Academic literature on the topic 'Third Generation Sequencing (TGS)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Third Generation Sequencing (TGS).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Third Generation Sequencing (TGS)"
Elbialy, Ali, M. A. El-Dosuky, and Ibrahim M. El-Henawy. "Quality of Third Generation Sequencing." Journal of Computational and Theoretical Nanoscience 17, no. 12 (December 1, 2020): 5205–9. http://dx.doi.org/10.1166/jctn.2020.9630.
Full textHassan, Syahzuwan, Rosnah Bahar, Muhammad Farid Johan, Ezzeddin Kamil Mohamed Mohamed Hashim, Wan Zaidah Abdullah, Ezalia Esa, Faidatul Syazlin Abdul Abdul Hamid, and Zefarina Zulkafli. "Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) for the Diagnosis of Thalassemia." Diagnostics 13, no. 3 (January 19, 2023): 373. http://dx.doi.org/10.3390/diagnostics13030373.
Full textChang, Wei-Fang, Shu-Min Chang, Pei-Ling Chu, Yi-Hsiu Chen, Rui-Hua Lee, Yi-Xuan Lee, Shun-Jen Tan, et al. "#201 : Comparison of the Sensitivity of Detecting Cervical Bacteria with Next Generation Sequencing and Third Generation Sequencing Technologies." Fertility & Reproduction 05, no. 04 (December 2023): 632–34. http://dx.doi.org/10.1142/s2661318223743631.
Full textScarano, Carmela, Iolanda Veneruso, Rosa Redenta De Simone, Gennaro Di Bonito, Angela Secondino, and Valeria D’Argenio. "The Third-Generation Sequencing Challenge: Novel Insights for the Omic Sciences." Biomolecules 14, no. 5 (May 10, 2024): 568. http://dx.doi.org/10.3390/biom14050568.
Full textFukasawa, Yoshinori, Luca Ermini, Hai Wang, Karen Carty, and Min-Sin Cheung. "LongQC: A Quality Control Tool for Third Generation Sequencing Long Read Data." G3: Genes|Genomes|Genetics 10, no. 4 (February 10, 2020): 1193–96. http://dx.doi.org/10.1534/g3.119.400864.
Full textAthanasopoulou, Konstantina, Michaela A. Boti, Panagiotis G. Adamopoulos, Paraskevi C. Skourou, and Andreas Scorilas. "Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics." Life 12, no. 1 (December 26, 2021): 30. http://dx.doi.org/10.3390/life12010030.
Full textalthomari, Moteab Abdulmohsen, Ibrahim Taher Bohassan, zahra hajji bohassan, Fayez Taher Alhajouji, Ebtihal Lafi M. Alhejaili, Talal Jubayr alharthi, Ahmed Mohammed Abdu Sofyani, et al. "Thalassemia: Next Generation (NGS) and Third Generation Sequencing (TGS) for the Diagnosis." Egyptian Journal of Chemistry 67, no. 13 (December 1, 2024): 1519–31. https://doi.org/10.21608/ejchem.2024.336711.10811.
Full textWong, Li Lian, Siti Aisyah Razali, Zulaikha Mat Deris, Muhd Danish-Daniel, Min Pau Tan, Siti Azizah Mohd Nor, Hongyu Ma, et al. "Application of second-generation sequencing (SGS) and third generation sequencing (TGS) in aquaculture breeding program." Aquaculture 548 (February 2022): 737633. http://dx.doi.org/10.1016/j.aquaculture.2021.737633.
Full textNotario, Elisabetta, Grazia Visci, Bruno Fosso, Carmela Gissi, Nina Tanaskovic, Maria Rescigno, Marinella Marzano, and Graziano Pesole. "Amplicon-Based Microbiome Profiling: From Second- to Third-Generation Sequencing for Higher Taxonomic Resolution." Genes 14, no. 8 (July 31, 2023): 1567. http://dx.doi.org/10.3390/genes14081567.
Full textChen, Jiaqi, Qihui Chen, Huan Hu, Fang Wang, Xue Chen, Yang Zhang, Xiaoli Ma, et al. "High-Accurate Third-Generation Sequencing to Comprehensively Decipher BCR::ABL1 TKIs in-Cis Resistant Mutations." Blood 144, Supplement 1 (November 5, 2024): 3595. https://doi.org/10.1182/blood-2024-202681.
Full textDissertations / Theses on the topic "Third Generation Sequencing (TGS)"
Faure, Roland. "Haplotype assembly from long reads." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS052.
Full textThis thesis presents solutions to improve genome assembly from third-generation sequencing reads, with a specific focus on improving the assembly of (meta)genomes containing multiple haplotypes, such as polyploid genomes or close bacterial strains. Current assemblers struggle to separate highly similar haplotypes, often collapsing all or parts of the haplotypes into one, thereby discarding polymorphisms and heterozygosity. This work introduces a series of methods and software tools to achieve haplotype-separated assemblies. Specifically, GenomeTailor and HairSplitter transform a collapsed assembly obtained with erroneous long reads into a phased assembly, significantly improving on the state of the art when numerous strains are present. The software Alice introduces a new method based on the new ``MSR'' sketching technique for efficiently assembling multiple haplotypes sequenced with high-fidelity reads. Additionally, this thesis proposes a new Hi-C scaffolding strategy that involves untangling assembly graphs which significantly improves final assemblies, particularly when several haplotypes are present
Heller, David [Verfasser]. "Structural variant calling using third-generation sequencing data / David Heller." Berlin : Freie Universität Berlin, 2021. http://d-nb.info/122534946X/34.
Full textMayo, Thomas Richard. "Machine learning for epigenetics : algorithms for next generation sequencing data." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33055.
Full textLebó, Marko. "Přímá klasifikace metagenomických signálů ze sekvenace nanopórem." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400964.
Full textFORMENTI, GIULIO PAOLO. "THIRD-GENERATION SEQUENCING AND ASSEMBLY OF THE BARN SWALLOW GENOME AND A STUDY ON THE EVOLUTION OF THE HUNTINGTIN GENE." Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/611650.
Full textTakeda, Haruhiko. "Evolution of multi-drug resistant HCV clones from pre-existing resistant-associated variants during direct-acting antiviral therapy determined by third-generation sequencing." Kyoto University, 2018. http://hdl.handle.net/2433/232107.
Full textAlic, Andrei Stefan. "Improved Error Correction of NGS Data." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/67630.
Full text[ES] El trabajo realizado en el marco de esta tesis doctoral se centra en la corrección de errores en datos provenientes de técnicas NGS utilizando técnicas de computación intensiva. Debido a la reducción de costes y el incremento en las prestaciones de los secuenciadores, la cantidad de datos disponibles en NGS se ha incrementado notablemente. La utilización de computadores en el análisis de estas muestras se hace imprescindible para poder dar respuesta a la avalancha de información generada por estas técnicas. El uso de NGS transciende la investigación con numerosos ejemplos de uso clínico y agronómico, por lo que aparecen nuevas necesidades en cuanto al tiempo de proceso y la fiabilidad de los resultados. Para maximizar su aplicabilidad clínica, las técnicas de proceso de datos de NGS deben acelerarse y producir datos más precisos. En este contexto es en el que las técnicas de comptuación intensiva juegan un papel relevante. En la actualidad, es común disponer de computadores con varios núcleos de proceso e incluso utilizar múltiples computadores mediante técnicas de computación paralela distribuida. Las tendencias actuales hacia arquitecturas con un mayor número de núcleos ponen de manifiesto que es ésta una aproximación relevante. Esta tesis comienza con un análisis de los problemas fundamentales del proceso de datos en NGS de forma general y adaptado para su comprensión por una amplia audiencia, a través de una exhaustiva revisión del estado del arte en la corrección de datos de NGS. Esta revisión introduce gradualmente al lector en las técnicas de secuenciación masiva, presentando problemas y aplicaciones reales de las técnicas de NGS, destacando el impacto de esta tecnología en ciencia. De este estudio se concluyen dos ideas principales: La necesidad de analizar de forma adecuada las características de los datos de NGS, atendiendo a la enorme variedad intrínseca que tienen las diferentes técnicas de NGS; y la necesidad de disponer de una herramienta versátil, eficiente y precisa para la corrección de errores. En el contexto del análisis de datos, la tesis presenta MuffinInfo. La herramienta MuffinInfo es una aplicación software implementada mediante HTML5. MuffinInfo obtiene información relevante de datos crudos de NGS para favorecer el entendimiento de sus características y la aplicación de técnicas de corrección de errores, soportando además la extensión mediante funciones que implementen estadísticos definidos por el usuario. MuffinInfo almacena los resultados del proceso en ficheros JSON. Al usar HTML5, MuffinInfo puede funcionar en casi cualquier entorno hardware y software. La herramienta está implementada aprovechando múltiples hilos de ejecución por la gestión del interfaz. La segunda conclusión del análisis del estado del arte nos lleva a la oportunidad de aplicar de forma extensiva técnicas de computación de altas prestaciones en la corrección de errores para desarrollar una herramienta que soporte múltiples tecnologías (Illumina, Roche 454, Ion Torrent y experimentalmente PacBio). La herramienta propuesta (MuffinEC), soporta diferentes tipos de errores (sustituciones, indels y valores desconocidos). MuffinEC supera los resultados obtenidos por las herramientas existentes en este ámbito. Ofrece una mejor tasa de corrección, en un tiempo muy inferior y utilizando menos recursos, lo que facilita además su aplicación en muestras de mayor tamaño en computadores convencionales. MuffinEC utiliza una aproximación basada en etapas multiples. Primero agrupa todas las secuencias utilizando la métrica de los k-mers. En segundo lugar realiza un refinamiento de los grupos mediante el alineamiento con Smith-Waterman, generando contigs. Estos contigs resultan de la corrección por columnas de atendiendo a la frecuencia individual de cada base. La tesis se estructura por capítulos cuya base ha sido previamente publicada en revistas indexadas en posiciones dest
[CAT] El treball realitzat en el marc d'aquesta tesi doctoral se centra en la correcció d'errors en dades provinents de tècniques de NGS utilitzant tècniques de computació intensiva. A causa de la reducció de costos i l'increment en les prestacions dels seqüenciadors, la quantitat de dades disponibles a NGS s'ha incrementat notablement. La utilització de computadors en l'anàlisi d'aquestes mostres es fa imprescindible per poder donar resposta a l'allau d'informació generada per aquestes tècniques. L'ús de NGS transcendeix la investigació amb nombrosos exemples d'ús clínic i agronòmic, per la qual cosa apareixen noves necessitats quant al temps de procés i la fiabilitat dels resultats. Per a maximitzar la seua aplicabilitat clínica, les tècniques de procés de dades de NGS han d'accelerar-se i produir dades més precises. En este context és en el que les tècniques de comptuación intensiva juguen un paper rellevant. En l'actualitat, és comú disposar de computadors amb diversos nuclis de procés i inclús utilitzar múltiples computadors per mitjà de tècniques de computació paral·lela distribuïda. Les tendències actuals cap a arquitectures amb un nombre més gran de nuclis posen de manifest que és esta una aproximació rellevant. Aquesta tesi comença amb una anàlisi dels problemes fonamentals del procés de dades en NGS de forma general i adaptat per a la seua comprensió per una àmplia audiència, a través d'una exhaustiva revisió de l'estat de l'art en la correcció de dades de NGS. Esta revisió introduïx gradualment al lector en les tècniques de seqüenciació massiva, presentant problemes i aplicacions reals de les tècniques de NGS, destacant l'impacte d'esta tecnologia en ciència. D'este estudi es conclouen dos idees principals: La necessitat d'analitzar de forma adequada les característiques de les dades de NGS, atenent a l'enorme varietat intrínseca que tenen les diferents tècniques de NGS; i la necessitat de disposar d'una ferramenta versàtil, eficient i precisa per a la correcció d'errors. En el context de l'anàlisi de dades, la tesi presenta MuffinInfo. La ferramenta MuffinInfo és una aplicació programari implementada per mitjà de HTML5. MuffinInfo obté informació rellevant de dades crues de NGS per a afavorir l'enteniment de les seues característiques i l'aplicació de tècniques de correcció d'errors, suportant a més l'extensió per mitjà de funcions que implementen estadístics definits per l'usuari. MuffinInfo emmagatzema els resultats del procés en fitxers JSON. A l'usar HTML5, MuffinInfo pot funcionar en gairebé qualsevol entorn maquinari i programari. La ferramenta està implementada aprofitant múltiples fils d'execució per la gestió de l'interfície. La segona conclusió de l'anàlisi de l'estat de l'art ens porta a l'oportunitat d'aplicar de forma extensiva tècniques de computació d'altes prestacions en la correcció d'errors per a desenrotllar una ferramenta que suport múltiples tecnologies (Illumina, Roche 454, Ió Torrent i experimentalment PacBio). La ferramenta proposada (MuffinEC), suporta diferents tipus d'errors (substitucions, indels i valors desconeguts). MuffinEC supera els resultats obtinguts per les ferramentes existents en este àmbit. Oferix una millor taxa de correcció, en un temps molt inferior i utilitzant menys recursos, la qual cosa facilita a més la seua aplicació en mostres més gran en computadors convencionals. MuffinEC utilitza una aproximació basada en etapes multiples. Primer agrupa totes les seqüències utilitzant la mètrica dels k-mers. En segon lloc realitza un refinament dels grups per mitjà de l'alineament amb Smith-Waterman, generant contigs. Estos contigs resulten de la correcció per columnes d'atenent a la freqüència individual de cada base. La tesi s'estructura per capítols la base de la qual ha sigut prèviament publicada en revistes indexades en posicions destacades de l'índex del Journal of Citation Repor
Alic, AS. (2016). Improved Error Correction of NGS Data [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/67630
TESIS
Broseus, Lucile. "Méthodes d'étude de la rétention d'intron à partir de données de séquençage de seconde et de troisième générations." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTT027.
Full textIn eucaryotic cells, the roles of RNA transcripts are known to be varied. Besides their role as messengers, transferring information from DNA to protein synthesis, the usage of alternative transcripts appears as a means to control gene expression in a post-transcriptional manner. Exemplary, the production of mature transcripts retaining introns (IRTs) was recently shown to take part in several distinct regulatory mechanisms. These observations benefited greatly from the development of the second generation of RNA-sequencing (RNA-seq). However, these data do not allow to identify the entire structure of IRTs, whose catalog is still fragmented. The emerging third generation of RNA-seq, apt to read RNA sequences in their full extent, could help achieve this goal. Despite their respective drawbacks and biases, both technologies are, to some extent, complementary. It is therefore appealing to try and combine them through so-called hybrid methods, so as to perform analyses at the isoform level. In the present thesis, we aim to investigate the potential of these two types of data, alone or in combination, in order to study intron retention (IR) events, more specifically. A growing number of studies harness the high coverage depths provided by second generation data to detect and quantify IR. However, there exist few dedicated computational methods, and many studies rely on methods designed for other purposes, such as gene or exon expression analysis. In any case, their ability to accurately measure IR has not been certified. For this reason, we set up a benchmark of the various IR quantification methods. Our study reveals several biases, prone to prejudice the interpretation of results and prompted us to suggest a novel method to estimate IR levels. Beyond event-centered analyses, Oxford Nanopore long read data have the capability to reveal the full-length structure of IRTs, and thereby to allow to infer some of their features. However, their high error rate and truncation events constitute inescapable impediments. Transcriptome-wide, the computational treatment of these data necessitates heuristics which will favor specific transcript forms, and, generally, overlook rare or unexpected ones. This results in a considerable loss of information and precludes meaningful interpretations. To address these issues, we develop a hybrid correction method and suggest specific strategies to recover and characterize IRTs
CHUANG, WEI-YAO, and 莊為堯. "Acceleration of Alignment-based Error Correction for Third-generation Sequencing." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/s83638.
Full text國立中正大學
資訊工程研究所
106
The 3rd generation sequencing can produce long reads with fast turnaround time yet also with high error rate. Consequently, errors on the sequencing reads are usually corrected before genome assembly. One of the strategies of error correction is alignment-based method, which requires time-consuming alignment among reads based on dynamic programming (DP). In this thesis, we implement a bit-parallelism algorithm to accelerate DP and compare with traditional banded DP speedup. In addition, the bit-parallelism algorithm is fine tuned for correcting errors specific in third-generation sequencing. The results showed that, though bit-parallelism DP is faster than banded DP, the accuracy is unexpectedly decreased. Further investigation indicated that bit-parallelism DP performs worse in tandem repeat regions, which requires specific algorithms for better accuracy.
Chen, Jia-Min, and 陳珈民. "Error correction by adaptive FM-index extension for third-generation sequencing." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/c8a538.
Full text國立中正大學
資訊工程研究所
106
Third-generation sequencing technologies are able to generate longer reads within shorter turnaround time, but they come at the cost of higher sequencing error rates. Therefore, prior to genome assembly, error correction is required to reduce the errors presented in the sequencing reads. The error correction and assembly software that we developed (called FILEC) has improved the speed and contiguity of a leading genome assembler called Canu; however, the assembly accuracy of FILEC is lower than that of Canu. In this thesis, we first investigated the regions FILEC tend to wrongly corrected, and observed that they are regions containing low-coverage repeats and tandem repeats. Subsequently, we develop new methods for identifying and for improving the correction algorithms specifically for these regions. The experimental results indicated that the accuracies can be slightly improved by improving the original alignment-free correction algorithm. But surprisingly, the accuracies can be greatly improved by the slower alignment-based correction using dynamic programming. Our results imply a good balance of alignment-free and alignment-based correction algorithms is crucial for improving both assembly speed and accuracy.
Books on the topic "Third Generation Sequencing (TGS)"
Bensimon, David, Vincent Croquette, Jean-François Allemand, Xavier Michalet, and Terence Strick. Single-Molecule Studies of Nucleic Acids and Their Proteins. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198530923.001.0001.
Full textBook chapters on the topic "Third Generation Sequencing (TGS)"
Janitz, Karolina, and Michal Janitz. "Moving Towards Third-Generation Sequencing Technologies." In Tag-Based Next Generation Sequencing, 323–36. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527644582.ch20.
Full textTimp, Gregory, Utkur Mirsaidov, Winston Timp, Jiwook Shim, Deqiang Wang, Valentin Dimitrov, Jan Scrimgeour, et al. "Third Generation DNA Sequencing with a Nanopore." In Nanopores, 287–311. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4419-8252-0_12.
Full textPortier, Bryce. "Next-Generation and Third-Generation Sequencing of Lung Cancer Biomarkers." In Precision Molecular Pathology of Lung Cancer, 131–43. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62941-4_10.
Full textSvrzikapa, Nenad, and Ramakrishna Boyanapalli. "Full-Length Transcript Phasing with Third-Generation Sequencing." In Methods in Molecular Biology, 49–57. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2819-5_3.
Full textAllemand, Eric, and Fabrice Ango. "Analysis of Splicing Regulation by Third-Generation Sequencing." In Methods in Molecular Biology, 81–95. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2521-7_6.
Full textGu, Zhiyu, Junchi Ma, Xiangqing Meng, and Hong He. "Research on Genome Multiple Sequence Alignment Algorithm Based on Third Generation Sequencing." In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery, 947–55. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20738-9_104.
Full textSterflinger, Katja, and Guadalupe Piñar. "Molecular-Based Techniques for the Study of Microbial Communities in Artworks." In Microorganisms in the Deterioration and Preservation of Cultural Heritage, 59–77. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69411-1_3.
Full textAmbardar, Sheetal, and Malali Gowda. "High-Resolution Full-Length HLA Typing Method Using Third Generation (Pac-Bio SMRT) Sequencing Technology." In Methods in Molecular Biology, 135–53. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8546-3_9.
Full textShim, Hyunjin. "Futuristic Methods in Virus Genome Evolution Using the Third-Generation DNA Sequencing and Artificial Neural Networks." In Global Virology III: Virology in the 21st Century, 485–513. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29022-1_17.
Full textHuang, Meng, Han Wang, and Jingyang Gao. "GcnSV: A Method Based on Deep Learning of Calling Structural Variations from the Third-Generation Sequencing Data." In Computer Science and Education, 397–409. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2449-3_35.
Full textConference papers on the topic "Third Generation Sequencing (TGS)"
Geng, Yu, Zhongmeng Zhao, Zhaofang Du, Yixuan Wang, Tian Zheng, Siyu He, Xuanping Zhang, and Jiayin Wang. "A crowdsourcing method for correcting sequencing errors for the third-generation sequencing data." In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8217903.
Full textNowak, Robert M., Mateusz Forc, and Wiktor Kuśmirek. "De Novo genome assembly for third generation sequencing data." In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, edited by Ryszard S. Romaniuk and Maciej Linczuk. SPIE, 2018. http://dx.doi.org/10.1117/12.2501543.
Full textLiao, Xingyu, Xiankai Zhang, Fang-Xiang Wu, and Jianxin Wang. "de novo repeat detection based on the third generation sequencing reads." In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2019. http://dx.doi.org/10.1109/bibm47256.2019.8982959.
Full textPerou, CM. "Abstract ES7-2: Next Generation Sequencing for the Clinician." In Abstracts: Thirty-Third Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 8‐12, 2010; San Antonio, TX. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/0008-5472.sabcs10-es7-2.
Full textHEBERT, P. D. N., T. W. A. BRAUKMANN, S. W. J. PROSSER, S. RATNASINGHAM, J. R. DEWAARD, N. V. IVANOVA, D. H. JANZEN, W. HALLWACHS, S. NAIK, and J. E. SONES. "BUILDING CATALOGUE OF LIFE: ULTRAHIGH THROUGHPUT DNA BARCODING USING THIRD GENERATION SEQUENCING." In 5TH MOSCOW INTERNATIONAL CONFERENCE "MOLECULAR PHYLOGENETICSAND BIODIVERSITY BIOBANKING". TORUS PRESS, 2018. http://dx.doi.org/10.30826/molphy2018-05.
Full textZhang, Xuanping, Hengwei Chen, Rong Zhang, Jingwen Pei, Yixuan Wang, Zhongmeng Zhao, Yi Huang, and Jiayin Wang. "Detecting complex indels with wide length-spectrum from the third generation sequencing data." In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2017. http://dx.doi.org/10.1109/bibm.2017.8217965.
Full textClare, SE, I. Pardo, T. Mathieson, HA Lillemoe, RJ Goulet, JE Henry, J. Sun, et al. "Abstract P6-04-01: Next-Generation Transcriptome Sequencing of the Normal Breast." In Abstracts: Thirty-Third Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 8‐12, 2010; San Antonio, TX. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/0008-5472.sabcs10-p6-04-01.
Full textMardis, ER, L. Ding, D. Shen, J. Wallis, K. Chen, M. Watson, J. Hoog, MJ Ellis, and Wilson RK. "Abstract ES7-1: Next Generation Sequencing for the Clinician: A Breast Cancer Study." In Abstracts: Thirty-Third Annual CTRC‐AACR San Antonio Breast Cancer Symposium‐‐ Dec 8‐12, 2010; San Antonio, TX. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/0008-5472.sabcs10-es7-1.
Full textZou, Yiren, Weiwei Zhao, Gensheng Wu, Hongze Zhang, Han Qi, Lei Liu, Jingjie Sha, Yunfei Chen, and Zhenhua Ni. "A Mild and Efficient Transfer Method of Two-dimensional Materials for the Third Generation DNA Sequencing." In The 3rd International Conference on Machinery, Materials Science and Energy Engineering (ICMMSEE 2015). WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814719391_0051.
Full textHou, Bin, Rongshu Wang, and Jianhua Chen. "Long Read Error Correction Algorithm Based on the de Bruijn Graph for the Third-generation Sequencing." In 2021 4th International Conference on Information Communication and Signal Processing (ICICSP). IEEE, 2021. http://dx.doi.org/10.1109/icicsp54369.2021.9611869.
Full textReports on the topic "Third Generation Sequencing (TGS)"
Zhang, Hongbin, Shahal Abbo, Weidong Chen, Amir Sherman, Dani Shtienberg, and Frederick Muehlbauer. Integrative Physical and Genetic Mapping of the Chickpea Genome for Fine Mapping and Analysis of Agronomic Traits. United States Department of Agriculture, March 2010. http://dx.doi.org/10.32747/2010.7592122.bard.
Full textWillis, C., F. Jorgensen, S. A. Cawthraw, H. Aird, S. Lai, M. Chattaway, I. Lock, E. Quill, and G. Raykova. A survey of Salmonella, Escherichia coli (E. coli) and antimicrobial resistance in frozen, part-cooked, breaded or battered poultry products on retail sale in the United Kingdom. Food Standards Agency, May 2022. http://dx.doi.org/10.46756/sci.fsa.xvu389.
Full text