To see the other types of publications on this topic, follow the link: Through-thickness.

Journal articles on the topic 'Through-thickness'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Through-thickness.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Salama, Mamdouh M. "Through-Thickness Properties of TMCP Steels." Journal of Offshore Mechanics and Arctic Engineering 126, no. 4 (November 1, 2004): 346–49. http://dx.doi.org/10.1115/1.1836051.

Full text
Abstract:
Two failure modes were observed in tensile test specimens machined from TMCP steel pipe. Longitudinal centerline cracks were formed after necking followed by the conventional cup and cone transverse failure. The formation of the longitudinal cracks was attributed to sulfur segregation and grain growth at the centerline. This gave rise to concerns that TMCP steels might exhibit low through-thickness ductility that could lead to lamellar tear failures in highly constrained joints or joints with through-thickness loadings such as in the case of tubular joints and lifting lugs. It also gave rise to a concern regarding the potential of hydrogen-induced cracking in TMCP steel vessels, pipelines, and cathodically protected tubular joints. The results of through-thickness tensile tests showed that this TMCP steel has good through-thickness ductility in spite of the presence of high sulfur segregation at the centerline. However, the results of slow strain tests on a hydrogen charged through-thickness tensile specimen showed some deterioration in ductility. In addition, the fracture of the specimen was characterized by the presence of multiple circumferential cracks that are characteristic of hydrogen embrittled materials.
APA, Harvard, Vancouver, ISO, and other styles
2

Barsom, J. M., and S. A. Korvink. "Through-Thickness Properties of Structural Steels." Journal of Structural Engineering 124, no. 7 (July 1998): 727–35. http://dx.doi.org/10.1061/(asce)0733-9445(1998)124:7(727).

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

WAGONER, R., and M. LI. "Simulation of springback: Through-thickness integration." International Journal of Plasticity 23, no. 3 (March 2007): 345–60. http://dx.doi.org/10.1016/j.ijplas.2006.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

De Angelis, R. J., D. B. Knorr, and H. D. Merchant. "Through-thickness characterization of copper electrodeposit." Journal of Electronic Materials 24, no. 8 (August 1995): 927–33. http://dx.doi.org/10.1007/bf02652963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chakrabarti, D. J., Hasso Weiland, B. A. Cheney, and James T. Staley. "Through Thickness Property Variations in 7050 Plate." Materials Science Forum 217-222 (May 1996): 1085–90. http://dx.doi.org/10.4028/www.scientific.net/msf.217-222.1085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Xiumei, Xiaofeng Gu, and Shaoqing Xiao. "Modification of SiO2 thickness distribution through evaporation." Thin Solid Films 642 (November 2017): 31–35. http://dx.doi.org/10.1016/j.tsf.2017.09.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lodeiro, M. J., W. R. Broughton, and G. D. Sims. "Understanding limitations of through thickness test methods." Plastics, Rubber and Composites 28, no. 9 (September 1999): 416–24. http://dx.doi.org/10.1179/146580199101540583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ohtsuki, T., C. J. Lin, and F. Yamada. "Direct overwrite using through-thickness temperature gradients." IEEE Transactions on Magnetics 27, no. 6 (November 1991): 5109–11. http://dx.doi.org/10.1109/20.278756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Webster, P. J., X. D. Wang, and G. Mills. "Through-Thickness Strain Scanning Using Synchrotron Radiation." Materials Science Forum 228-231 (July 1996): 227–32. http://dx.doi.org/10.4028/www.scientific.net/msf.228-231.227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gibson, AG. "Through-thickness elastic constants of composite laminates." Journal of Composite Materials 47, no. 28 (December 4, 2012): 3487–99. http://dx.doi.org/10.1177/0021998312466907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

NOGAY, Hıdır Selçuk. "Determining Skinfold Thickness through Artificial Neural Networks." Journal of the Institute of Science and Technology 6, no. 3 (September 20, 2016): 41. http://dx.doi.org/10.21597/jist.2016321838.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gning, P. B., D. Delsart, J. M. Mortier, and D. Coutellier. "Through-thickness strength measurements using Arcan’s method." Composites Part B: Engineering 41, no. 4 (June 2010): 308–16. http://dx.doi.org/10.1016/j.compositesb.2010.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kotousov, Andrei. "CTOD for the through-the-thickness crack in a plate of arbitrary thickness." International Journal of Fracture 119/120, no. 4-2 (2003): L99—L104. http://dx.doi.org/10.1023/a:1024909018990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Feistauer, Miloslav, Jiří Felcman, and Zdeněk Vlášek. "Finite element solution of flows through cascades of profiles in a layer of variable thickness." Applications of Mathematics 31, no. 4 (1986): 309–39. http://dx.doi.org/10.21136/am.1986.104209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Daojun, and D. D. L. Chung. "Through-thickness piezoresistivity in a carbon fiber polymer-matrix structural composite for electrical-resistance-based through-thickness strain sensing." Carbon 60 (August 2013): 129–38. http://dx.doi.org/10.1016/j.carbon.2013.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zaghloul, Sameh, Tom Hoover, D. J. Swan, Nick Vitillo, Robert Sauber, and Andris A. Jumikis. "Enhancing Backcalculation Procedures Through Consideration of Thickness Variability." Transportation Research Record: Journal of the Transportation Research Board 1869, no. 1 (January 2004): 80–87. http://dx.doi.org/10.3141/1869-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Janeschitz-Kriegl, M., H. Janeschitz-Kriegl, G. Eder, and R. Forstner. "Heat Transfer through Metal Walls of Finite Thickness." International Polymer Processing 21, no. 1 (March 2006): 41–48. http://dx.doi.org/10.3139/217.0091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Prock, A., and W. P. Giering. "Equilibrium nonlinear diffusion through membranes of finite thickness." Journal of Physical Chemistry 93, no. 26 (December 1989): 8382. http://dx.doi.org/10.1021/j100363a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kim, Youjin, Woo Seob Kim, and Jonghwi Lee. "Graphene-reinforced collagen hydrogels with through-thickness porosity." Macromolecular Research 22, no. 8 (August 2014): 813–15. http://dx.doi.org/10.1007/s13233-014-2139-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ferguson, R. F., M. J. Hinton, and M. J. Hiley. "Determining the through-thickness properties of FRP materials." Composites Science and Technology 58, no. 9 (September 1998): 1411–20. http://dx.doi.org/10.1016/s0266-3538(98)00026-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Deng, Chao, Shi-Feng Liu, Xiao-Bo Hao, Jing-Li Ji, Qing Liu, and Hai-Yang Fan. "Through-thickness texture gradient of tantalum sputtering target." Rare Metals 36, no. 6 (November 28, 2014): 523–26. http://dx.doi.org/10.1007/s12598-014-0407-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Schoenfeld, S. E., and R. J. Asaro. "Through thickness texture gradients in rolled polycrystalline alloys." International Journal of Mechanical Sciences 38, no. 6 (June 1996): 661–83. http://dx.doi.org/10.1016/s0020-7403(96)80008-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Vollertsen, F., and H. Schulze Niehoff. "Homogenisation of Thickness through High Viscous Fluid Flow." CIRP Annals 52, no. 1 (2003): 233–36. http://dx.doi.org/10.1016/s0007-8506(07)60573-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Burchitz, I. A., and T. Meinders. "Adaptive through-thickness integration for accurate springback prediction." International Journal for Numerical Methods in Engineering 75, no. 5 (December 17, 2007): 533–54. http://dx.doi.org/10.1002/nme.2260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

George, D., E. Kingston, and D. J. Smith. "Measurement of through-thickness stresses using small holes." Journal of Strain Analysis for Engineering Design 37, no. 2 (February 2002): 125–39. http://dx.doi.org/10.1243/0309324021514899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Abot, J. L., and I. M. Daniel. "Through-Thickness Mechanical Characterization of Woven Fabric Composites." Journal of Composite Materials 38, no. 7 (April 2004): 543–53. http://dx.doi.org/10.1177/0021998304042394.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Boyd, S. W., J. M. Dulieu-Barton, O. T. Thomsen, and S. El-Gazzani. "Through thickness stress distributions in pultruded GRP materials." Composite Structures 92, no. 3 (February 2010): 662–68. http://dx.doi.org/10.1016/j.compstruct.2009.09.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Henao, Anamaría, Marco Carrera, Antonio Miravete, and Luis Castejón. "Mechanical performance of through-thickness tufted sandwich structures." Composite Structures 92, no. 9 (August 2010): 2052–59. http://dx.doi.org/10.1016/j.compstruct.2009.11.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mishin, O. V., B. Bay, and D. Jull Jensen. "Through-thickness texture gradients in cold-rolled aluminum." Metallurgical and Materials Transactions A 31, no. 6 (June 2000): 1653–62. http://dx.doi.org/10.1007/s11661-000-0175-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tavares, S. Sequeira, V. Michaud, and J. A. E. Månson. "Through thickness air permeability of prepregs during cure." Composites Part A: Applied Science and Manufacturing 40, no. 10 (October 2009): 1587–96. http://dx.doi.org/10.1016/j.compositesa.2009.07.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Liu, S. F., H. Y. Fan, C. Deng, X. B. Hao, Y. Guo, and Q. Liu. "Through-thickness texture in clock-rolled tantalum plate." International Journal of Refractory Metals and Hard Materials 48 (January 2015): 194–200. http://dx.doi.org/10.1016/j.ijrmhm.2014.08.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gao, Xing, Piotr Kuśmierczyk, Zhijun Shi, Changqing Liu, Guang Yang, Igor Sevostianov, and Vadim V. Silberschmidt. "Through-thickness stress relaxation in bacterial cellulose hydrogel." Journal of the Mechanical Behavior of Biomedical Materials 59 (June 2016): 90–98. http://dx.doi.org/10.1016/j.jmbbm.2015.12.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Garcia-Manrique, J., D. Camas, P. Lopez-Crespo, and A. Gonzalez-Herrera. "Stress intensity factor analysis of through thickness effects." International Journal of Fatigue 46 (January 2013): 58–66. http://dx.doi.org/10.1016/j.ijfatigue.2011.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Solodov, I., and M. Kreutzbruck. "Local defect resonance of a through-thickness crack." Ultrasonics 118 (January 2021): 106565. http://dx.doi.org/10.1016/j.ultras.2021.106565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhang, Y. Y., G. H. Ruan, and D. Xiao. "Crack growth of through and part-through thickness cracks under cyclic loading." Theoretical and Applied Fracture Mechanics 24, no. 3 (February 1996): 243–51. http://dx.doi.org/10.1016/0167-8442(95)00047-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sakai, Taku, K. Yoneda, and Yoshiyuki Saito. "Control of Through-Thickness Shear Texture by Asymmetric Rolling." Materials Science Forum 396-402 (July 2002): 309–14. http://dx.doi.org/10.4028/www.scientific.net/msf.396-402.309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sarkar, J., S. Cao, and Shigeo Saimoto. "Friction Effects on Through-Thickness Texture Evolution during Rolling." Materials Science Forum 495-497 (September 2005): 567–72. http://dx.doi.org/10.4028/www.scientific.net/msf.495-497.567.

Full text
Abstract:
Using AA5182 and 5754 aluminum alloys, the role of friction in through-thickness evolution was demonstrated. Aside from the mechanical parameters such as roll gap geometry and coefficient of friction, the significance of the role of Fe solute in the matrix was revealed.
APA, Harvard, Vancouver, ISO, and other styles
38

Dell’Anno, G., J. W. G. Treiber, and I. K. Partridge. "Manufacturing of composite parts reinforced through-thickness by tufting." Robotics and Computer-Integrated Manufacturing 37 (February 2016): 262–72. http://dx.doi.org/10.1016/j.rcim.2015.04.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Beghini, M., L. Bertini, and W. Rosellini. "Genetic Algorithms for Variable Through Thickness Residual Stress Evaluation." Materials Science Forum 347-349 (May 2000): 144–49. http://dx.doi.org/10.4028/www.scientific.net/msf.347-349.144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kostopoulos, Vassilis, Nikolaos Sarantinos, and Stavros Tsantzalis. "Review of Through-the-Thickness Reinforced z-Pinned Composites." Journal of Composites Science 4, no. 1 (March 20, 2020): 31. http://dx.doi.org/10.3390/jcs4010031.

Full text
Abstract:
This work reviews the effects of z-Pins used in composite laminates as through-the-thickness reinforcement to increase the composite’s properties in the out-of-plane direction. The paper presents the manufacture and microstructure of this reinforcement type while also incorporating the impact of z-Pins on the mechanical properties of the composite. Mechanical properties include tensile, compression, flexure properties in static, dynamic and fatigue loads. Additionally, mode I and mode II properties in both static and fatigue loading are presented, as well as hygrothermal, impact and compression after impact properties.
APA, Harvard, Vancouver, ISO, and other styles
41

Chen, J. Z., L. Zhen, W. Z. Shao, S. L. Dai, and Y. X. Cui. "Through-thickness texture gradient in AA 7055 aluminum alloy." Materials Letters 62, no. 1 (January 2008): 88–90. http://dx.doi.org/10.1016/j.matlet.2007.04.074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

El-Abbasi, N., and S. A. Meguid. "A new shell element accounting for through-thickness deformation." Computer Methods in Applied Mechanics and Engineering 189, no. 3 (September 2000): 841–62. http://dx.doi.org/10.1016/s0045-7825(99)00348-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Norouzpour, Mana, and Rodney Herring. "Strain Measurement through the Thickness of Crystal using DBI." Microscopy and Microanalysis 21, S3 (August 2015): 1965–66. http://dx.doi.org/10.1017/s1431927615010600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chang, T., and W. Guo. "A model for the through-thickness fatigue crack closure." Engineering Fracture Mechanics 64, no. 1 (September 1999): 59–65. http://dx.doi.org/10.1016/s0013-7944(99)00055-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lee, Min Kyung, Nae-Oh Chung, and Jonghwi Lee. "Membranes with through-thickness porosity prepared by unidirectional freezing." Polymer 51, no. 26 (December 2010): 6258–67. http://dx.doi.org/10.1016/j.polymer.2010.10.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Adachi, Makoto, Titichai Navessin, Zhong Xie, Fei Hua Li, Shiro Tanaka, and Steven Holdcroft. "Thickness dependence of water permeation through proton exchange membranes." Journal of Membrane Science 364, no. 1-2 (November 2010): 183–93. http://dx.doi.org/10.1016/j.memsci.2010.08.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Coelho, R. S., M. Klaus, and Ch Genzel. "Through-thickness texture profiling by energy dispersive synchrotron diffraction." Journal of Applied Crystallography 43, no. 6 (October 13, 2010): 1322–28. http://dx.doi.org/10.1107/s0021889810037210.

Full text
Abstract:
Two new approaches that make use of the advantages of energy dispersive diffraction were applied to investigate through-thickness variations of the crystallographic texture: the `real-space' and the `Laplace-space' methods. The first consists of defining a small gauge volume by adding a pair of slits in the primary and the diffracted beams. Thus the depth resolution is achieved by a decoupledztranslation of the gauge through the sample. The second method is based on the Beer attenuation law, and the depth resolution is achieved by assigning pole figures of different order reflections (e.g.0002, 0004…) to different average information depths. Wrought rolled AZ31 magnesium alloy was selected as a `model' material for the experiments because of the low X-ray absorption of Mg. The through-thickness crystallographic texture variation was generated by sample bending. The results give a first insight into the possibilities of fast texture depth profile investigation applying nondestructive methods and represent a step forward towards a simultaneous evaluation of residual stress and texture gradients.
APA, Harvard, Vancouver, ISO, and other styles
48

Balke, Nina, Doru C. Lupascu, Thomas Blair, and Alexei Gruverman. "Thickness profiles through fatigued bulk ceramic lead zirconate titanate." Journal of Applied Physics 100, no. 11 (2006): 114117. http://dx.doi.org/10.1063/1.2395600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Former, Johan, Arnout De Meyere, and Herman Pauwels. "Grey level control through thickness variations in antiferroelectric LCD'S." Ferroelectrics 179, no. 1 (April 1996): 165–72. http://dx.doi.org/10.1080/00150199608007883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shonaike, G. O., H. Hamada, S. Yamaguchi, M. Nakamichi, and Z. Maekawa. "Through-thickness distribution of LCP in PPS/LCP blends." Journal of Applied Polymer Science 54, no. 7 (November 14, 1994): 881–87. http://dx.doi.org/10.1002/app.1994.070540707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography