Academic literature on the topic 'Thrust-and-fault belt'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thrust-and-fault belt.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thrust-and-fault belt"

1

He, Yuqing, Teng Wang, Lihua Fang, and Li Zhao. "The 2020 Mw 6.0 Jiashi Earthquake: Coinvolvement of Thin-Skinned Thrusting and Basement Shortening in Shaping the Keping-Tage Fold-and-Thrust Belt in Southwestern Tian Shan." Seismological Research Letters 93, no. 2A (December 15, 2021): 680–92. http://dx.doi.org/10.1785/0220210063.

Full text
Abstract:
Abstract The Keping-tage fold-and-thrust belt in southwest Tian Shan is seismically active, yet the most well-recorded earthquakes occurred south of the mountain front. The lack of large earthquakes beneath the fold-and-thrust belt thus hinders our understanding of the orogenic process to the north. The 2020 Mw 6.0 Jiashi earthquake is an important event with surface deformation in the fold-and-thrust belt well illuminated by Interferometric Synthetic Aperture Radar, providing an opportunity to study the present-day kinematics of the thrust front through the analysis of satellite measurements of surface deformations. Here, we employ the surface deformation and relocated aftershocks to investigate the fault-slip distribution associated to this event. Further added by an analysis of Coulomb stress changes, we derive a fault model involving slips on a shallow, low-angle (∼10°) north-dipping thrust fault as well as on a left-lateral tear fault and a high-angle south-dipping reverse fault in mid-crust. Aftershocks at depth reflect the basement-involved shortening activated by a thin-skinned thrust faulting event. In addition, this earthquake uplifted the southernmost mountain front with relatively low topography, indicating the basin-ward propagation of the southwest Tian Shan.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Hong. "Accumulation Models of the Natural Gas in the Foreland Basins of China and their Physical Simulation Experiment." Advanced Materials Research 233-235 (May 2011): 2812–15. http://dx.doi.org/10.4028/www.scientific.net/amr.233-235.2812.

Full text
Abstract:
The paper chooses foreland basin as its research object. after summarizing the accumulation characteristics of the different phases and different parts of them, the common models of the whole foreland basin are given and the physical simulation experiments are carried out. It shows that the foreland basins experience three phases of evolution. Phase 1 is the period that the source rock and structure oil and gas traps form. Phase 2 is the period that multi-cycle reservoir and lithologic oil and gas pool form. phase 3 is the period that foreland uplift belt and fault anticline pool form. Then a foreland basins has three different belts including of thrust belt, foredeep and foreland slope belt, foreland uplift belt, and the belts have different accumulation models. With regard to the hydrocarbon accumulation period of the foreland basin, the thrust belt have precedence to other belt. foredeep and foreland slope belt forms the secondary pools. Foreland uplift belt accumulates hydrocarbon very quickly.
APA, Harvard, Vancouver, ISO, and other styles
3

Connors, Karen A. "Unraveling the boundary between turbidites of the Kisseynew belt and volcano-plutonic rocks of the Flin Flon belt, Trans-Hudson Orogen, Canada." Canadian Journal of Earth Sciences 33, no. 5 (May 1, 1996): 811–29. http://dx.doi.org/10.1139/e96-062.

Full text
Abstract:
The Flin Flon – Kisseynew boundary in the eastern Trans-Hudson Orogen is interpreted here as an early thrust fault that places 1.86–1.84 Ga Kisseynew belt turbidites over previously deformed 1.91–1.88 Ga arc and ocean-floor assemblages of the Flin Flon belt. The basin in which sedimentary rocks of the Kisseynew belt were deposited has been interpreted to have formed partly within the Flin Flon belt. The fault that juxtaposes the two belts is interpreted to have been localized near the ancestral basin margin, resulting in development of a major ramp zone during basin closure. This interpreted ramp zone provides an explanation for the steep to shallow structural transition that corresponds to increasing metamorphic grade. Collapse of the Kisseynew sedimentary basin and juxtaposition of the two belts are attributed to southwest-verging folding and thrusting that initiated prior to emplacement of 1.83 Ga plutons. This magmatism was followed by regional greenschist- to upper-amphibolite-grade metamorphism (1.82–1.805 Ga) and renewed southwest-directed folding and thrusting. Late backfolds developed at the leading edge of the fold-thrust belt. Postpeak metamorphic deformation resulted in large-scale, upright folding of the fold–thrust stack (including the Flin Flon – Kisseynew boundary). This stage of deformation is interpreted to record a transition from southwest-directed transport to northwest-southeast-directed shortening at ~1.8 Ga.
APA, Harvard, Vancouver, ISO, and other styles
4

Pei, Yangwen, Douglas A. Paton, Rob J. Knipe, W. Henry Lickorish, Anren Li, and Kongyou Wu. "Field-based investigation of fault architecture: A case study from the Lenghu fold-and-thrust belt, Qaidam Basin, NE Tibetan Plateau." GSA Bulletin 132, no. 1-2 (June 19, 2019): 389–408. http://dx.doi.org/10.1130/b35140.1.

Full text
Abstract:
AbstractThe fault zone architecture of a thrust fault zone is critical for understanding the strain accommodation and structural evolution in contractional systems. The fault architecture is also important for understanding fluid-flow behavior both along and/or across thrust fault zones and for evaluating potential fault-related compartmentalization. Because mesoscale (1–100 m) structural features are normally beyond seismic resolution, high-resolution outcrop in situ mapping (5–10 cm resolution) was employed to study the deformation features of a thrust fault zone located in the Qaidam Basin, northeastern Tibetan Plateau. The excellent exposure of outcrops enables the detailed investigation of the Lenghu thrust fault zone and its architecture. The Lenghu thrust fault, a seismically resolvable fault with up to ∼800 m of throw, exhibits a large variation of fault architecture and strain distribution along the fault zone. Multiple structural domains with different levels of strain were observed and are associated with the fault throw distribution across the fault. Based on previously proposed models and high-resolution outcrop mapping, an updated fault zone model was constructed to characterize the structural features and evolution of the Lenghu thrust. The possible parameters that impact fault architecture and strain distribution, including fault throw, bed thickness, lithology, and mechanical heterogeneity, were evaluated. Fault throw distributions and linkages control the strain distribution across a thrust fault zone, with local folding processes contributing important elements in Lenghu, especially where more incompetent beds dominate the stratigraphy. Mechanical heterogeneity, induced by different layer stacking patterns, controls the details of the fault architecture in the thrust zone. The variations in bed thicknesses and mechanical property contrasts are likely to control the initial fault dips and fault/fracture density. Large fault throws are associated with wide strain accommodation and damage zones, although the relationship between the development and width of the fault zone and the throw accumulation remains to be assessed. By presenting the high-resolution mapping of fault architecture, this study provides an insight into the subseismic fault zone geometry and strain distributions possible in thrust faults and reviews their application to assessments of fault zone behavior.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Bin, Qiqi Li, Wenhua Mei, Qingong Zhuo, and Xuesong Lu. "Analysis of accumulation models of Middle Permian in Northwest Sichuan Basin." Earth Sciences Research Journal 24, no. 4 (January 26, 2021): 419–28. http://dx.doi.org/10.15446/esrj.v24n4.91149.

Full text
Abstract:
Great progress has been made in middle Permian exploration in Northwest Sichuan in recent years, but there are still many questions in understanding the hydrocarbon accumulation conditions. Due to the abundance of source rocks and the multi-term tectonic movements in this area, the hydrocarbon accumulation model is relatively complex, which has become the main problem to be solved urgently in oil and gas exploration. Based on the different tectonic backgrounds of the middle Permian in northwest Sichuan Basin, the thrust nappe belt, the hidden front belt, and the depression belt are taken as the research units to comb and compare the geologic conditions of the middle Permian reservoir. The evaluation of source rocks and the comparison of hydrocarbon sources suggest that the middle Permian hydrocarbon mainly comes from the bottom of the lower Cambrian and middle Permian, and the foreland orogeny promoted the thermal evolution of Paleozoic source rocks in northwest Sichuan to high maturity and over maturity stage. Based on a large number of reservoir physical properties data, the middle Permian reservoir has the characteristics of low porosity and low permeability, among which the thrust nappe belt and the hidden front belt have relatively high porosity and relatively developed fractures. The thick mudstone of Longtan formation constitutes the regional caprock in the study area and the preservation condition is good as a whole. However, the thrusting faults destroyed the sealing ability of the caprock in the nappe thrust belt. Typical reservoir profiles revealed that the trap types were different in the study area. The thrust fault traps are mainly developed in the thrust nappe belt, while the fault anticline traps are developed in the hidden front belt, and the structural lithological traps are developed in the depression belt. The different structural belts in northwest Sichuan have different oil and gas accumulation models, this paper built three hydrocarbon accumulation models by the analysis of reservoir formation conditions. The comprehensive analysis supposed the hidden front belt is close to the lower Cambrian source rock, and the reservoir heterogeneity is weak, faults connected source rock is developed, so it is a favorable oil and gas accumulation area in the middle Permian.
APA, Harvard, Vancouver, ISO, and other styles
6

Karaca, Sukru O., Ismail A. Abir, Shuhab D. Khan, Erman Ozsayın, and Kamil A. Qureshi. "Neotectonics of the Western Suleiman Fold Belt, Pakistan: Evidence for Bookshelf Faulting." Remote Sensing 13, no. 18 (September 9, 2021): 3593. http://dx.doi.org/10.3390/rs13183593.

Full text
Abstract:
The Suleiman Fold-Thrust Belt represents an active deformational front at the western margin of the Indian plate and has been a locus of major earthquakes. This study focuses on the western part of the Suleiman Fold-Thrust Belt that comprises two parallel NW–SE oriented faults: Harnai Fault and Karahi Fault. These faults have known thrust components; however, there remains uncertainty about the lateral component of motion. This work presents the new observation of surface deformation using the Small Baseline Subset (SBAS), Interferometric Synthetic Aperture Radar (InSAR) technique on Sentinel-1A datasets to decompose displacement into the vertical and horizontal components employing ascending and descending track geometries. The subsurface structural geometry of this area was assessed using 2D seismic and well data. In addition, geomorphic indices were calculated to assess the relative tectonic activity of the area. InSAR results show that the Karahi Fault has a ~15 mm right-lateral movement for descending and ~10 mm/for ascending path geometries. The Harnai Fault does not show any lateral movement. Seismic data are in agreement with the InSAR results suggesting that the Harnai Fault is a blind thrust. This work indicates that the block between these two faults displays a clockwise rotation that creates the “bookshelf model”.
APA, Harvard, Vancouver, ISO, and other styles
7

Greenhalgh, Scott R., John H. McBride, John M. Bartley, R. William Keach, Brooks B. Britt, and Bart J. Kowallis. "Along-strike variability of thrust fault vergence." Interpretation 3, no. 3 (August 1, 2015): SX1—SX12. http://dx.doi.org/10.1190/int-2014-0182.1.

Full text
Abstract:
The 3D kinematic evolution of thrust systems, in which vergence changes along strike, is poorly understood. This study uses 3D seismic data from Big Piney-LaBarge field, Wyoming, to examine the geometry and kinematics of two faults at the leading edge of the Hogsback thrust sheet, the frontal thrust of the Late Cretaceous Sevier fold-thrust belt. These thrusts lie along strike of each another and share an east-vergent detachment within the Cretaceous Baxter Shale. The two thrusts verge in opposite directions: The southern thrust verges eastward forming a frontal ramp consistent with major thrusts of the Sevier belt, whereas the northern thrust verges westward to form a type 1 triangle zone with the Hogsback thrust. The thrusts have strike lengths of 5 km (3.1 mi) and 8 km (5.0 mi), respectively, and they are separated by a transfer zone of less than 0.5 km (0.3 mi) wide. Strata in the transfer zone appear to be relatively undeformed, but reflections are less coherent here, which suggests small offsets unresolved by the seismic survey. Retrodeformable cross sections and a structure contour map on the Cretaceous Mesaverde Group indicate that shortening varies along strike, with a pronounced minimum at the transfer zone and greater shortening across the northern, west-vergent thrust (610 m [2000 ft]) than across the southern, east-vergent thrust (230 m [755 ft]). Mapping of these thrusts suggests that they propagated laterally toward each other to form a type 1 antithetic fault linkage in the transfer zone. Spatial patterns expressed in seismic attributes in and near the detachment horizon, which include waveform classification and spectral decomposition, suggest that stratigraphic variations may have pinned the detachment, thus localizing the transfer zone. Thickness variations in the thrust sheet also may have influenced the thrust geometry. Our study provides an analog for analysis of similar complex contractional belts around the world.
APA, Harvard, Vancouver, ISO, and other styles
8

Yong, Li, Yan Liang, Zhou Rongjun, Shao Chongjian, Zhao Guohua, Su Dechen, Yan Zhaokun, and Yun Kun. "Seismotectonic Mechanisms of Lushan (Ms7.0) Earthquake in the Frontal Propagation Belt of the Longmen Shan, Sichuan, China." Journal of Earthquake and Tsunami 09, no. 02 (June 2015): 1550005. http://dx.doi.org/10.1142/s1793431115500050.

Full text
Abstract:
In recent years, the apparent seismic activity around Longmen Shan and its front has included the Wenchuan (Ms8.0) Earthquake and the Lushan (Ms7.0) Earthquake, occurring in 2008 and 2013, respectively. Based on the focal mechanism solution, rupture processes, seismic intensity, surface deformation, and aftershocks of the Lushan Earthquake and the active fault on Longmen Shan, we divided the Longmen Shan and its front into two tectonic deformation belts, the Longmen Shan thrust belt and the frontal propagation belt. By comparing the differences in the tectonic deformation styles, active faults, and earthquake histories of the two belts, we propose two kinds of seismotectonic models: one is a thrusting belt characterized by napping and detachment, and the other is a frontal propagation belt characterized by thrusting and detachment folding. By analyzing the seismogenic mechanisms of thrusting and detachment folding in the frontal propagation belt during the Lushan Earthquake, we have inferred that the Lushan Earthquake was formed by thrusting and detachment folding in the frontal propagation belt. The seismogenic fault of the Lushan Earthquake was the Dayi Fault, which dips NW with a listric surface, and converges on the detachment surface. The detachment surface is the seismic source layer of the Lushan Earthquake.
APA, Harvard, Vancouver, ISO, and other styles
9

SINGH, V. P., and D. SHANKER. "On the seismicity and tectonic activity Of the Bengal basin." MAUSAM 43, no. 4 (December 31, 2021): 371–78. http://dx.doi.org/10.54302/mausam.v43i4.3504.

Full text
Abstract:
The tectonic activity of the Bengal basin for years 1850-1988 of seismicity and 16 years (1970-1985) of P-wave first motion data have been studied. The seismicity studies reveal three seismic belts such as Dhubri fault (striking N-S), Calcutta hinge zone (striking NE-SW) and the central region of the Bengal basin (striking NW-SE). Dauki fault is comparatively less seismically active than Dhubri fault. The seismicity of Dhubri fault and Calcutta hinge zone are confined to limited extension. The seismic activity along the central portion of the Bengal basin is extending from the Himalayan region (27°N, 88.5°E) to eastern plate margin (23.8°N, 92°E). .This appears to be a tectonic belt and is associated with the northeast drifting of Indian plate. The focal, mechanism studies reveal thrust faulting showing the stresses to be perpendicular to the proposed belt.
APA, Harvard, Vancouver, ISO, and other styles
10

Qian, Jun Feng. "Structural Deformation of Southern Tien Shan Fold-Thrust Belt — Take the North Margin of Kashi for Example." Advanced Materials Research 1010-1012 (August 2014): 1419–24. http://dx.doi.org/10.4028/www.scientific.net/amr.1010-1012.1419.

Full text
Abstract:
The Structural and deformational features of fold-thrust belt in the north margin of Kashi,southern Tian Shan were disclosed based on various data such as two dimensional seismic profile and field geologic survey. The results show that the fold-thrustbelt can be divided into several rows of anticlines, includingKalaboketuoer-Wenguer, Tuopa-Kangxiweier, Atushi and Kashi on plane,and the development of Atushi anticlines and its north side was controlled by the activity of the thrust system originated along the middle Cambrian Awatage Group from north to south. The fold-thrust belt can be divided into two different spatial levels: the shallow tectonic is a large scale imbricate thrust system, the detachment surface is uplifted from Cambrian system to Neogene system; the deep structure is a buried duplex structure system, the fault in floor and fault in roof are located at gypsic horizon in Cambrian and Neogene systemrespectively. Based on structural deformation analyzing and balanced section technology, the distribution of each anticlinal belt and the structure style of the low and deep thrust systems are confirmed. In this area the distance is shortened by 32.64~49.1km from north to south since Pliocene with the scalage of 40.5%~50.51%,and its average crustal shortening rate is 9.11~13.71mm/a.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thrust-and-fault belt"

1

Jibrin, Babangida. "Relations between fault surface morphology and volume structure : 3-D seismic attribute analysis deepwater Niger Delta fold and thrust belt." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3293/.

Full text
Abstract:
Studies have shown that faults exhibit complex geometries that are often highly simplified and cross sections may not be sufficient to highlight the spatial variation of fault surface topography and the complex relationship with the wall rock. The main contributions of this thesis to structural geology are novel methods for investigating links between fault shape and wall rock structure. Curvature plots of sixteen faults show that thrust faults in deepwater Niger Delta exhibit corrugations on a range of wavelength and amplitude. The corrugations are characterized by large-scale anticlastic and synclastic geometries parallel to fault transport direction. The structure of the volumes in the immediate vicinity of the faults was investigated using slices of seismic attribute data sampled parallel and adjacent to thirteen faults. In half of the faults the hanging wall is more disrupted than the footwall, while in the other half the footwall is more disrupted than the hanging wall, implying that thrust zones exhibit complex geometries that existing models have yet to address. In addition, disruptions near fault surfaces may be related to discrete zones of intense fault surface maximum curvature, anomalous surface gradient and change in pattern of anticlastic and synclastic fault Gaussian surface curvature in the fault transport direction. No significant wall rock disruption was observed where fault surface curvature is planar.
APA, Harvard, Vancouver, ISO, and other styles
2

D'ADDA, PAOLO. "Eo-alpine evolution of the central southern alps. Insights from structural analysis and new geochronological constraints." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19018.

Full text
Abstract:
The timing of the Alpine deformation in the Central Southern Alps (CSA or Orobic Alps) has always been a debated topic, since the scarcity of reliable absolute age constraints has prevented an accurate chronological reconstruction of the evolution of this sector of the European Alps. In this work, detailed structural analyses performed in different areas of the CSA allowed us to distinguish different compressive features within both the crystalline basement and the sedimentary cover. The integration of these field data with new isotopic data provides time constraints for the reconstruction of the evolution of the CSA during the Alpine orogeny. In the northern sector of the belt a Variscan polymetamorphic basement is stacked southward on the Permian to Mesozoic cover along two main regional faults (Orobic and Porcile thrusts). Fault zones, slightly postdating a first folding event of Alpine age (D3), experienced a complex evolution through the ductile and brittle deformation regime, showing greenschists facies mylonites overprinted by a penetrative cataclastic deformation (D4). Generation of fault-related pseudotachylytes marks the onset of brittle conditions, lasting up to the youngest episodes of fault activity. Thrusting along this structures also produced thrusting within the Permian-Triassic cover with the formation of different south-verging thrust stacks. This first thrusting event was followed by the activation of new deeper thrust surfaces leading to the emplacement of three regional anticlines (Orobic Anticlines) which tilted to the south the previously stacked units. During this long compressive stage (Orobic-Porcile thrusts and Orobic Anticlines) the sedimentary cover of the CSA was also involved in thrusting and different stacks of Mesozoic units were emplaced to the south. 40Ar/39Ar dating of the pseudotachylyte matrix of 9 samples from both the Orobic and Porcile thrusts give two separated age clusters: Late Cretaceous (80-68 Ma) and Early to Middle Eocene (55-43 Ma). These new data provide evidence that the pre-Adamello evolution of the CSA was characterized by the superposition of different tectonic events accompanying the exhumation of the deepest part of the belt through the brittle-ductile transition. The oldest pseudotachylyte ages demonstrate that south-verging regional thrusting in the CSA was already active during the Late Cretaceous, concurrently with both the HP metamorphism that affected the Austroalpine units of the eastern Alps, and the development of a syn-orogenic foredeep basin where the Upper Cretaceous Lombardian Flysch was deposited. In the Early to Middle Eocene a minor reactivation of the Orobic and Porcile thrusts occurred, as testified by the youngest pseudotachylyte ages obtained by 40Ar/39Ar dating. This event was probably related with the closure of the Ligurian-Piedmont and the ongoing of the Europe-Adria collision. South of the Orobic Anticlines system the Triassic sedimentary succession is stacked into several units bounded by south-verging low-angle thrust faults, which are related to different steps of crustal shortening. Different thrust stacks occur within the Triassic cover between the Como Lake to the west and the Adamello batholith to the east. They usually have an antiformal arrangement and are separated by each other by different N-S trending transverse zones, such as the poorly known Grem-Vedra Transverse Zone (GVTZ), formed during complex deformational phenomena in a transpressional regime coeval with thrust emplacement. The GVTZ formed during the southward imbrication of the older thrust sheets of the Menna-Arera group, strongly interacting with syn-thrust ductile structures, and was reactivated during the growth of the Orobic Anticlines belt. The GVTZ and other transverse zones of the CSA probably reflect the occurrence of pre-existing fault systems that characterize the Norian to Jurassic rifting history of the Lombardian basin, and were reactivated as strike-slip features during Alpine tectonics. In the Gandino and Presolana areas thrust surfaces are cut by high-angle extensional and strike-slip faults, which controlled the emplacement of hypabissal magmatic intrusions that post-date thrusts motions. Intrusion ages based on SHRIMP U-Th-Pb zircon dating span between 42±1 and 39±1 Ma, suggesting close time relationships with the earliest Adamello intrusion stages and, more in general, with the widespread calc-alkaline magmatism described in the Southern Alps. Fission track ages of magmatic apatites are indistinguishable from U-Pb crystallization ages of zircons, suggesting that the intrusion occurred in country rocks already exhumed above the partial annealing zone of apatite (depth < 2-4 km). These data indicate that the northern and central sectors of the CSA were already structured and largely exhumed in the Middle Eocene and no major internal deformations has occurred in these areas after the Bartonian. Neogene deformations were instead concentrated further south, along the frontal part of the belt (Milano Belt). These new data provide a direct evidence that thrusting and nappe stacking were active during Late Cretaceous times not only in the Eastern Alps, but also in the CSA, significantly extending southward the sector of the Alpine belt affected by the Cretaceous orogenic event. In this view, the Late Cretaceous Southern Alps can be interpreted as the south-verging retrobelt of a pre-collisional orogenic wedge, which formed during the subduction of the Alpine Tethys beneath the attenuated northern Adria margin.
APA, Harvard, Vancouver, ISO, and other styles
3

Mansour, Mohannad. "Modèles thermo-géométriques et leurs applications dans la construction de coupes équilibrées-Exemples de Taïwan et des Appalaches." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3021/document.

Full text
Abstract:
Des modèles géométriques ont été proposés pour reconstruire la géométrie de plis associés aux rampes (par exemple pli sur flexure de faille), en identifiant en particulier la profondeur de niveau de décollement et le déplacement total sur la rampe. Ces méthodes de reconstruction géométrique sont appliquées pour des plis partiellement érodés. Au cours de l'érosion, le cut-off de la rampe peut être érodé et, par conséquent, le déplacement sur la rampe est difficile à quantifier. Dans cette thèse, nous développons onze modèles thermo-géométriques. Les modèles combinent les données géométriques et les données d’enfouissement pour proposer une évolution cinématique d’un pli avec cut-off érodé. Nous supposons que la mise en place d'une unité tectonique produit une anomalie thermique dans le mur de la faille, et que cette anomalie thermique pourrait indiquer une épaisseur de bloc chevauchant. Les modèles fournissent une estimation de la profondeur de décollement et le déplacement total sur une rampe érodée, qui ne dépend pas de taux d’érosion. Dans le cas de chevauchements actifs, les modèles proposent un taux de déplacement et un âge de l'initiation de la faille en fonction de taux d'érosion. Ces données sont utilisées pour proposer un développement cinématique de coupes érodées. Nous appliquons les modèles sur les plis érodés et actif à Taiwan dans les zones de Choshui et Miaoli. On propose des coupes régionales équilibrées en utilisant la technique de modélisation directe. Dans la section Choshui, nous proposons un niveau de détachement de ~5 km à ~14 km, marquée par deux sauts successifs de rampes de ~5 km and ~4 km. En supposant un taux d'érosion à 4 mm/an, l'âge de l’initiation de chevauchement active est entre 3,3 Ma dans la partie intérieure de prisme (Chevauchement de Tili) à 0,9 Ma dans la partie extérieur (Chevauchement de Chelungpu). Le raccourcissement totale sur la coupe de Choshui est ~100 km et le taux de déplacement calculé est ~1 cm/an. Pour tester nos modèles thermo-géométriques dans une chaîne plissée inactive, on applique nos modèles sur les plis érodés associés aux failles de Pine Mountain et Jones Valley dans la chaîne plissée des Appalaches. L'application des modèles thermo-géométriques nous permet d’estimer une quantité de déplacement sur les deux failles et expliquer de manière satisfaisante l'anomalie thermique dans le mur des failles de Pine Mountain et Jones Valley. Afin d'améliorer la description de l’anomalie thermique qui se développe dans le soubassement des failles, on a étudié l'évolution des minéraux magnétiques des roches argileuses le long de quatre sections dans la chaîne plissée à Taiwan. On a remarqué que la greigite (Fe3S4) domine l'assemblage magnétique dans les roches enfouies à moins à moins de de 70°C. La magnétite (Fe3O4) se développe pour des températures d’enfouissement de ~50°C et domine l’assemblage magnétique jusqu'à ~350° C. A partir ~300°C, la pyrrhotite monoclinique (Fe7S8) se développe aux dépens de la magnétite, et à ~350°C, la magnétite n'est plus détecté. Ces résultats peuvent être utilisés en complément d'autres géothermomètres pour identifier les anomalies thermiques dans une gamme de de 50-70°C et de 300-350°C où les caractéristiques des minéraux magnétiques sont identifiées
Geometric models have been proposed to account satisfactorily for ramp-related folds (e.g. fault-bend fold), identifying in particular detachment depth and total shortening. These methods of geometric reconstruction are applied on partially eroded folds. During erosion, the fault cut-off may be removed and as a result, the displacement is difficult to quantify. In this thesis, we develop 11 thermo-geometric models combining geometric description of folds and burial data to propose kinematic evolution of folds with eroded cut-offs. We assume that the emplacement of a tectonic unit will result in a thermal anomaly in the footwall, and that this thermal anomaly might indicate a thickness of the overriding unit. The models provide an estimation of the detachment depth and the total shortening on an eroded ramp, independent of the erosion rate. In the case of active thrusts, the models provide an estimation of the slip rate and the age of the initiation of the thrust as a function of the erosion rate. These data are used to unravel the kinematic development of eroded cross-sections. We apply the models on eroded folds from Taiwan underlined by active thrusts in the Choshui and Miaoli sections. We propose regional balanced cross-sections using forward modeling technique. In the Choshui section, we propose a detachment profile with a depth between ~ 5 km and ~ 14 km, marked by two steps of ~ 5 km. Assuming erosion rate at 4 mm/a, the age of initiation of the active thrusts is ranging from 3.3 Ma inward (Tili thrust) to 0.9 Ma outward (Chelungpu thrust). The total shortening from the whole section is ~100 km and the calculated slip rate is about 1 cm/a. To test our models in a non-active fold-and-thrust belt, we study eroded folds associated to the Pine Mountain thrust and Jones Valley thrust from the Appalachian belt. The application of the thermo-geometric models provides a value of the total shortening and explains satisfactorily the thermal anomaly in the footwall of the Jones Valley thrust. In order to improve the description of the thermal anomaly, we have studied the evolution of magnetic minerals of argillaceous rocks in four sections from the Taiwan thrust belt. We found that the iron sulfide greigite (Fe3S4) is dominating the magnetic assemblage in the less buried rocks (<70°C). The magnetite (Fe3O4) develops at burial temperature of ~50°C and is dominating the magnetic assemblage up to ~350°C. By ~300°C, the monoclinic pyrrhotite (Fe7S8) develops at the expense of magnetite, and at ~350°C, the magnetite is no longer detected. These results can be used complementary to other geothermometers to identify thermal anomalies in the range 50-70°C and 300-350°C where characteristic magnetic minerals are identified
APA, Harvard, Vancouver, ISO, and other styles
4

Mobasher, Katayoun. "Kinematic and Tectonic Significance of the Fold- and Fault- Related Fracture Systems in the Zagros Mountains, Southern Iran." unrestricted, 2007. http://etd.gsu.edu/theses/available/etd-04232007-151527/.

Full text
Abstract:
Thesis (Ph. D.)--Georgia State University, 2007.
Title from file title page. Hassan Babaie, committee chair; Pamela Burnley, Timothy La Tour, Zhi Young Yin, committee members. Electronic text (143 p. : ill. (some col.), maps (some col.)) : digital, PDF file. Description based on contents viewed Dec. 11, 2007. Includes bibliographical references (p. 138-143).
APA, Harvard, Vancouver, ISO, and other styles
5

Watkins, Hannah E. "Characterising and predicting fracture patterns in a sandstone fold-and-thrust belt." Thesis, University of Aberdeen, 2015. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=227123.

Full text
Abstract:
Fracture distribution in a fold and thrust belt is commonly thought to vary depending on structural position, strain, lithology and mechanical stratigraphy. The distribution, geometry, orientation, intensity, connectivity and fill of fractures in a reservoir are all important influences on fractured reservoir quality. The presence of fractures is particularly beneficial in reservoirs that contain little matrix porosity or permeability, for example tight sandstones. In these examples fractures provide essential secondary porosity and permeability that enhance reservoir production. To predict how reservoir quality may fluctuate spatially, it is important to understand how fracture attributes may vary, and what controls them. This research aims to investigate the influence of structural position on fracture attribute variations. Detailed fracture data collection is undertaken on folded sandstone outcrops. 2D forward modelling and 3D model restorations are used to predict strain distribution in the fold-and-thrust belt. Relationships between fracture attributes and predicted strain are determined. Discrete Fracture Network (DFN) modelling is then undertaken to predict fracture attribute variations. DFN modelling results are compared with field fracture data to determine how well fractured reservoir quality can be predicted. Field data suggests strain is a major controlling factor on fracture formation. Fractures become more organised and predictable as strain increases. For example in high strain forelimb regions, fracture intensity and connectivity are high, and fracture orientations are consistent. In lower strain regions, fracture attributes are much more variable and unpredictable. Fracture variations often do not correspond to strain fluctuations, and correlations can be seen between fracture intensity and lithology. Reservoir quality is likely to be much more variable in low strain regions than high strain regions. DFN modelling is also challenging because fracture attribute variations in low strain regions do not correspond to strain, and therefore cannot be predicted.
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Shiuh-Tsann, and 黃旭燦. "Analysis of Geological Structure for Fold-and-Thrust Belt, Centraland Southern Taiwanthe Chelungpu Fault." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/05334447219243696059.

Full text
Abstract:
博士
國立中央大學
地球物理研究所
92
This study will be focused on the analysis of regional mesoscopic structural framework as well as the analysis of active faults in central and southern Taiwan. Three areas were chosen for structure analysis in order to decipher their geometrical characteristics and sequential developments by an integrated interpretation using seismic , well log, and field-geology data. Three areas include (1) in the vicinity of the Chelungpu Fault in the Taichung area, (2) east margins of the Peikang High, and (3) south of the Peikang High in Tainan and Kaohsiung areas. Several balanced and palinspatic-restored sections are constrained by seismic data. Analysis on drill cores recovered from the 1999 Chi-Chi earthquake rupture (i.e, the Chelungpu Fault) in central Taiwan, shows that the Chelungpu Fault consists of several major shear zones and their mechanical boundaries coincide with the lithological boundaries of stratigraphic sequence. According to the analysis on palinspatic sections using top of Cholan Formation as a datum plane, it shows that there is a displacement along the fault plane of about 13.7 kilometers, at least, for the Chelungpu Fault. At the eastern edge of the Peikang High, geometrical irregularity of the basement high and the discontinuity of the tectonic trend in the north-south direction are the most important factors that control the geological development for each compartment. The Peikang High is plunged both southward and northward to form the Meishan Ridge. The east-west striking Meishan Ridge is bounded by the Tsaoling Fault system to the north and Meishan Fault to the south. The thin skin thrusting was retarded by the ridge 129 and resulted in the emergence of Chiuchungkeng Fault to form a low angle thrust. The Tsoling Fault system is an important inverted fault. This inverted fault shows reverse features in shallow part while in deeper part it remains normal fault features. Data revealed that the southern part of Chelungpu Fault nappe disappears near the Tsoling Fault. The Meishan Fault is also an important inverted fault. The B Fault and the Meishan Fault are composed of one boundary fault in the southern side of Peikang High. The Meishan fault is not directly connected to the B Fault while a relay ramp is verified as a transitional accommodation zone. The Meishan Fault is interpreted to have extended to the Minshung tonship. The Chaiyi graben is determined as a thoroughly inverted graben by the restoration method. The Chaiyi graben is judged to have occurred prior to the deposition of the Nanchuang Formation. On the coastal plain and transitional zone between offshore and land in Kaohsiung and Tainan, the Tsochen Fault is an important NW-SE trending tear fault in southwestern Taiwan. Napalin Anticline and Hsinhua Fault located at the southern side of Tsochen Fault appear as backthrusts and composed as the triangle zone near the Longchuan structure. Nearshore area near Erzenchi is characterized by fault-bend fold in a reverse direction. The foreland deposits of the Gutinkeng Formation is dominated by thick, low density mudstone which is very suitable for the development of triangle zone in the middle and deep part of subsurface. If the deformation front is defined as the appearance of buried frontal low angle thrust or the inverted faults, this study has proved that the position of deformation front has been extended westward some 10-15 kilometers from the junction between foothill and coastal plain, and the zone of front also extended to the offshore of Kaoshung and Tainan areas.
APA, Harvard, Vancouver, ISO, and other styles
7

MacDonald, Justin. "The Ten Stone Ranges Structural Complex of the central Mackenzie Mountains fold-and-thrust belt: a structural analysis with implications on the Plateau Fault and regional detachment level." Thesis, 2009. http://hdl.handle.net/10012/4663.

Full text
Abstract:
The Cordilleran Orogen affected majority of the western margin of ancient continental North America in the Cretaceous, which is well recorded in the Foreland Belt. The Mackenzie Mountains fold-and-thrust belt is located primarily in the westernmost Northwest Territories and easternmost Yukon Territory in northern Canada. The mountains are often described as the northern extension of the Rocky Mountains to the south which are one of the world’s best examples of a thin-skinned fold-and-thrust belt. Within the Mackenzie Mountains, Neo-Proterozoic through Cretaceous sedimentary rocks record the Laramide aged deformation, with a range of structures that vary in size and complexity. Previous mapping by the Geological Survey of Canada produced a series of reconnaissance maps that are still in use today, many of which are available in only black and white. This study is focused on a part of the 1:250 000 scale NTS 106A Mount Eduni map sheet from Geological Survey of Canada reconnaissance mapping in 1974. The study involved re-mapping a large panel at 1:50 000 scale to better understand the structural geometry, regional shortening and the depth of the underlying detachment level. Through systematic geologic mapping and structural analyses, this study presents a balanced regional cross-section, numerous serial cross-sections and a detailed geologic map of the study area, the Ten Stone Ranges Structural Complex. The serial cross-sections were used to define the geometry of the Cache Lake Fold, a large fault-bend-fold system that involves a folded thrust fault and complicated subsurface geometry. In addition to this, the sections confirmed that the TSRSC is a transfer zone whereby a series of thrust faults and décollement folds are responsible for much of the displacement and shortening in the Mount Eduni map sheet. The balanced regional cross-section was constructed across a number of key structural elements, in particular the Plateau Fault, a regional structure with a > 250 kilometer strike length and the subject of much debate as to its geometry. In addition to this structure, the cross-section transects the Cache Lake Fold and the Shattered Range Anticline, a regional box shaped anticline that was used for a “depth to detachment” calculation. By examining the regional detachment level estimated from the balanced cross-section and calculating the detachment depth using the Shattered Range Anticline the detachment depth was found to be – 11.3 kilometers below the current erosional level. This study is the first structural analyses of the Mount Eduni map sheet, particularly the Ten Stone Ranges Structural Complex, and has resulted in an estimate of the detachment depth for the area, a shortening estimate of > 7 kilometers across the 50 kilometer line of section and a displacement estimate for the Plateau Thrust of > 20 kilometers.
APA, Harvard, Vancouver, ISO, and other styles
8

Sánchez, Carlos Javier M. S. in geological Sciences. "Cenozoic structural evolution of the eastern margin of the Middle Magdalena Valley basin, Colombia : integration of structural restorations, low-temperature thermochronology, and sandstone petrography." Thesis, 2011. http://hdl.handle.net/2152/ETD-UT-2011-08-4185.

Full text
Abstract:
Structural analysis of surface and subsurface data from the Middle Magdalena Valley basin and Eastern Cordillera fold-thrust belt to construct a kinematic model for its Cenozoic structural and stratigraphic evolution. The La Salina west-vergent thrust system marks the boundary between the Paleogene foreland basin of the Middle Magdalena basin and the Eastern Cordillera fold-thrust belt. New low-temperature thermochonological and sandstone petrographic analyses provide constraints on ages of thrust deformation and sediment dispersal. Apatite fission track (AFT) and U-Th/He thermochronological results show the timing of three structural events along the La Salina fault system: (1) late Eocene-early Oligocene (~43–35 Ma) initial hanging wall exhumation; (2) continued middle Miocene (~15 Ma) exhumation; and (3) continued but more rapid late Miocene (~12–3 Ma) hanging wall exhumation. Vitrinite reflectance results provide estimates of maximum burial depths for the hanging wall of the La Salina fault ranging from 4 to 6 km., this depth of burial estimates constrain the basin geometry during its late Eocene to late Miocene evolution. The eastern hanging wall of the La Salina fault displays a broad anticline-syncline pair affecting Cretaceous to Eocene strata with no significant faulting, whereas the western footwall contains a complex series of tight, thrust-related folds in Eocene-Quaternary strata. For foreland basin province, a proposed triangle zone accommodates a small amount of east-west shortening (< 1000 m) along the frontal thrust system by east-vergent backthrusting within a broader passive-roof duplex. East-west shortening in the Cenozoic stratigraphic section was also accommodated by detachment folding, which produced localized areas of steep dips. In the proposed kinematic restoration, the most recent phase of deformation represents out-of-sequence reactivation of the La Salina fault that is consistent with irregular crosscutting relationships of some footwall structures. Earliest exhumation by ~45–30 Ma in the Eastern Cordillera fold-thrust belt province matches (1) an increased proportion of sedimentary lithic fragments; and (2) a high degree of compositional maturity (Q88F4Lf8). Exhumation since ~15 Ma in the foreland province coincides with (1) the highest accumulation rates observed for the upper Miocene Real Group; and (2) a decrease in compositional maturity (Q55F8Lf36).
text
APA, Harvard, Vancouver, ISO, and other styles
9

Simpson, A. D. W. "The Meso-Cenozoic deformation history of Thailand and Myanmar; insights from calcite U-Pb and apatite fission track thermochronology." Thesis, 2018. https://hdl.handle.net/2440/133682.

Full text
Abstract:
This item is only available electronically.
Given the absence of suitable dating methods, the timing of low-temperature crustal deformation is usually established by indirect methods (such as apatite fission track (AFT) thermochronology). Few studies have previously ventured into directly constraining the absolute timing of brittle deformation (such as authigenic illite dating). U-Pb dating of calcite in tectonic veins represents a new method to potentially directly date brittle deformation events (Roberts and Walker, 2016). By utilising this method in combination with apatite U-Pb and fission track thermochronology, this study sheds new light on the upper crustal deformation history of Thailand and Myanmar. U-Pb calcite ages demonstrate tectonic activity at ~216-209Ma in the Khao Kwang Fold and Thrust Belt associated with the Indosinian stage 2 collision between the Sibumasu Block and the Indochina Block. Brittle deformation along the Three Pagodas Fault Zone (TPFZ) was dated at ~45Ma and ~24Ma (and possibly as recently as ~1.3Ma). AFT thermochronology suggests exhumation in the Tin province of southern Myanmar at ~26Ma-18Ma. These dates are in agreement with previous regional AFT studies in Thailand and with calcite U-Pb dates for the TPFZ, suggesting fault reactivation in response to the India-Eurasia collision and rifting in the Andaman Sea. Calcite U-Pb ages were obtained with uncertainties as low as ~1%, which is an unprecedented precision for the timing of brittle deformation. This work further demonstrates that calcite elemental mapping, in combination with U-Pb dating, can be used to distinguish different calcite growth events. Particularly enrichments in Mn or depletions in LREE concentrations in calcite seem useful to distinguish different fluids and associated calcite (re)crystallisation events. Although further work is required to enhance our understanding of both Pb diffusion in calcite as well as geochemical tracers for calcite recrystallization, the combination of calcite U-Pb with apatite fission track thermochronology is a promising novel tool to enhance our understanding of the timing of brittle deformation.
Thesis (B.Sc.(Hons)) -- University of Adelaide, School of Physical Sciences, 2018
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thrust-and-fault belt"

1

Dolati, A., and J. P. Burg. "Preliminary fault analysis and paleostress evolution in the Makran Fold-and-Thrust Belt in Iran." In Lithosphere Dynamics and Sedimentary Basins: The Arabian Plate and Analogues, 261–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30609-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karabinos, Paul. "Heat transfer and fault geometry in the Taconian thrust belt, western New England." In Geological Society of America Special Papers, 35–46. Geological Society of America, 1988. http://dx.doi.org/10.1130/spe222-p35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bombolakis, E. G. "Chapter 17 Role of Elastic Stiffness and Fault Damping during Thrust-sheet Emplacement in a Foreland Belt." In International Geophysics, 417–34. Elsevier, 1992. http://dx.doi.org/10.1016/s0074-6142(08)62832-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ogawa, Yujiro, and Shin’ichi Mori. "Gravitational sliding or tectonic thrusting?: Examples and field recognition in the Miura-Boso subduction zone prism." In Plate Tectonics, Ophiolites, and Societal Significance of Geology: A Celebration of the Career of Eldridge Moores. Geological Society of America, 2021. http://dx.doi.org/10.1130/2021.2552(10).

Full text
Abstract:
ABSTRACT Discrimination between gravity slides and tectonic fold-and-thrust belts in the geologic record has long been a challenge, as both have similar layer shortening structures resulting from single bed duplication by thrust faults of outcrop to map scales. Outcrops on uplifted benches within the Miocene to Pliocene Misaki accretionary unit of Miura-Boso accretionary prism, Miura Peninsula, central Japan, preserve good examples of various types of bedding duplication and duplex structures with multiple styles of folds. These provide a foundation for discussion of the processes, mechanisms, and tectonic implications of structure formation in shallow parts of accretionary prisms. Careful observation of 2-D or 3-D and time dimensions of attitudes allows discrimination between formative processes. The structures of gravitational slide origin develop under semi-lithified conditions existing before the sediments are incorporated into the prism at the shallow surfaces of the outward, or on the inward slopes of the trench. They are constrained within the intraformational horizons above bedding-parallel detachment faults and are unconformably covered with the superjacent beds, or are intruded by diapiric, sedimentary sill or dike intrusions associated with liquefaction or fluidization under ductile conditions. The directions of vergence are variable. On the other hand, layer shortening structure formed by tectonic deformation within the accretionary prism are characterized by more constant styles and attitudes, and by strong shear features with cataclastic textures. In these structures, the fault surfaces are oblique to the bedding, and the beds are systematically duplicated (i.e., lacking random styles of slump folds), and they are commonly associated with fault-propagation folds. Gravitational slide bodies may be further deformed at deeper levels in the prism by tectonism. Such deformed rocks with both processes constitute the whole accretionary prism at depth, and later may be deformed, exhumed to shallow levels, and exposed at the surface of the trench slope, where they may experience further deformation. These observations are not only applicable in time and space to large-scale thrust-and-fold belts of accretionary prism orogens, but to small-scale examples. If we know the total 3-D geometry of geologic bodies, including the time and scale of deformational stages, we can discriminate between gravitational slide and tectonic formation of each fold-and-thrust belt at the various scales of occurrence.
APA, Harvard, Vancouver, ISO, and other styles
5

Russo, Angela G., Wanda J. Taylor, and Patricia H. Cashman. "Late Paleozoic Shortening in South-Central Nevada and Regional Correlations of Major Pre-Sevier Structures." In Late Paleozoic and Early Mesozoic Tectonostratigraphy and Biostratigraphy of Western Pangea, 114–26. SEPM (Society for Sedimentary Geology), 2022. http://dx.doi.org/10.2110/sepmsp.113.05.

Full text
Abstract:
Recent tectonic reinterpretations of the Late Paleozoic Southwest Laurentian margins recognize widespread Late Paleozoic deformation as a critical component in the boundary region development. Overprinted late Paleozoic structures record repeated shortening events in both northern and southern Nevada, but spatial and temporal data are currently lacking to resolve the evolution of this margin. The Timpahute Range, south-central Nevada, bridges part of the spatial gap between previous detailed studies of Late Paleozoic deformation. The purpose here is to (1) evaluate structures in the area that do not appear to fit with recognized Sevier hinterland structures (the Central Nevada thrust belt [CNTB]) and (2) consider whether these contractional structures may be Late Paleozoic and possibly link, or not, structures to the north and south. New mapping in the Timpahute Range documents four geometrically or kinematically distinct sets of structures: Tempiute Ridge folds, Schofield Pass fault zone (SPFZ), structures of the CNTB, and Cenozoic extensional faults. The first three are interpreted to represent separate shortening events based on cross-cutting relations and differences in orientations of the Tempiute Ridge folds and SPFZ (north [N]), and structures of the CNTB (northwest [NW]). The Tempiute Ridge folds represent the oldest event, D1. These folds are large, trend N and verge east (E). The SPFZ is west (W)-vergent, cuts across the limb of a D1 fold and represents D2. The SPFZ is interpreted to be older than the CNTB structures, D3, based on positions of fault cut offs, and differences in footwall and hangingwall facies. All of the shortening events predate the newly dated 102.9 ± 3.2 Ma Lincoln stock and its contact metamorphic aureole. New and previous correlations suggest that a belt of Permian deformation extends from southeast (SE) California northward at least to the Timpahute Range. The Tempiute Ridge folds and SPFZ have the same distinctive geometries, styles, and kinematics as structures in the Nevada National Security Site. The mountain-size, E-vergent Tempiute Ridge folds and the W-vergent SPFZ correlate to structures associated with the Belted Range thrust and the W-vergent CP thrust, respectively. The Belted Range thrust previously has been correlated southward into the Death Valley region. Thus, convergence created large-amplitude folds and thrusts for ~200 km along strike. Structures of this age are exposed in northern Nevada but are smaller. These new relations fill a data gap and suggest differences in the size and structural style of Permian structures along strike and corresponding variations in the plate boundary configuration.
APA, Harvard, Vancouver, ISO, and other styles
6

THOMAS, WILLIAM A. "DIACHRONOUS THRUST LOADING AND FAULT PARTITIONING OF THE BLACK WARRIOR FORELAND BASIN WITHIN THE ALABAMA RECESS OF THE LATE PALEOZOIC APPALACHIAN—OUACHITA THRUST BELT." In Stratigraphic Evolution of Foreland Basins, 111–26. SEPM (Society for Sedimentary Geology), 1995. http://dx.doi.org/10.2110/pec.95.52.0111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

K. Biswas, Sanjib, and Gaurav D. Chauhan. "Intra-Plate Dynamics and Active Tectonic Zones of the Indian Plate." In Advances in Plate Tectonics [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105647.

Full text
Abstract:
The tectonic framework of the Indian Plate started to evolve since the break-up of Gondwanaland in the Late Triassic. It evolved mainly during the time between its separation from the African plate in the Early-Cretaceous and its collision with the Eurasian plate on the north in Late-Middle Eocene and with the Burmese plate in the northeast in Late-Oligocene. Present active tectonic zones, responsible for earthquake generation, were created by the collision pattern and subsequent plate motion. Continued subduction and plate motion due to ridge push and slab pull are responsible for the activation of primordial faults in the inherent structural fabric of the craton depending on the related stress field. Major tectonic zones of the Indian continental plate are related to the collision fronts and the reactivated intra-cratonic faults along the resurgent paleo-sutures between the proto-cratons. Major Tectonic Zones (TZ) are Himalayan TZ, Assam-Arakan TZ, Baluchistan- Karakoram TZ, Andaman-Nicobar TZ, and Stable Continental Region (SCR) earthquake zone. The structure of the continental margins developed during the break-up of Gondwana continental fragments. Western margin evolved during the sequential separation of Africa, Madagascar, and Seychelles since the Late-Triassic to Late Cretaceous time. The Eastern margin structure evolved during the separation of Antarctica in Mid Cretaceous. The orogenic belt circumscribing the northern margin of Indian plate is highly tectonised as the subduction of the plate continues due to northerly push from the Carlsberg Ridge in the SW and slab-pull towards northeast and east along the orogenic and island arc fronts in the NE. This stress pattern induced an anticlockwise rotatory plate motion. The back thrust from the collision front in the direction opposite to the ridge push put the plate under an overall compressive stress. This stress pattern and the plate motion are responsible for the reactivation of the major intra-cratonic faults. While the tectonised orogenic belts are the zones for earthquake nucleation, the reactivated faults are also the strained mega shear zones across the plate for earthquake generation in SCR. These faults trending WNW-ESE are apparently the transform faults that extend across the continent from Carlsberg ridge in the west to the collision zones in the northeast. As such, they are described here as the ‘trans-continental transform faults’. Three such major fault zones from north to south are (i) North Kathiawar fault - Great Boundary fault (along the Aravalli belt) zone, (ii) South Saurashtra fault (extension of Narmada fault) – SONATA-Dauki-Naga fault zone, and (iii) Tellichery-Cauvery-Eastern Ghat-T3-Hail Hakalula-Naga thrust zone. All these trans-continental faults, which are mega-shear zones, are traceable from western offshore to the northeastern orogenic belts along mega tectonic lineaments across the continent. The neotectonic movements along these faults, their relative motion, and displacement are the architect of the present geomorphic pattern and shape of the Indian craton. The overall compressive stress is responsible for strain build-up within these fault zones and consequent earthquake nucleation. The mid-continental Sonata-Dauki shear zone follows the Central Indian Suture Zone between Bundelkhand Proto Continent (BPC) and Deccan Proto Continent (DPC). With the reactivation of this shear zone, the two proto-cratonic blocks are subjected to relative movement as the plate rotates anticlockwise. The kinematics of these movements and their implications are discussed here with a special reference to the recent 2001 Bhuj earthquake.
APA, Harvard, Vancouver, ISO, and other styles
8

Disalvo, Alfredo, Emilio Rocha, Juan Francisco Chung Ching, and Juan Pedro Doiny Cabré. "The San Martín Anticline: a classic example of a fault-bend fold in the Camisea fold and thrust belt, Central Andes, Perú." In Andean Structural Styles, 285–97. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-85175-6.00022-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Busby, C. J., T. L. Pavlis, S. M. Roeske, and B. Tikoff. "The North American Cordillera during the Mesozoic to Paleogene: Selected questions and controversies." In Laurentia: Turning Points in the Evolution of a Continent. Geological Society of America, 2022. http://dx.doi.org/10.1130/2022.1220(31).

Full text
Abstract:
ABSTRACT The North American Cordillera experienced significant and varied tectonism during the Triassic to Paleogene time interval. Herein, we highlight selected questions and controversies that remain at this time. First, we describe two tectonic processes that have hindered interpretations of the evolution of the orogen: (1) strike-slip systems with poorly resolved displacement; and (2) the closing of ocean basins of uncertain size, origin, and mechanism of closure. Next, we divide the orogen into southern, central, and northern segments to discuss selected controversies relevant to each area. Controversies/questions from the southern segment include: What is the origin of cryptic transform faults (Mojave-Sonora megashear vs. California Coahuila transform fault)? Is the Nazas an arc or a continental rift province? What is the Arperos basin (Guerrero terrane), and did its closure produce the Mexican fold-and-thrust belt? How may inherited basement control patterns of deformation during subduction? Controversies/questions from the central segment include: Can steeply dipping mantle anomalies be reconciled with geology? What caused high-flux events in the Sierra Nevada batholith? What is the origin of the North American Cordilleran anatectic belt? How does the Idaho segment of the orogen connect to the north and south? Controversies/questions from the northern segment include: How do we solve the Baja–British Columbia problem? How big and what kind of basin was the Early Cretaceous lost ocean basin? What connections can be found between Arctic geology and Cordilleran geology in Alaska? How do the Cretaceous tectonic events in the Arctic and northern Alaska connect with the Cordilleran Cretaceous events? What caused the Eocene tectonic transitions seen throughout the northern Cordillera? By addressing these questions along the length of the Cordillera, we hope to highlight common problems and facilitate productive discussion on the development of these features.
APA, Harvard, Vancouver, ISO, and other styles
10

Seltmann, Reimar, Richard J. Goldfarb, Bo Zu, Robert A. Creaser, Alla Dolgopolova, and Vitaly V. Shatov. "Chapter 24: Muruntau, Uzbekistan: The World’s Largest Epigenetic Gold Deposit." In Geology of the World’s Major Gold Deposits and Provinces, 497–521. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.24.

Full text
Abstract:
Abstract Muruntau in the Central Kyzylkum desert of the South Tien Shan, western Uzbekistan, with past production of ~3,000 metric tons (t) Au since 1967, present annual production of ~60 t Au, and large remaining resources, is the world’s largest epigenetic Au deposit. The host rocks are the mainly Cambrian-Ordovician siliciclastic flysch of the Besapan sequence. The rocks were deformed into a broadly east-west fold-and-thrust belt prior to ca. 300 Ma during ocean closure along the South Tien Shan suture. A subsequent tectonic transition was characterized by left-lateral motion on regional splays from the suture and by a massive thermal event documented by widespread 300 to 275 Ma magmatism. The Besapan rocks were subjected to middle to upper greenschist-facies regional metamorphism, an overprinting more local thermal metamorphism to produce a large hornfels aureole, and then Au-related hydrothermal activity all during early parts of the thermal event. The giant Muruntau Au deposit formed in the low-strain hornfels rocks at ca. 288 Ma at the intersection of one of the east-west splays, the Sangruntau-Tamdytau shear zone, with a NE-trending regional fault zone, the Muruntau-Daugyztau fault, which likely formed as a cross fault during the onset of left-lateral translation on the regional splays. Interaction between the two faults opened a large dilational zone along a plunging anticlinorium fold nose that served as a major site for hydrothermal fluid focusing. The Au ores are dominantly present as a series of moderately to steeply dipping quartz ± K-feldspar stockwork systems surrounding uncommon central veins and with widespread lower Au-grade metasomatites (i.e., disseminated ores). Pervasive alteration is biotite-K-feldspar, although locally albitization is dominant. Sulfides are mainly arsenopyrite, pyrite, and lesser pyrrhotite, and scheelite may be present both in preore ductile veins and in the more brittle auriferous stockwork systems. The low-salinity, aqueous-carbonic ore-forming fluids probably deposited the bulk of the ore at 400° ± 50°C and 6-to 10-km paleodepth. The genesis of the deposit remains controversial with metamorphic, thermal aureole gold (TAG), and models related to mantle upwelling all having been suggested in recent years. More importantly, the question as to why there was such a focusing of so much Au and fluid into this one location, forming an ore system an order of magnitude larger than other giant Au deposits in metamorphic terranes, remains unresolved.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thrust-and-fault belt"

1

Chandonia, William, John P. Hogan, Andreas Eckert, and Trey Anglim. "RAMP FORMATION AND FAULT BREAKTHROUGH OF THE KANARRA FOLD SYSTEM, SEVIER THRUST BELT, SW UTAH." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-297967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Woodring, Danielle, Andrew Meigs, Jim E. O'Connor, Charles Cannon, Shannon Mahan, Ray Wells, Scott Bennett, and Mark E. Stelten. "THE ACTIVE WARWICK STRIKE-SLIP FAULT AND THE COLUMBIA HILLS THRUST FAULT OF THE YAKIMA FOLD AND THRUST BELT ACCOMMODATE VERTICAL-AXIS ROTATION IN THE CASCADIA BACKARC." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-370020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Soleimani, M., J. Mann, H. ,. A. Khalilzadeh, and J. Jamali. "Seismic imaging in complex region of Zagros thrust fault belt by CRS and CDS stack method." In Istanbul 2012 - International Geophysical Conference and Oil & Gas Exhibition. Society of Exploration Geophysicists and The Chamber of Geophysical Engineers of Turkey, 2012. http://dx.doi.org/10.1190/ist092012-001.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Borel, Megan, and James J. Vogl. "BASEMENT-INVOLVED THRUST FAULT IN THE PIONEER METAMORPHIC CORE COMPLEX FOOTWALL: IMPLICATIONS FOR DEEP LEVELS OF THE SEVIER THRUST BELT, NEOPROTEROZOIC STRATIGRAPHY, AND CONTROLS ON EXTENSIONAL FAULT GEOMETRIES." In Joint 118th Annual Cordilleran/72nd Annual Rocky Mountain Section Meeting - 2022. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022cd-374279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Woodring, Danielle N., Andrew Meigs, Marina Marcelli, Jim E. O'Connor, Charles M. Cannon, Shannon A. Mahan, and Ray E. Wells. "KINEMATICS OF THE COLUMBIA HILLS ANTICLINE AND THE WARWICK STRIKE-SLIP FAULT, YAKIMA FOLD AND THRUST BELT, WASHINGTON, USA." In 115th Annual GSA Cordilleran Section Meeting - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019cd-329642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Noufal, Abdelwahab, Muhammad Aamir, Khalid Obaid, Ibrahim Al Ali, and Ismail Al Hosani. "Abu Dhabi Fold-Thrust Belt Dilemma of Jebel Jais Outcrops: Impact on Hydrocarbon Trapping Mechanism in Eastern Abu Dhabi." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211612-ms.

Full text
Abstract:
Abstract For the last decades, only a few scattered wells have explored the thrust fold belt in Abu Dhabi, with inconclusive results about the hydrocarbon potentiality. Drilling was avoided in these areas in the past due to the geological complexity and unavailable technologies that would reveal the subsurface geometries. Previous studies attempted to resolve the petroleum system elements in Eastern Abu Dhabi; however, they are still challenging, and require thorough investigation. This paper is focusing on the integration of Jebel Jais outcrops in Ras Al Khaima with subsurface datasets (Geophysical and well data), which will help in understanding the subsurface structural trap geometries, reservoir and charge evolution and timing. The outcrops functioned as remarkable analogues for structural features that indicate complex tectonics of the region such as folding and faulting. They will also serve in guiding the mechanical and kinematic modeling of subsurface, where seismic image is undistinguishable. ADNOC has recently completed a Mega 3D seismic survey in Eastern Abu Dhabi with higher acquisition parameters compared to the legacy 2D and 3D seismic surveys. The early fast track Seismic processing results revealed additional structural styles, which will be refined with advanced seismic imaging techniques, and calibrated with potential data such as gravity and magnetics in later stages. The thrust nappes deformation and the fault-bend folds were observed in the outcrops. Most of thrusts are associated with strike-slip component and the detachment surface located at the base of Khuff units. Folding-stacked structures have different orientations with narrow duplexes that led to the growth of anticlinal stacked structures, which were the consequence of differential uplift of the rock units above the duplex, and were subjected to stretching. This process invoked strike-slip faulting along the lateral culmination wall and was facilitated by the regional, syn-thrusting arc–parallel transpression. Horizontal movement along the fault plane is a result of tear faulting accommodating a varied rate of advancement of Khuff units. The time of the fault formation is well-constrained post-Jurassic; however, the syn-thrusting origin showing its anticipation through Triassic onwards forming thrust-fold belt. This paper will provide insights from Jebel Jais Outcrops that will help in understanding the substantial undiscovered hydrocarbon resources and prepare for future exploration activities.
APA, Harvard, Vancouver, ISO, and other styles
7

Jackson, William T., Matthew P. McKay, William A. Thomas, G. Daniel Irvin, and W. Edward Osborne. "EXPLORING THE RELATIONSHIP BETWEEN LATERAL RAMPS AND AN ORTHOGONAL BEND IN THE PELL CITY FAULT, JACKSONVILLE WEST 7.5-MINUTE QUADRANGLE, APPALACHIAN THRUST BELT, ALABAMA." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-284828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Betka, Paul, Bar Oryan, J. Ryan Thigpen, Céline Grall, W. Roger Buck, and Michael Steckler. "COMBINING KINEMATIC AND NUMERICAL MODELING TO UNDERSTAND THE PROGRESSION FROM DETACHMENT FOLDING TO FAULT-CORED FOLDING; A CASE STUDY FROM THE INDO-BURMAN FOLD-THRUST BELT." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-324131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hinsch, Ralph. "Indications of Deep Marine Fans in the Early Miocene Foredeep of Lower Austria: A Potential New Play." In Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/208133-ms.

Full text
Abstract:
Abstract The petroleum province in Lower Austria resulted from the Alpine collision and the subsequent formation of the Vienna Basin. OMV is active in this area since its foundation in 1956. Several plays have been successfully tested and produced in this complex geological region. The main exploration focus is currently on the deep plays. However, this paper proposes a so far unrecognized and therefore undrilled play in a shallower level to broaden OMV's portfolio in Austria. Seismic re-interpretations of reprocessed 3D seismic data and structural reconstructions were used to review some of the existing plays and get novel ideas from improved understanding of processes. In the frontal accretion zone of the Alpine wedge, the Waschberg-Ždánice zone discoveries are limited to the frontal thrust unit and associated structures. The more internal parts of the thrust belt have only sparsely been drilled and are perceived not to have high-quality reservoir rocks. The detailed structural interpretations indicated that the foredeep axis during the Early Miocene was positioned in the thrust sheet located directly in front of the advancing Alpine wedge (comprising the eroding Rhenodanubian Flysch in its frontal part). Seismic amplitude anomalies can be interpreted to represent Lower Miocene basin floor and slope fans. Nearby wells did not penetrate these fans but drilled instead shale-dominated lithologies. Thus, the presence of potential sand-rich fans in front of the advancing alpine wedge is considered a potential new play in Lower Austria. Analogues are found in Upper Austria some 250 km to the West, where several large gas fields in Lower Miocene deposits located in front of the advancing Alpine wedge have been discovered by another operator. In that area the fans are only partly involved in the fold-thrust belt. In Lower Austria, these fans are located within the rear thrust sheet(s), providing a structural component to a mixed structural-stratigraphic trap. Two potential charge mechanism can be considered: a) biogenic gas charge from the organic matter of surrounding shales (like the Upper Austria analogues) or b) oil charge via the thrust fault planes from the Jurassic Mikulov Formation (the proven main source rock in the broader area). Our results add to the understanding of the Miocene structural-stratigraphic evolution of the Alpine collision zone. The definition of a potential new play may add significant value to OMV's upstream efforts in a very mature hydrocarbon province.
APA, Harvard, Vancouver, ISO, and other styles
10

Lynch, Erin, Andreas Mulch, Ben van der Pluijm, and Adolph Yonkee. "SYN-DEFORMATIONAL INFILTRATION OF SURFACE-DERIVED FLUIDS ALONG FAULT ZONES IN THE IDAHO-WYOMING SALIENT, SEVIER FOLD-THRUST BELT: CONSTRAINTS FROM PAIRED RADIOGENIC AND STABLE ISOTOPIC ANALYSIS OF AUTHIGENIC CLAYS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-305963.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thrust-and-fault belt"

1

Wozniakowska, P., D. W. Eaton, C. Deblonde, A. Mort, and O. H. Ardakani. Identification of regional structural corridors in the Montney play using trend surface analysis combined with geophysical imaging, British Columbia and Alberta. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328850.

Full text
Abstract:
The Western Canada Sedimentary Basin (WCSB) is a mature oil and gas basin with an extraordinary endowment of publicly accessible data. It contains structural elements of varying age, expressed as folding, faulting, and fracturing, which provide a record of tectonic activity during basin evolution. Knowledge of the structural architecture of the basin is crucial to understand its tectonic evolution; it also provides essential input for a range of geoscientific studies, including hydrogeology, geomechanics, and seismic risk analysis. This study focuses on an area defined by the subsurface extent of the Triassic Montney Formation, a region of the WCSB straddling the border between Alberta and British Columbia, and covering an area of approximately 130,000 km2. In terms of regional structural elements, this area is roughly bisected by the east-west trending Dawson Creek Graben Complex (DCGC), which initially formed in the Late Carboniferous, and is bordered to the southwest by the Late Cretaceous - Paleocene Rocky Mountain thrust and fold belt (TFB). The structural geology of this region has been extensively studied, but structural elements compiled from previous studies exhibit inconsistencies arising from distinct subregions of investigation in previous studies, differences in the interpreted locations of faults, and inconsistent terminology. Moreover, in cases where faults are mapped based on unpublished proprietary data, many existing interpretations suffer from a lack of reproducibility. In this study, publicly accessible data - formation tops derived from well logs, LITHOPROBE seismic profiles and regional potential-field grids, are used to delineate regional structural elements. Where seismic profiles cross key structural features, these features are generally expressed as multi-stranded or en echelon faults and structurally-linked folds, rather than discrete faults. Furthermore, even in areas of relatively tight well control, individual fault structures cannot be discerned in a robust manner, because the spatial sampling is insufficient to resolve fault strands. We have therefore adopted a structural-corridor approach, where structural corridors are defined as laterally continuous trends, identified using geological trend surface analysis supported by geophysical data, that contain co-genetic faults and folds. Such structural trends have been documented in laboratory models of basement-involved faults and some types of structural corridors have been described as flower structures. The distinction between discrete faults and structural corridors is particularly important for induced seismicity risk analysis, as the hazard posed by a single large structure differs from the hazard presented by a corridor of smaller pre-existing faults. We have implemented a workflow that uses trend surface analysis based on formation tops, with extensive quality control, combined with validation using available geophysical data. Seven formations are considered, from the Late Cretaceous Basal Fish Scale Zone (BFSZ) to the Wabamun Group. This approach helped to resolve the problem of limited spatial extent of available seismic data and provided a broader spatial coverage, enabling the investigation of structural trends throughout the entirety of the Montney play. In total, we identified 34 major structural corridors and number of smaller-scale structures, for which a GIS shapefile is included as a digital supplement to facilitate use of these features in other studies. Our study also outlines two buried regional foreland lobes of the Rocky Mountain TFB, both north and south of the DCGC.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography