To see the other types of publications on this topic, follow the link: Three-manifolds.

Journal articles on the topic 'Three-manifolds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Three-manifolds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Mednykh, A. D. "Three-dimensional hyperelliptic manifolds." Annals of Global Analysis and Geometry 8, no. 1 (January 1990): 13–19. http://dx.doi.org/10.1007/bf00055015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Matveev, S. V. "Three-manifolds. Classical results." Journal of Mathematical Sciences 74, no. 1 (March 1995): 834–60. http://dx.doi.org/10.1007/bf02362845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SONG, YI, and STEPHEN P. BANKS. "DYNAMICAL SYSTEMS ON THREE MANIFOLDS PART II: THREE-MANIFOLDS, HEEGAARD SPLITTINGS AND THREE-DIMENSIONAL SYSTEMS." International Journal of Bifurcation and Chaos 17, no. 06 (June 2007): 2085–95. http://dx.doi.org/10.1142/s0218127407018233.

Full text
Abstract:
The global behavior of nonlinear systems is extremely important in control and systems theory since the usual local theories will only provide information about a system in some neighborhood of an operating point. Away from that point, the system may have totally different behavior and so the theory developed for the local system will be useless for the global one. In this paper we shall consider the analytical and topological structure of systems on two- and three-manifolds and show that it is possible to obtain systems with "arbitrarily strange" behavior, i.e. arbitrary numbers of chaotic regimes which are knotted and linked in arbitrary ways. We shall do this by considering Heegaard Splittings of these manifolds and the resulting systems defined on the boundaries.
APA, Harvard, Vancouver, ISO, and other styles
4

Gordeeva, I. A., and S. E. Stepanov. "Three classes of Weitzenböck manifolds." Russian Mathematics 56, no. 1 (December 30, 2011): 83–85. http://dx.doi.org/10.3103/s1066369x12010136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gómez-Larrañaga, José Carlos, Francisco González-Acuña, and Wolfgang Heil. "Amenable category of three–manifolds." Algebraic & Geometric Topology 13, no. 2 (March 30, 2013): 905–25. http://dx.doi.org/10.2140/agt.2013.13.905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

CHO, JONG TAEK, and DONG-HEE YANG. "CONFORMALLY FLAT CONTACT THREE-MANIFOLDS." Journal of the Australian Mathematical Society 103, no. 2 (November 3, 2016): 177–89. http://dx.doi.org/10.1017/s1446788716000471.

Full text
Abstract:
In this paper, we consider contact metric three-manifolds $(M;\unicode[STIX]{x1D702},g,\unicode[STIX]{x1D711},\unicode[STIX]{x1D709})$ which satisfy the condition $\unicode[STIX]{x1D6FB}_{\unicode[STIX]{x1D709}}h=\unicode[STIX]{x1D707}h\unicode[STIX]{x1D711}+\unicode[STIX]{x1D708}h$ for some smooth functions $\unicode[STIX]{x1D707}$ and $\unicode[STIX]{x1D708}$, where $2h=\unicode[STIX]{x00A3}_{\unicode[STIX]{x1D709}}\unicode[STIX]{x1D711}$. We prove that if $M$ is conformally flat and if $\unicode[STIX]{x1D707}$ is constant, then $M$ is either a flat manifold or a Sasakian manifold of constant curvature $+1$. We cannot extend this result for a smooth function $\unicode[STIX]{x1D707}$. Indeed, we give such an example of a conformally flat contact three-manifold which is not of constant curvature.
APA, Harvard, Vancouver, ISO, and other styles
7

Singerman, D. "CLASSICAL TESSELLATIONS AND THREE-MANIFOLDS." Bulletin of the London Mathematical Society 21, no. 3 (May 1989): 292–93. http://dx.doi.org/10.1112/blms/21.3.292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fischer, Werner. "Classical Tessellations and Three-Manifolds." Zeitschrift für Kristallographie 189, no. 1-2 (January 1989): 155. http://dx.doi.org/10.1524/zkri.1989.189.1-2.155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matveev, S. V. "Tabulation of three-dimensional manifolds." Russian Mathematical Surveys 60, no. 4 (August 31, 2005): 673–98. http://dx.doi.org/10.1070/rm2005v060n04abeh003673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matveev, Sergei V. "Computer Recognition of Three-Manifolds." Experimental Mathematics 7, no. 2 (January 1998): 153–61. http://dx.doi.org/10.1080/10586458.1998.10504365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Perrone, Domenico. "Homogeneous contact Riemannian three-manifolds." Illinois Journal of Mathematics 42, no. 2 (June 1998): 243–56. http://dx.doi.org/10.1215/ijm/1256045043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Calvaruso, G. "Homogeneous paracontact metric three-manifolds." Illinois Journal of Mathematics 55, no. 2 (2011): 697–718. http://dx.doi.org/10.1215/ijm/1359762409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hamilton, M. J. D., and D. Kotschick. "Stable indecomposability of three-manifolds." Homology, Homotopy and Applications 21, no. 2 (2019): 27–28. http://dx.doi.org/10.4310/hha.2019.v21.n2.a3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Barbot, Thierry. "Three-dimensional Anosov flag manifolds." Geometry & Topology 14, no. 1 (January 2, 2010): 153–91. http://dx.doi.org/10.2140/gt.2010.14.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Braam, Peter J. "Magnetic monopoles on three-manifolds." Journal of Differential Geometry 30, no. 2 (1989): 425–64. http://dx.doi.org/10.4310/jdg/1214443597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hu, Zhiguang, and Shaoqiang Deng. "Three dimensional homogeneous Finsler manifolds." Mathematische Nachrichten 285, no. 10 (February 9, 2012): 1243–54. http://dx.doi.org/10.1002/mana.201100100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kotschick, D. "Three-manifolds and Kähler groups." Annales de l’institut Fourier 62, no. 3 (2012): 1081–90. http://dx.doi.org/10.5802/aif.2717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jacobowitz, Howard. "Locally CR spherical three manifolds." Proceedings of the American Mathematical Society 148, no. 9 (March 17, 2020): 3925–26. http://dx.doi.org/10.1090/proc/15023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Calvaruso, Giovanni. "Three-dimensional Ivanov–Petrova manifolds." Journal of Mathematical Physics 50, no. 6 (June 2009): 063509. http://dx.doi.org/10.1063/1.3152607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

CALVARUSO, G., and B. DE LEO. "PSEUDO-SYMMETRIC LORENTZIAN THREE-MANIFOLDS." International Journal of Geometric Methods in Modern Physics 06, no. 07 (November 2009): 1135–50. http://dx.doi.org/10.1142/s0219887809004132.

Full text
Abstract:
We investigate pseudo-symmetric Lorentzian three-manifolds for the different possible Segre types of the Ricci operator. After determining all three-dimensional pseudo-symmetric Lorentzian algebraic curvature tensors, we classify pseudo-symmetric Lorentzian three-spaces which are either homogeneous, curvature homogeneous up to order 1 or curvature homogeneous, and we also provide some examples which are not curvature homogeneous.
APA, Harvard, Vancouver, ISO, and other styles
21

Willett, Brian. "Localization on three-dimensional manifolds." Journal of Physics A: Mathematical and Theoretical 50, no. 44 (October 13, 2017): 443006. http://dx.doi.org/10.1088/1751-8121/aa612f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Calviño-Louzao, E., E. García-Río, J. Seoane-Bascoy, and R. Vázquez-Lorenzo. "Three-dimensional conformally symmetric manifolds." Annali di Matematica Pura ed Applicata (1923 -) 193, no. 6 (May 24, 2013): 1661–70. http://dx.doi.org/10.1007/s10231-013-0349-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Berndt, Jürgen. "Three-dimensional Einstein-like manifolds." Differential Geometry and its Applications 2, no. 4 (December 1992): 385–97. http://dx.doi.org/10.1016/0926-2245(92)90004-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Martelli, Bruno, and Carlo Petronio. "Complexity of Geometric Three-manifolds." Geometriae Dedicata 108, no. 1 (October 2004): 15–69. http://dx.doi.org/10.1007/s10711-004-3181-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Gelfand, S., and D. Kazhdan. "Invariants of three-dimensional manifolds." Geometric and Functional Analysis 6, no. 2 (March 1996): 268–300. http://dx.doi.org/10.1007/bf02247888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Neumann, Walter D., and Don Zagier. "Volumes of hyperbolic three-manifolds." Topology 24, no. 3 (1985): 307–32. http://dx.doi.org/10.1016/0040-9383(85)90004-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Calvaruso, Giovanni. "Curvature homogeneous Lorentzian three-manifolds." Annals of Global Analysis and Geometry 36, no. 1 (November 29, 2008): 1–17. http://dx.doi.org/10.1007/s10455-008-9144-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Cahn, Patricia, and Alexandra Kjuchukova. "Linking Numbers in Three-Manifolds." Discrete & Computational Geometry 66, no. 2 (July 6, 2021): 435–63. http://dx.doi.org/10.1007/s00454-021-00287-3.

Full text
Abstract:
AbstractLet M be a connected, closed, oriented three-manifold and K, L two rationally null-homologous oriented simple closed curves in M. We give an explicit algorithm for computing the linking number between K and L in terms of a presentation of M as an irregular dihedral three-fold cover of $$S^3$$ S 3 branched along a knot $$\alpha \subset S^3$$ α ⊂ S 3 . Since every closed, oriented three-manifold admits such a presentation, our results apply to all (well-defined) linking numbers in all three-manifolds. Furthermore, ribbon obstructions for a knot $$\alpha $$ α can be derived from dihedral covers of $$\alpha $$ α . The linking numbers we compute are necessary for evaluating one such obstruction. This work is a step toward testing potential counter-examples to the Slice-Ribbon Conjecture, among other applications.
APA, Harvard, Vancouver, ISO, and other styles
29

Tinsley, F. C., and David G. Wright. "Some contractible open manifolds and coverings of manifolds in dimension three." Topology and its Applications 77, no. 3 (June 1997): 291–301. http://dx.doi.org/10.1016/s0166-8641(96)00122-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nimershiem, Barbara E. "All flat three-manifolds appear as cusps of hyperbolic four-manifolds." Topology and its Applications 90, no. 1-3 (December 1998): 109–33. http://dx.doi.org/10.1016/s0166-8641(98)00183-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Planat, Michel, Raymond Aschheim, Marcelo Amaral, and Klee Irwin. "Universal Quantum Computing and Three-Manifolds." Symmetry 10, no. 12 (December 19, 2018): 773. http://dx.doi.org/10.3390/sym10120773.

Full text
Abstract:
A single qubit may be represented on the Bloch sphere or similarly on the 3-sphere S 3 . Our goal is to dress this correspondence by converting the language of universal quantum computing (UQC) to that of 3-manifolds. A magic state and the Pauli group acting on it define a model of UQC as a positive operator-valued measure (POVM) that one recognizes to be a 3-manifold M 3 . More precisely, the d-dimensional POVMs defined from subgroups of finite index of the modular group P S L ( 2 , Z ) correspond to d-fold M 3 - coverings over the trefoil knot. In this paper, we also investigate quantum information on a few ‘universal’ knots and links such as the figure-of-eight knot, the Whitehead link and Borromean rings, making use of the catalog of platonic manifolds available on the software SnapPy. Further connections between POVMs based UQC and M 3 ’s obtained from Dehn fillings are explored.
APA, Harvard, Vancouver, ISO, and other styles
32

Cho, Jong Taek. "NOTES ON ALMOST KENMOTSU THREE-MANIFOLDS." Honam Mathematical Journal 36, no. 3 (September 25, 2014): 637–45. http://dx.doi.org/10.5831/hmj.2014.36.3.637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Martín, Francisco, and William H. Meeks. "Calabi-Yau domains in three manifolds." American Journal of Mathematics 134, no. 5 (2012): 1329–44. http://dx.doi.org/10.1353/ajm.2012.0037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Abbaspour, Hossein. "On string topology of three manifolds." Topology 44, no. 5 (September 2005): 1059–91. http://dx.doi.org/10.1016/j.top.2005.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Gabai, David, Robert Meyerhoff, and Peter Milley. "Minimum volume cusped hyperbolic three-manifolds." Journal of the American Mathematical Society 22, no. 4 (May 1, 2009): 1157–215. http://dx.doi.org/10.1090/s0894-0347-09-00639-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Burns, Daniel M., and Charles L. Epstein. "Embeddability for three-dimensional CR-manifolds." Journal of the American Mathematical Society 3, no. 4 (1990): 809. http://dx.doi.org/10.1090/s0894-0347-1990-1071115-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lempert, L{ászl{ó. "On three-dimensional Cauchy-Riemann manifolds." Journal of the American Mathematical Society 5, no. 4 (1992): 923. http://dx.doi.org/10.1090/s0894-0347-1992-1157290-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Taubes, Clifford Henry. "Book Review: Monopoles and three-manifolds." Bulletin of the American Mathematical Society 46, no. 3 (February 9, 2009): 505–9. http://dx.doi.org/10.1090/s0273-0979-09-01250-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shalen, Peter B. "Three-manifolds and Baumslag–Solitar groups." Topology and its Applications 110, no. 1 (January 2001): 113–18. http://dx.doi.org/10.1016/s0166-8641(99)00167-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mishachev, K. N. "Hamiltonian links in three-dimensional manifolds." Izvestiya: Mathematics 59, no. 6 (December 31, 1995): 1193–205. http://dx.doi.org/10.1070/im1995v059n06abeh000054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Ghosh, Nandan, and Manjusha Tarafdar. "On three dimensional quasi-Sasakian manifolds." Tbilisi Mathematical Journal 9, no. 1 (June 2016): 23–28. http://dx.doi.org/10.1515/tmj-2016-0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Bettiol, Renato G., and Benjamin Schmidt. "Three-manifolds with many flat planes." Transactions of the American Mathematical Society 370, no. 1 (September 15, 2017): 669–93. http://dx.doi.org/10.1090/tran/6961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gursky, Matthew, Jeffrey Streets, and Micah Warren. "Conformally bending three-manifolds with boundary." Annales de l’institut Fourier 60, no. 7 (2010): 2421–47. http://dx.doi.org/10.5802/aif.2613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Derbez, Pierre. "Local rigidity of aspherical three-manifolds." Annales de l’institut Fourier 62, no. 1 (2012): 393–416. http://dx.doi.org/10.5802/aif.2708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Schmidt, Benjamin, and Jon Wolfson. "Three-manifolds with constant vector curvature." Indiana University Mathematics Journal 63, no. 6 (2014): 1757–83. http://dx.doi.org/10.1512/iumj.2014.63.5436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Vesnin, A. Yu, V. G. Turaev, and E. A. Fominykh. "Three-dimensional manifolds with poor spines." Proceedings of the Steklov Institute of Mathematics 288, no. 1 (January 2015): 29–38. http://dx.doi.org/10.1134/s0081543815010034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Turaev, V. G. "Homeomorphisms of geometric three-dimensional manifolds." Mathematical Notes of the Academy of Sciences of the USSR 43, no. 4 (April 1988): 307–12. http://dx.doi.org/10.1007/bf01139137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tian, Kevin T., Eric Samperton, and Zhenghan Wang. "Haah codes on general three-manifolds." Annals of Physics 412 (January 2020): 168014. http://dx.doi.org/10.1016/j.aop.2019.168014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Ivey, Thomas. "Ricci solitons on compact three-manifolds." Differential Geometry and its Applications 3, no. 4 (December 1993): 301–7. http://dx.doi.org/10.1016/0926-2245(93)90008-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hilden, H. M., M. T. Lozano, J. M. Montesinos, and W. C. Whitten. "On universal groups and three-manifolds." Inventiones Mathematicae 87, no. 3 (October 1987): 441–56. http://dx.doi.org/10.1007/bf01389236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography