range in OHWM return periods is 0.5 to 9.08, and 1.05 to 11.01 years for peaks-over-threshold and annual maximum flood frequency methods, respectively. The range of OHWM return periods is consistent with the range found in national studies of return periods related to bankfull streamflow. Hydraulic models produced a statistically significant relationship between OHWM and bank-full, which reinforces the close relationship between the scientific concept and OHWM in most stream systems.
APA, Harvard, Vancouver, ISO, and other styles
8

Ruggiero, A. G. The longitudinal coupling impedance of a toroidal vacuum chamber in the low frequency range. Office of Scientific and Technical Information (OSTI), May 1988. http://dx.doi.org/10.2172/1118920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Eun, and J. R. Johnson. Comment on "Mode Conversion of Waves In The Ion-Cyclotron Frequency Range in Magnetospheric Plasmas". Office of Scientific and Technical Information (OSTI), February 2014. http://dx.doi.org/10.2172/1128922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lehrman, I. S., P. L. Colestock, D. H. McNeill, G. J. Greene, S. Bernabei, J. C. Hosea, M. Ono, J. L. Shohet, and J. R. Wilson. Edge measurements during ICRF (ion cyclotron range of frequency) heating on the PLT (Princeton Large Torus) tokamak. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6211995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography