To see the other types of publications on this topic, follow the link: Three-manifolds.

Books on the topic 'Three-manifolds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Three-manifolds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Kronheimer, P. B. Monopoles and three-manifolds. Cambridge: Cambridge University Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kronheimer, P. B. Monopoles and three-manifolds. Cambridge: Cambridge University Press, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kronheimer, P. B. Monopoles and three-manifolds. Cambridge, UK: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Classical tessellations and three-manifolds. Berlin: Springer-Verlag, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Montesinos-Amilibia, José María. Classical Tessellations and Three-Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-61572-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cooper, Daryl. Three-dimensional orbifolds and cone-manifolds. Tokyo: Mathematical Society of Japan, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cooper, Daryl. Three-dimensional orbifolds and cone-manifolds. Tokyo: Mathematical Society of Japan, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

W, Reid Alan, ed. The arithmetic of hyperbolic three-manifolds. New York: Springer, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fomenko, A. T. Algorithmic and computer methods for three-manifolds. Dordrecht: Kluwer Academic, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Topology and combinatorics of 3-manifolds. Berlin: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Johannson, Klaus. Topology and combinatorics of 3-manifolds. Berlin: Springer-Verlag, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Brin, Matthew G. 3-manifolds which are end 1-movable. Providence, R.I., USA: American Mathematical Society, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lectures on the topology of 3-manifolds: An introduction to the Casson invariant. 2nd ed. Boston: De Gruyter, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

Geometrisation of 3-manifolds. Zürich: European Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kaiser, Uwe. Link theory in manifolds. Berlin: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Fomenko, A. T. Algorithmic and Computer Methods for Three-Manifolds. Dordrecht: Springer Netherlands, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fomenko, A. T., and S. V. Matveev. Algorithmic and Computer Methods for Three-Manifolds. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-0699-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Matveev, S. V. Algoritmicheskie i kompʹi͡u︡ternye metody v trekhmernoĭ topologii. Moskva: Izd-vo Moskovskogo universiteta, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

T, Fomenko A., ed. Algoritmicheskie i kompʹi͡u︡ternye metody v trekhmernoĭ topologii. 2nd ed. Moskva: Nauka, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

McCullough, Darryl. Homeomorphisms of 3-manifolds with compressible boundary. Providence, R.I., USA: American Mathematical Society, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Boileau, Michel. Three-dimensional orbifolds and their geometric structures. Paris: Societ́e Ḿatheḿatique de France, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

McCord, Christopher Keil. The integral manifolds of the three body problem. Providence, R.I: American Mathematical Society, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Winkelmann, Jörg. The classification of three-dimensional homogeneous complex manifolds. Berlin: Springer, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
24

Winkelmann, Jörg. The Classification of Three-Dimensional Homogeneous Complex Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0095837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

1931-, Whitten Wilbur C., ed. Imbeddings of three-manifold groups. Providence, R.I: American Mathematical Society, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Japan) RIMS Seminar "Representation Spaces Twisted Topological Invariants and Geometric Structures of 3-manifolds" (2012 May 28-June 1 Hakone-machi. Representation spaces twisted topological invariants and geometric structures of 3-manifolds: May 28-June 1, 2012. Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Torsions of 3-dimensional manifolds. Boston: Birkhauser Verlag, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gems, computers, and attractors for 3-manifolds. Singapore: World Scientific, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

1946-, Thurston William P., ed. Confoliations. Providence, R.I: American Mathematical Society, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lins, Sóstenes. On the fundamental group of 3-gems and a "planar" class of 3-manifolds. Recife, Brasil: Universidade Federal de Pernambuco, Centro de Ciências Exactas e da Natureza, Departamento de Matemática, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Petronio, Carlo. A theorem of Eliashberg and Thurston on foliations and contact structures. Pisa: Scuola normale superiore, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hemion, Geoffrey. The classification of knots and 3-dimensional spaces. Oxford: Oxford University Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Global surgery formula for the Casson-Walker invariant. Princeton: Princeton University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Kauffman, Louis H. Temperley-Lieb recoupling theory and invariants of 3-manifolds. Princeton, N.J: Princeton University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Renormalization and 3-manifolds which fiber over the circle. Princeton, N.J: Princeton University Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

The spectral theory of geometrically periodic hyperbolic 3-manifolds. Providence, R.I., USA: American Mathematical Society, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Benedetti, R. Branched standard spines of 3-manifolds. Berlin: Springer, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Matsuzaki, Katsuhiko. Hyperbolic manifolds and Kleinian groups. Oxford: Clarendon Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Foliations and the geometry of 3-manifolds. Oxford: Clarendon, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kauffman, LouisH. Temperley-Lieb recoupling theory and invariants of 3-manifolds. Princeton, N.J: Princeton University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Boileau, Michel. Geometrization of 3-orbifolds of cyclic type. Paris: Société Mathématique de France, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
42

Boileau, Michel. Geometrization of 3-orbifolds of cyclic type. Paris: Société Mathématique de France, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

1967-, Porti Joan, ed. Geometrization of 3-orbifolds of cyclic type. Paris: Société Mathématique de France, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Milnor, John Willard. The fundamental group. Providence, R.I: American Mathematical Society, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

1955-, McCarthy John D., ed. Casson's invariant for oriented homology 3-spheres: An exposition. Princeton, N.J: Princeton University Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

An extension of Casson's invariant. Princeton, N.J: Princeton University Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

The shape of space: How to visualize surfaces and three-dimensional manifolds. New York: M. Dekker, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

author, Lott John 1959, and Société mathématique de France, eds. Local collapsing, orbifolds, and geometrization. Paris: Société mathématique de France, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Silvio, Levy, ed. Three-dimensional geometry and topology. Princeton, N.J: Princeton University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

1983-, Fong Frederick Tsz-Ho, ed. Ricci flow and geometrization of 3-manifolds. Providence, R.I: American Mathematical Society, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography