Dissertations / Theses on the topic 'Thiosulfate'

To see the other types of publications on this topic, follow the link: Thiosulfate.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Thiosulfate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ullah, Mohammad Barkat. "Mercury stabilization using thiosulfate and thioselenate." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/41930.

Full text
Abstract:
Mercury is commonly present with gold in nature. As a result it has a tendency to follow gold through the cyanide recovery circuit and ends up in the electro-winning cell as elemental mercury. The laws on the sale and international transport of this mercury are changing. Ultimately, it appears that it will be necessary to stabilize and dispose in a stable form. Mercury sulfide (HgS) and mercury selenide (HgSe) have significantly lower solubilities. The concept of using a thiosulfate dissolution/precipitation method to stabilize mercury as mercury sulfide has been investigated. Comparing the solubilities of mercury sulfide and mercury selenide, mercury selenide is much less soluble. For this reason, the second idea in this thesis is to use sodium thioselenate as a source of selenium in mercury solution to produce mercury selenide. To pursue this project, mercury analysis, mercury leaching and mercury precipitation tests were performed at different temperatures and solution conditions. The resulting solutions were analyzed by Atomic Absorption Spectroscopy (AAS) and the solid precipitates were analyzed by X-ray Diffraction. The EDTA titration method for mercury analysis is effective for a simple mercury nitrate solution. If sodium thiosulfate was added in the solution, thiosulfate interfered with the solution and the titration method was not effective. As a result the AAS method was adopted. Red mercury sulfide can be precipitated by simple aging of mercury thiosulfate solution. Parameters such as temperature, pH and thiosulfate concentration have an effect on the rate and extent of mercury sulfide precipitation. With an increase of temperature, thiosulfate concentration and at lower pH, the mercury precipitation rate increases. However at very high temperature such as 70ºC and 80ºC mercury precipitates as a mixture of red and black mercury sulfide. Thioselenate synthesis was attempted from a mixture of sodium sulfite and selenium powder. The reaction between sulfite and elemental selenium was too slow to be useful. The environmental stability of the mercury sulfide precipitates produced from thiosulfate solutions was investigated. Solid Waste Disposal Characterization (SWDC) tests were done to check the precipitation limit for land disposal and Resource Conservation and Recovery Act (RCRA).
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Zizheng. "Mercury stabilization using thiosulfate or selenosulfate." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44276.

Full text
Abstract:
Mercury is often found associated with gold and silver minerals in ore bodies. It is recovered as liquid elemental mercury in several stages including carbon adsorption, carbon elution, electrowinning and retorting. Thus a great amount of mercury is produced as a by-product in gold mines. The Mercury Export Ban Act of 2008 prohibits conveying, selling and distributing elemental mercury by federal agencies in United States. It also bans the export of elemental mercury starting January 1, 2013. As a result, a long-term mercury management plan is required by gold mining companies that generate liquid mercury as a by-product. This thesis will develop a process to effectively convert elemental mercury into much more stable mercury sulfide and mercury selenide for safe disposal. The process consists of 1) extraction of elemental mercury into solution to form aqueous mercury (II) and 2) mercury precipitation as mercury sulfide or mercury selenide. Elemental mercury can be effectively extracted by using hypochlorite solution in acidic environment to form aqueous mercury (II) chloride. The effect of different parameters on the extent and rate of mercury extraction were studied, such as pH, temperature, stirring speed and hypochlorite concentration. Results show that near complete extraction can be achieved within 8 hours by using excess sodium hypochlorite at pH 4 with a fast stirring speed of 1000RPM. Mercury precipitation was achieved by using thiosulfate and selenosulfate solution. In thiosulfate precipitation, cinnabar, metacinnabar or a mixture of both can be obtained depending on the experimental conditions. Elevated temperatures, acidic environment and high reagent concentrations favour the precipitation reaction. Complete mercury removal can be achieved within 4 hours. However, it appears that the less stable metacinnabar tends to form when the precipitation rate increases. Selenosulfate solution can be produced by dissolving elemental selenium in sulfite solution at elevated temperature. Precipitation of mercury selenide using selenosulfate reagent was found to be very effective. The precipitation rate proved to be extremely fast, and the formed precipitates have been confirmed to be tiemannite (HgSe) in all experiments. Finally, Solid Waste Disposal Characterization (SWDC) experiments were conducted to examine the mobility of the formed mercury sulfide and mercury selenide. The results show that none of the formed precipitates exceed the Ultimate Treatment Standard (UTS) limit.
APA, Harvard, Vancouver, ISO, and other styles
3

Muslim, Abrar. "Thiosulfate leaching process for gold extraction." Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/896.

Full text
Abstract:
Increasing environmental concerns over the use of cyanide for gold recovery has intensified the need to deeply understand gold thiosulfate leaching system. Therefore, experimental and modelling work for the kinetics and equilibrium adsorption of thiosulfate, polythionates, gold and copper onto strong based anion exchange resin have been conducted in this study, and the results are concisely discussed in the thesis. Experimental procedures, reaction mechanisms and novel dynamic models for the adsorption phenomena were also proposed.
APA, Harvard, Vancouver, ISO, and other styles
4

Sitando, Onias. "Gold Leaching in Thiosulfate-Oxygen Solutions." Thesis, Sitando, Onias (2017) Gold Leaching in Thiosulfate-Oxygen Solutions. PhD thesis, Murdoch University, 2017. https://researchrepository.murdoch.edu.au/id/eprint/38239/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gibbins, Matthew Thomas George. "Metabolic and vascular effects of thiosulfate sulfurtransferase deletion." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31558.

Full text
Abstract:
Hydrogen sulfide (H2S), is a gasotransmitter with several key roles in metabolism and vascular function. The effects of H2S are dependent on concentration and target organ. For example, increased H2S concentrations impair liver metabolic function but protect against vascular dysfunction and atherosclerosis. Thiosulfate sulfurtransferase (TST), a nuclear encoded mitochondrial matrix enzyme, is proposed to be a component of the sulfide oxidising unit (SOU) which metabolises H2S. Preliminary data has shown that Tst deletion in mice (Tst-/-) increases circulating H2S levels measured in whole blood. Therefore, it was hypothesised that Tst-/- mice would exhibit worsened metabolic function in the liver but also protection of vascular function under conditions of vascular stress e.g. atherosclerosis. Liver metabolism was assessed by extensive metabolic phenotyping of Tst-/-mice fed control diet and in conditions of metabolic dysfunction induced by a high fat diet (HFD). Tst deletion altered glucose metabolism in mice; gluconeogenesis was increased in liver from Tst-/-mice fed control diet. Glucose intolerance in HFD-fed Tst-/-mice was also more severe than HFDfed C57BL/6 controls. In vitro metabolic investigations in primary hepatocytes isolated from Tst-/-mice demonstrated that mitochondrial ATP-linked and leak respiration were increased compared to controls. The effect of Tst deletion on vascular function was investigated in Tst- /-mice fed control or HFD using myography. Tst deletion did not alter vessel function when mice were maintained on a normal diet. HFD feeding (20 weeks) reduced maximal vessel constriction in the presence of endothelial nitric oxide synthase and cyclooxygenase inhibitors in C57BL/6 aorta. However, in Tst-/-mice fed HFD there was no reduction in maximal constriction suggesting a protective action of Tst deletion. The effects of Tst deletion on atherosclerotic lesions was investigated by generating double knock-out (DKO) mice by deletion of the Tst gene in ApoE-/- mice and (ApoE-/-Tst-/-). Atherosclerotic lesion formation was accelerated by feeding mice a western diet. Within the brachiocephalic branch lesion volume and total vessel volume were reduced in DKO mice fed western diet for 12 weeks, indicating that Tst deletion reduced lesion formation. Plasma cholesterol was reduced in DKO mice compared to ApoE-/- controls and a trend towards reduced systolic blood pressure was also noted. Overall this work supported the hypothesis that Tst deletion engenders metabolic dysfunction but vascular protection. The findings are consistent with the reported effects of increased H2S signalling. Overall inhibition of TST represents a novel target for treatment of atherosclerosis, with the caveat that glycaemia may be worsened due to hepatic metabolic dysfunction.
APA, Harvard, Vancouver, ISO, and other styles
6

com, seanzhang06@hotmail, and Xin-min Zhang. "The dissolution of gold colloids in aqueous thiosulfate solutions." Murdoch University, 2008. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20090807.121135.

Full text
Abstract:
The kinetics of the dissolution of gold and silver colloids in ammoniacal thiosulfate solutions has been studied using oxygen, copper(II) or oxygenated copper(II) as oxidants at pH 9 - 11 and temperature 22oC to 48oC. The effects of the concentration of the main reagents such as copper(II), ammonia and thiosulfate as well as various background reagents have been investigated. Gold and silver colloids have characteristic absorption peaks at 530 nm and 620 nm respectively. Thus, the extent of gold or silver dissolution in different lixiviant systems was monitored using an ultraviolet-visible spectrophotometer. A comparison of the behaviour of gold colloids and powders has also been made. The beneficial or detrimental effects of silver colloid, and background reagents such as silver nitrate, and sodium salts of nitrate, carbonate, sulfite, sulfate, trithionate, tetrathionate anions have also been investigated. Experimental results show that the relative rates and the extent of gold colloid dissolution at 25ºC in different lixiviant systems in a given time interval are in the order: oxygen-cyanide > copper(II)-ammonia-thiosulfate ≈ oxygen-copper(II)- ammonia-thiosulfate > oxygen ammonia-thiosulfate ≥ oxygen-ammonia > copper(II) ammonia. The analysis of electrode potentials shows that Au(S2O3)23- is the predominant gold(I) species in the lixiviant solutions containing oxygen or copper(II) as oxidant and thiosulfate or mixed ammonia-thiosulfate as ligands. During the reaction of copper(II) with thiosulfate in ammoniacal solution without oxygen, the measured potential using a platinum electrode represent the redox couple Cu(NH3)n2+/Cu(S2O3)m1-2m (n = 4 or 3, m = 3 or 2) depending on the concentrations of thiosulfate and ammonia. The initial dissolution rates of gold colloid by oxygen in copper-free solutions show a reaction order of 0.28 with respect to the concentration of dissolved oxygen, but independent of the concentration of ammonia and thiosulfate. The reaction activation energy of 25 kJ/mol in the temperature range 25°C to 48°C indicated a diffusion controlled reaction. The initial dissolution rates of gold colloid by oxidation with copper(II) in oxygenfree solutions show reaction orders of 0.41, 0.49, 0.60, 0.15 and 0.20 with respect to the concentrations of copper(II), thiosulfate, ammonia, chloride and silver respectively. The presence of silve (I) or chloride ions enhances the rate of gold dissolution, indicating their involvement in the surface reaction, possibly by interfering with or preventing a passivating sulfur rich film on gold surface. An activation energy of 40-50 kJ/mol for the dissolution of gold by oxidation with copper(II) in the temperature range 22°C to 48°C suggests a mixed chemically/diffusion controlled reaction. The dissolution of gold by oxidation with copper(II) in oxygen-free solutions appears to be a result of the reaction between gold, thiosulfate ions and the mixed complex Cu(NH3)p(S2O3)0. The half order reactions support electrochemical mechanisms in some cases. The initial dissolution rates of gold colloid, massive gold and gold-silver alloys by oxygenated copper(II) solutions also suggest a reaction that is first order with respect to copper(II) concentration. High oxygen concentration in solutions has a negative effect on the initial rate of gold dissolution and overall percentage of gold dissolution, indicating that oxygen affects the copper(II), copper(I) or sulfur species which in turn affects the gold dissolution. The surface reaction produces Au(NH3)(S2O3)- and Cu(NH3)p+. The mixed complexes Au(NH3)(S2O3)- and Cu(NH3)p+ re-equilibrate to the more stable complexes Au(S2O3)23- and Cu(S2O3)35- in solution. The dissolution of gold powder by oxidation with copper(II) in oxygen-free solutions shows the same trends as that of gold colloid. The presence of silver(I) or chloride ions enhances the initial rate and percentage dissolution of gold colloid and powder. The dissolution kinetics of gold powder and colloid follow a shrinking sphere kinetic model in solutions of relatively low concentrations of thiosulfate and ammonia, with apparent rate constants being inversely proportional to particle radius. The best system for dissolving gold based on the results of this work is the copper(II)-ammonia-thiosulfate solution in the absence of oxygen or in the presence of oxygen. In the absence of oxygen, copper(II) 1.5-4.5 mM, thiosulfate 20-50 mM, ammonia 120-300 mM and pH 9.3-10 are the best conditions. The presences of carbonate and sulfite have a significant negative effect on the dissolution of gold. The presence of sodium trithionate shows a beneficial effect in the first two hours, while sodium tetrathionate or lead nitrate have a small negative effect and sodium nitrate showed no effect on the dissolution of gold. Silver nitrate and sodium chloride also show beneficial effects. In the presence of oxygen, copper(II) 2.0-3.0 mM, thiosulfate 50 mM, ammonia 240 mM and pH 9.3-9.5 are the best conditions.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Xin-min. "The dissolution of gold colloids in aqueous thiosulfate solutions." Zhang, Xin-min (2008) The dissolution of gold colloids in aqueous thiosulfate solutions. PhD thesis, Murdoch University, 2008. http://researchrepository.murdoch.edu.au/672/.

Full text
Abstract:
The kinetics of the dissolution of gold and silver colloids in ammoniacal thiosulfate solutions has been studied using oxygen, copper(II) or oxygenated copper(II) as oxidants at pH 9 - 11 and temperature 22oC to 48oC. The effects of the concentration of the main reagents such as copper(II), ammonia and thiosulfate as well as various background reagents have been investigated. Gold and silver colloids have characteristic absorption peaks at 530 nm and 620 nm respectively. Thus, the extent of gold or silver dissolution in different lixiviant systems was monitored using an ultraviolet-visible spectrophotometer. A comparison of the behaviour of gold colloids and powders has also been made. The beneficial or detrimental effects of silver colloid, and background reagents such as silver nitrate, and sodium salts of nitrate, carbonate, sulfite, sulfate, trithionate, tetrathionate anions have also been investigated. Experimental results show that the relative rates and the extent of gold colloid dissolution at 25ºC in different lixiviant systems in a given time interval are in the order: oxygen-cyanide > copper(II)-ammonia-thiosulfate ≈ oxygen-copper(II)- ammonia-thiosulfate > oxygen ammonia-thiosulfate ≥ oxygen-ammonia > copper(II) ammonia. The analysis of electrode potentials shows that Au(S2O3)23- is the predominant gold(I) species in the lixiviant solutions containing oxygen or copper(II) as oxidant and thiosulfate or mixed ammonia-thiosulfate as ligands. During the reaction of copper(II) with thiosulfate in ammoniacal solution without oxygen, the measured potential using a platinum electrode represent the redox couple Cu(NH3)n2+/Cu(S2O3)m1-2m (n = 4 or 3, m = 3 or 2) depending on the concentrations of thiosulfate and ammonia. The initial dissolution rates of gold colloid by oxygen in copper-free solutions show a reaction order of 0.28 with respect to the concentration of dissolved oxygen, but independent of the concentration of ammonia and thiosulfate. The reaction activation energy of 25 kJ/mol in the temperature range 25°C to 48°C indicated a diffusion controlled reaction. The initial dissolution rates of gold colloid by oxidation with copper(II) in oxygenfree solutions show reaction orders of 0.41, 0.49, 0.60, 0.15 and 0.20 with respect to the concentrations of copper(II), thiosulfate, ammonia, chloride and silver respectively. The presence of silve (I) or chloride ions enhances the rate of gold dissolution, indicating their involvement in the surface reaction, possibly by interfering with or preventing a passivating sulfur rich film on gold surface. An activation energy of 40-50 kJ/mol for the dissolution of gold by oxidation with copper(II) in the temperature range 22°C to 48°C suggests a mixed chemically/diffusion controlled reaction. The dissolution of gold by oxidation with copper(II) in oxygen-free solutions appears to be a result of the reaction between gold, thiosulfate ions and the mixed complex Cu(NH3)p(S2O3)0. The half order reactions support electrochemical mechanisms in some cases. The initial dissolution rates of gold colloid, massive gold and gold-silver alloys by oxygenated copper(II) solutions also suggest a reaction that is first order with respect to copper(II) concentration. High oxygen concentration in solutions has a negative effect on the initial rate of gold dissolution and overall percentage of gold dissolution, indicating that oxygen affects the copper(II), copper(I) or sulfur species which in turn affects the gold dissolution. The surface reaction produces Au(NH3)(S2O3)- and Cu(NH3)p+. The mixed complexes Au(NH3)(S2O3)- and Cu(NH3)p+ re-equilibrate to the more stable complexes Au(S2O3)23- and Cu(S2O3)35- in solution. The dissolution of gold powder by oxidation with copper(II) in oxygen-free solutions shows the same trends as that of gold colloid. The presence of silver(I) or chloride ions enhances the initial rate and percentage dissolution of gold colloid and powder. The dissolution kinetics of gold powder and colloid follow a shrinking sphere kinetic model in solutions of relatively low concentrations of thiosulfate and ammonia, with apparent rate constants being inversely proportional to particle radius. The best system for dissolving gold based on the results of this work is the copper(II)-ammonia-thiosulfate solution in the absence of oxygen or in the presence of oxygen. In the absence of oxygen, copper(II) 1.5-4.5 mM, thiosulfate 20-50 mM, ammonia 120-300 mM and pH 9.3-10 are the best conditions. The presences of carbonate and sulfite have a significant negative effect on the dissolution of gold. The presence of sodium trithionate shows a beneficial effect in the first two hours, while sodium tetrathionate or lead nitrate have a small negative effect and sodium nitrate showed no effect on the dissolution of gold. Silver nitrate and sodium chloride also show beneficial effects. In the presence of oxygen, copper(II) 2.0-3.0 mM, thiosulfate 50 mM, ammonia 240 mM and pH 9.3-9.5 are the best conditions.
APA, Harvard, Vancouver, ISO, and other styles
8

Jeffery, Y. Masau Rosemarie. "The mechanism of thiosulfate oxidation by Thiobacillus thiooxidans 8085." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0012/MQ41722.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sen, Gupta Supriya Kumar. "Oxidation of sodium thiosulfate in weak kraft black liquor." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Xin-Min. "The dissolution of gold colloids in aqueous thiosulfate solutions /." Murdoch University Digital Theses Program, 2008. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20090807.121135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Xinmin. "The dissolution of gold colloids in aqueous thiosulfate solutions." Thesis, Zhang, Xinmin (2008) The dissolution of gold colloids in aqueous thiosulfate solutions. PhD thesis, Murdoch University, 2008. https://researchrepository.murdoch.edu.au/id/eprint/672/.

Full text
Abstract:
The kinetics of the dissolution of gold and silver colloids in ammoniacal thiosulfate solutions has been studied using oxygen, copper(II) or oxygenated copper(II) as oxidants at pH 9 - 11 and temperature 22oC to 48oC. The effects of the concentration of the main reagents such as copper(II), ammonia and thiosulfate as well as various background reagents have been investigated. Gold and silver colloids have characteristic absorption peaks at 530 nm and 620 nm respectively. Thus, the extent of gold or silver dissolution in different lixiviant systems was monitored using an ultraviolet-visible spectrophotometer. A comparison of the behaviour of gold colloids and powders has also been made. The beneficial or detrimental effects of silver colloid, and background reagents such as silver nitrate, and sodium salts of nitrate, carbonate, sulfite, sulfate, trithionate, tetrathionate anions have also been investigated. Experimental results show that the relative rates and the extent of gold colloid dissolution at 25ºC in different lixiviant systems in a given time interval are in the order: oxygen-cyanide > copper(II)-ammonia-thiosulfate ≈ oxygen-copper(II)- ammonia-thiosulfate > oxygen ammonia-thiosulfate ≥ oxygen-ammonia > copper(II) ammonia. The analysis of electrode potentials shows that Au(S2O3)23- is the predominant gold(I) species in the lixiviant solutions containing oxygen or copper(II) as oxidant and thiosulfate or mixed ammonia-thiosulfate as ligands. During the reaction of copper(II) with thiosulfate in ammoniacal solution without oxygen, the measured potential using a platinum electrode represent the redox couple Cu(NH3)n2+/Cu(S2O3)m1-2m (n = 4 or 3, m = 3 or 2) depending on the concentrations of thiosulfate and ammonia. The initial dissolution rates of gold colloid by oxygen in copper-free solutions show a reaction order of 0.28 with respect to the concentration of dissolved oxygen, but independent of the concentration of ammonia and thiosulfate. The reaction activation energy of 25 kJ/mol in the temperature range 25°C to 48°C indicated a diffusion controlled reaction. The initial dissolution rates of gold colloid by oxidation with copper(II) in oxygenfree solutions show reaction orders of 0.41, 0.49, 0.60, 0.15 and 0.20 with respect to the concentrations of copper(II), thiosulfate, ammonia, chloride and silver respectively. The presence of silve (I) or chloride ions enhances the rate of gold dissolution, indicating their involvement in the surface reaction, possibly by interfering with or preventing a passivating sulfur rich film on gold surface. An activation energy of 40-50 kJ/mol for the dissolution of gold by oxidation with copper(II) in the temperature range 22°C to 48°C suggests a mixed chemically/diffusion controlled reaction. The dissolution of gold by oxidation with copper(II) in oxygen-free solutions appears to be a result of the reaction between gold, thiosulfate ions and the mixed complex Cu(NH3)p(S2O3)0. The half order reactions support electrochemical mechanisms in some cases. The initial dissolution rates of gold colloid, massive gold and gold-silver alloys by oxygenated copper(II) solutions also suggest a reaction that is first order with respect to copper(II) concentration. High oxygen concentration in solutions has a negative effect on the initial rate of gold dissolution and overall percentage of gold dissolution, indicating that oxygen affects the copper(II), copper(I) or sulfur species which in turn affects the gold dissolution. The surface reaction produces Au(NH3)(S2O3)- and Cu(NH3)p+. The mixed complexes Au(NH3)(S2O3)- and Cu(NH3)p+ re-equilibrate to the more stable complexes Au(S2O3)23- and Cu(S2O3)35- in solution. The dissolution of gold powder by oxidation with copper(II) in oxygen-free solutions shows the same trends as that of gold colloid. The presence of silver(I) or chloride ions enhances the initial rate and percentage dissolution of gold colloid and powder. The dissolution kinetics of gold powder and colloid follow a shrinking sphere kinetic model in solutions of relatively low concentrations of thiosulfate and ammonia, with apparent rate constants being inversely proportional to particle radius. The best system for dissolving gold based on the results of this work is the copper(II)-ammonia-thiosulfate solution in the absence of oxygen or in the presence of oxygen. In the absence of oxygen, copper(II) 1.5-4.5 mM, thiosulfate 20-50 mM, ammonia 120-300 mM and pH 9.3-10 are the best conditions. The presences of carbonate and sulfite have a significant negative effect on the dissolution of gold. The presence of sodium trithionate shows a beneficial effect in the first two hours, while sodium tetrathionate or lead nitrate have a small negative effect and sodium nitrate showed no effect on the dissolution of gold. Silver nitrate and sodium chloride also show beneficial effects. In the presence of oxygen, copper(II) 2.0-3.0 mM, thiosulfate 50 mM, ammonia 240 mM and pH 9.3-9.5 are the best conditions.
APA, Harvard, Vancouver, ISO, and other styles
12

Black, Silvia Beatriz. "The thermodynamic chemistry of the aqueous copper-ammonia thiosulfate system." Thesis, Black, Silvia Beatriz (2006) The thermodynamic chemistry of the aqueous copper-ammonia thiosulfate system. PhD thesis, Murdoch University, 2006. https://researchrepository.murdoch.edu.au/id/eprint/336/.

Full text
Abstract:
A fundamental thermodynamic study was undertaken in order to establish the speciation of copper(I) and copper(II) during the leaching and recovery of gold from thiosulfate-copper-ammonia solutions. Despite considerable research into this complex leaching system, the lack of important fundamental chemistry has delayed the implementation of the thiosulfate process as an alternative to cyanidation. Over the last two decades, research in this field has focused on the kinetics and electrochemistry of leaching, which involves the use of copper(II) as an oxidant. However, the fundamental thermodynamic data for copper(I) and copper(II) in this system is limited. Ion association was found to significantly affect the dissociation constant of the ammonium ion in solutions containing sodium sulfate and/or sodium thiosulfate, thus influencing the free ammonia concentration in solution. These findings highlight the importance of using the correct dissociation constant value in thermodynamic studies that involve ammonia in order to obtain precise stability constants. It has been established that the mixed-ligand complexes Cu(NH3)(S2O3)23- and Cu(NH3)(S2O3)- exist in solution and they are more stable than the other species Cu(S2O3)35-, Cu(NH3)2+ and Cu(NH3)3+ at high concentrations of ammonia and/or thiosulfate. The relative proportions of each two species is dependant on the [NH3]:[S2O32-] ratio in solution. This is reflected in two- and three- dimensional speciation diagrams that have been constructed for typical leaching and recovery processes using the stability constants obtained in this study. The 3-dimensional diagrams reveal subtle speciation trends that are not easily discernable from the 2-dimensional diagrams. An investigation into the effect of high sulfate and chloride concentrations showed that these anions are not involved in the complexation with copper(I)-ammonia or copper(I)-ammonia-thiosulfate species under the experimental conditions studied. However, these anions and perchlorate formed relatively stable species with the copper(II)-ammine complexes in the absence of thiosulfate. Stability constants were obtained for the species Cu(NH3)4SO40, Cu(NH3)4Cl+ and Cu(NH3)4ClO4+ and it is suggested that these anionic ligands form outer-sphere complexes with the Cu(NH3)42+ ion. Various methods of predicting stability constants for mixed-ligand complexes from those for the corresponding single ligand systems have been evaluated for this copper(I) system. Although the results have not been quantitatively accurate, the trends suggest that an appropriate method may serve as a useful qualitative tool to predict the possible existence of mixed-ligand complexes. The combined application of 2- and 3-dimensional speciation and potential diagrams could be used as a hydrometallurgical tool in the design, optimization and control of possible future processes for the extraction of gold using thiosulfate in the presence of copper ions and ammonia. The work presented in this thesis adds to our understanding of the chemistry of copper(I) and copper(II) in this leaching system.
APA, Harvard, Vancouver, ISO, and other styles
13

Black, Silvia Beatriz. "The thermodynamic chemistry of the aqueous copper-ammonia thiosulfate system." Black, Silvia Beatriz (2006) The thermodynamic chemistry of the aqueous copper-ammonia thiosulfate system. PhD thesis, Murdoch University, 2006. http://researchrepository.murdoch.edu.au/336/.

Full text
Abstract:
A fundamental thermodynamic study was undertaken in order to establish the speciation of copper(I) and copper(II) during the leaching and recovery of gold from thiosulfate-copper-ammonia solutions. Despite considerable research into this complex leaching system, the lack of important fundamental chemistry has delayed the implementation of the thiosulfate process as an alternative to cyanidation. Over the last two decades, research in this field has focused on the kinetics and electrochemistry of leaching, which involves the use of copper(II) as an oxidant. However, the fundamental thermodynamic data for copper(I) and copper(II) in this system is limited. Ion association was found to significantly affect the dissociation constant of the ammonium ion in solutions containing sodium sulfate and/or sodium thiosulfate, thus influencing the free ammonia concentration in solution. These findings highlight the importance of using the correct dissociation constant value in thermodynamic studies that involve ammonia in order to obtain precise stability constants. It has been established that the mixed-ligand complexes Cu(NH3)(S2O3)23- and Cu(NH3)(S2O3)- exist in solution and they are more stable than the other species Cu(S2O3)35-, Cu(NH3)2+ and Cu(NH3)3+ at high concentrations of ammonia and/or thiosulfate. The relative proportions of each two species is dependant on the [NH3]:[S2O32-] ratio in solution. This is reflected in two- and three- dimensional speciation diagrams that have been constructed for typical leaching and recovery processes using the stability constants obtained in this study. The 3-dimensional diagrams reveal subtle speciation trends that are not easily discernable from the 2-dimensional diagrams. An investigation into the effect of high sulfate and chloride concentrations showed that these anions are not involved in the complexation with copper(I)-ammonia or copper(I)-ammonia-thiosulfate species under the experimental conditions studied. However, these anions and perchlorate formed relatively stable species with the copper(II)-ammine complexes in the absence of thiosulfate. Stability constants were obtained for the species Cu(NH3)4SO40, Cu(NH3)4Cl+ and Cu(NH3)4ClO4+ and it is suggested that these anionic ligands form outer-sphere complexes with the Cu(NH3)42+ ion. Various methods of predicting stability constants for mixed-ligand complexes from those for the corresponding single ligand systems have been evaluated for this copper(I) system. Although the results have not been quantitatively accurate, the trends suggest that an appropriate method may serve as a useful qualitative tool to predict the possible existence of mixed-ligand complexes. The combined application of 2- and 3-dimensional speciation and potential diagrams could be used as a hydrometallurgical tool in the design, optimization and control of possible future processes for the extraction of gold using thiosulfate in the presence of copper ions and ammonia. The work presented in this thesis adds to our understanding of the chemistry of copper(I) and copper(II) in this leaching system.
APA, Harvard, Vancouver, ISO, and other styles
14

Watling, Kym Marjorie, and n/a. "Spectroelectrochemical Studies of Surface Species in the Gold/Thiosulfate System." Griffith University. School of Biomolecular and Physical Sciences, 2007. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20081024.164504.

Full text
Abstract:
This thesis presents results of studies using the technique of surface-enhanced Raman scattering (SERS) spectroscopy to investigate surface processes occurring on gold during electrochemical experiments in thiosulfate solutions and during leaching in ammoniacal copper(II) thiosulfate systems. The gold SERS electrode was characterised using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), linear sweep voltammetry (LSV) and cyclic voltammetry (CV). SEM investigations of the SERS activated gold surface showed the presence of electrodeposited dendrites with nanoscale features. XRD studies of the dendrites showed them to be polycrystalline with a large proportion of Au(111). Rotating disk electrode (RDE) studies of polished and SERS electrodes were undertaken in order to clarify the electrochemistry of various thiosulfate systems. The ex situ techniques of XPS and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were used to determine the presence of sulfur, copper and nitrogen on leached or electro-oxidised surfaces. Voltammetric methods were used to determine sulfur and copper surface coverages at various potentials in sulfide, thiosulfate and ammoniacal copper(II) thiosulfate media. The electro-oxidation of sulfide was examined as a model system in order to identify spectral features and coverage associated with various potential-dependent sulfur layers. In the hydrogen evolution region, a surface layer formed by underpotential deposition in acid and basic media was characterised by a gold-sulfur stretching band, Au-S, attributed in the literature to a monoatomic stretching mode of sulfur bonded to gold. The surface coverage in this potential region was limited to 0.35 ML, representing adsorption in a (3x3)R30 structure. Bands were found to be absent that would have indicated the adsorption of SH– species as has been reported in the literature. A facile change in the position of the Au-S band with potential, unaccompanied by Faradaic processes, was seen when the adsorbed (3x3)R30 sulfur layer was examined in a sulfide-free solution. This may indicate a change in sulfur adsorption sites with potential in the hydrogen evolution region. At potentials above the S II/S0 reversible value in sulfide solutions, the surface coverage increased and S-S bands were observed, indicating the formation of an adsorbed polysulfide species, Au-Sn. A change in the position of the Au-S band was seen to accompany the formation of the S-S bands. As coverage further increased, bands due to S-S-S bending, S-S-S, developed that were characteristic of cyclo octasulfur, S8. On removal from sulfide solution and rinsing, a characteristic SERS spectrum was observed ex situ. The spectrum showed a characteristic S-S at 460 cm-1 and Au-S at 325 cm-1 and was assigned to an adlayer of S8 adsorbed on gold in a crown configuration, Au S8. Gold was polarised in thiosulfate solutions at a potential at which gold dissolution is known to occur. In situ SERS spectra showed bands characteristic of S-S bonding and Au2S to occur after 1 hr for thiosulfate with sodium and ammonium counter-ions and for both systems in the presence of ammonia. XPS studies of polished gold held in sodium thiosulfate under these conditions showed S 2p binding energies corresponding to metal sulfide and pyritic sulfur, S22-. After 72 hrs at the mixed potential in air saturated sodium thiosulfate, SERS investigations showed a spectrum with Au-S8 characteristics. XPS studies on a polished electrode under these conditions showed a third type of S 2p binding with a binding energy between that of pyritic sulfur and S8. The sodium thiosulfate system showed an adsorbed tetrathionate-like surface species, Au-S4O6, to be present at the mixed potential and to disappear with increased potential prior to the formation of bulk S8 via an Au-S8 intermediate. In the presence of the ammonium cation at high potentials, Au-Sn bands appear in the presence of a more intense and broad Au-S characteristic of gold sulfide, Au2S. This was assigned to a mixed gold sulfide/polysulfide phase, Au2S/Sn. With addition of ammonia, the surface species Au S4O6, Au2S/Sn and, tentatively, adsorbed NH3 were observed above the mixed potential. For gold in air-saturated copper(II) ammoniacal thiosulfate media, bands due S-S at 382 cm-1 and symmetric S-O stretching, symS-O, at 1017 cm-1 developed during leaching at the mixed potential. These modes diminished and, when rinsed and examined in water, were replaced by a single band at 255 cm 1 assigned to a metal sulfide stretch. In typical leach solutions, sulfur and copper coverages showed a 2:1 atomic ratio after leaching for 16 h. Ex situ ATR and XPS studies showed that ammonia was adsorbed to a surface copper sulfide. Kinetic studies using atomic absorption spectroscopy (AAS) to measure gold in solution showed that the ammoniacal copper(II) thiosulfate leaching solution exhibited higher dissolution rates in the presence of the sodium counter ion than the ammonium. Thiourea as an additive to thiosulfate solutions was seen to disrupt S-S bonding in both Au-S8 and Au2S/Sn surface structures.
APA, Harvard, Vancouver, ISO, and other styles
15

au, sblack@ccwa wa gov, and Silvia Beatriz Black. "The thermodynamic chemistry of the aqueous copper-ammonia thiosulfate system." Murdoch University, 2006. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20070508.154242.

Full text
Abstract:
A fundamental thermodynamic study was undertaken in order to establish the speciation of copper(I) and copper(II) during the leaching and recovery of gold from thiosulfate-copper-ammonia solutions. Despite considerable research into this complex leaching system, the lack of important fundamental chemistry has delayed the implementation of the thiosulfate process as an alternative to cyanidation. Over the last two decades, research in this field has focused on the kinetics and electrochemistry of leaching, which involves the use of copper(II) as an oxidant. However, the fundamental thermodynamic data for copper(I) and copper(II) in this system is limited. Ion association was found to significantly affect the dissociation constant of the ammonium ion in solutions containing sodium sulfate and/or sodium thiosulfate, thus influencing the free ammonia concentration in solution. These findings highlight the importance of using the correct dissociation constant value in thermodynamic studies that involve ammonia in order to obtain precise stability constants. It has been established that the mixed-ligand complexes Cu(NH3)(S2O3)23- and Cu(NH3)(S2O3)- exist in solution and they are more stable than the other species Cu(S2O3)35-, Cu(NH3)2+ and Cu(NH3)3+ at high concentrations of ammonia and/or thiosulfate. The relative proportions of each two species is dependant on the [NH3]:[S2O32-] ratio in solution. This is reflected in two- and three- dimensional speciation diagrams that have been constructed for typical leaching and recovery processes using the stability constants obtained in this study. The 3-dimensional diagrams reveal subtle speciation trends that are not easily discernable from the 2-dimensional diagrams. An investigation into the effect of high sulfate and chloride concentrations showed that these anions are not involved in the complexation with copper(I)-ammonia or copper(I)-ammonia-thiosulfate species under the experimental conditions studied. However, these anions and perchlorate formed relatively stable species with the copper(II)-ammine complexes in the absence of thiosulfate. Stability constants were obtained for the species Cu(NH3)4SO40, Cu(NH3)4Cl+ and Cu(NH3)4ClO4+ and it is suggested that these anionic ligands form outer-sphere complexes with the Cu(NH3)42+ ion. Various methods of predicting stability constants for mixed-ligand complexes from those for the corresponding single ligand systems have been evaluated for this copper(I) system. Although the results have not been quantitatively accurate, the trends suggest that an appropriate method may serve as a useful qualitative tool to predict the possible existence of mixed-ligand complexes. The combined application of 2- and 3-dimensional speciation and potential diagrams could be used as a hydrometallurgical tool in the design, optimization and control of possible future processes for the extraction of gold using thiosulfate in the presence of copper ions and ammonia. The work presented in this thesis adds to our understanding of the chemistry of copper(I) and copper(II) in this leaching system.
APA, Harvard, Vancouver, ISO, and other styles
16

Breuer, Paul 1968. "Gold leaching in thiosulfate solutions containing copper(II) and ammonia." Monash University, Dept. of Chemical Engineering, 2002. http://arrow.monash.edu.au/hdl/1959.1/7762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Siu, Tung. "Kinetic and mechanistic study of aqueous sulfide-sulfite-thiosulfate system." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0007/MQ45585.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kurth, Julia [Verfasser]. "The TsdA family of thiosulfate dehydrogenases/tetrathionate reductases / Julia Kurth." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1132711215/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kurth, Julia Maria [Verfasser]. "The TsdA family of thiosulfate dehydrogenases/tetrathionate reductases / Julia Kurth." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1132711215/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Laitinen, Tarja. "Thiosulfate pitting corrosion of stainless steels in paper machine environment /." Espoo, Finland : VTT, Technical Research Centre of Finland, 1999. http://www.vtt.fi/inf/pdf/publications/1999/P399.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Watling, Kym Marjorie. "Spectroelectrochemical Studies of Surface Species in the Gold/Thiosulfate System." Thesis, Griffith University, 2007. http://hdl.handle.net/10072/367444.

Full text
Abstract:
This thesis presents results of studies using the technique of surface-enhanced Raman scattering (SERS) spectroscopy to investigate surface processes occurring on gold during electrochemical experiments in thiosulfate solutions and during leaching in ammoniacal copper(II) thiosulfate systems. The gold SERS electrode was characterised using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), linear sweep voltammetry (LSV) and cyclic voltammetry (CV). SEM investigations of the SERS activated gold surface showed the presence of electrodeposited dendrites with nanoscale features. XRD studies of the dendrites showed them to be polycrystalline with a large proportion of Au(111). Rotating disk electrode (RDE) studies of polished and SERS electrodes were undertaken in order to clarify the electrochemistry of various thiosulfate systems. The ex situ techniques of XPS and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were used to determine the presence of sulfur, copper and nitrogen on leached or electro-oxidised surfaces. Voltammetric methods were used to determine sulfur and copper surface coverages at various potentials in sulfide, thiosulfate and ammoniacal copper(II) thiosulfate media. The electro-oxidation of sulfide was examined as a model system in order to identify spectral features and coverage associated with various potential-dependent sulfur layers. In the hydrogen evolution region, a surface layer formed by underpotential deposition in acid and basic media was characterised by a gold-sulfur stretching band, ï ®Au-S, attributed in the literature to a monoatomic stretching mode of sulfur bonded to gold. The surface coverage in this potential region was limited to 0.35 ML, representing adsorption in a (3x3)R30ï‚° structure. Bands were found to be absent that would have indicated the adsorption of SH– species as has been reported in the literature. A facile change in the position of the ï ®Au-S band with potential, unaccompanied by Faradaic processes, was seen when the adsorbed (3x3)R30ï‚° sulfur layer was examined in a sulfide-free solution. This may indicate a change in sulfur adsorption sites with potential in the hydrogen evolution region. At potentials above the S II/S0 reversible value in sulfide solutions, the surface coverage increased and ï ®S-S bands were observed, indicating the formation of an adsorbed polysulfide species, Au-Sn. A change in the position of the ï ®Au-S band was seen to accompany the formation of the ï ®S-S bands. As coverage further increased, bands due to S-S-S bending, ï ¤S-S-S, developed that were characteristic of cyclo octasulfur, S8. On removal from sulfide solution and rinsing, a characteristic SERS spectrum was observed ex situ. The spectrum showed a characteristic ï ®S-S at 460 cm-1 and ï ®Au-S at 325 cm-1 and was assigned to an adlayer of S8 adsorbed on gold in a crown configuration, Au S8. Gold was polarised in thiosulfate solutions at a potential at which gold dissolution is known to occur. In situ SERS spectra showed bands characteristic of S-S bonding and Au2S to occur after 1 hr for thiosulfate with sodium and ammonium counter-ions and for both systems in the presence of ammonia. XPS studies of polished gold held in sodium thiosulfate under these conditions showed S 2p binding energies corresponding to metal sulfide and pyritic sulfur, S22-. After 72 hrs at the mixed potential in air saturated sodium thiosulfate, SERS investigations showed a spectrum with Au-S8 characteristics. XPS studies on a polished electrode under these conditions showed a third type of S 2p binding with a binding energy between that of pyritic sulfur and S8. The sodium thiosulfate system showed an adsorbed tetrathionate-like surface species, Au-S4O6, to be present at the mixed potential and to disappear with increased potential prior to the formation of bulk S8 via an Au-S8 intermediate. In the presence of the ammonium cation at high potentials, Au-Sn bands appear in the presence of a more intense and broad ï ®Au-S characteristic of gold sulfide, Au2S. This was assigned to a mixed gold sulfide/polysulfide phase, Au2S/Sn. With addition of ammonia, the surface species Au S4O6, Au2S/Sn and, tentatively, adsorbed NH3 were observed above the mixed potential. For gold in air-saturated copper(II) ammoniacal thiosulfate media, bands due ï ®S-S at 382 cm-1 and symmetric S-O stretching, ï ®symS-O, at 1017 cm-1 developed during leaching at the mixed potential. These modes diminished and, when rinsed and examined in water, were replaced by a single band at 255 cm 1 assigned to a metal sulfide stretch. In typical leach solutions, sulfur and copper coverages showed a 2:1 atomic ratio after leaching for 16 h. Ex situ ATR and XPS studies showed that ammonia was adsorbed to a surface copper sulfide. Kinetic studies using atomic absorption spectroscopy (AAS) to measure gold in solution showed that the ammoniacal copper(II) thiosulfate leaching solution exhibited higher dissolution rates in the presence of the sodium counter ion than the ammonium. Thiourea as an additive to thiosulfate solutions was seen to disrupt S-S bonding in both Au-S8 and Au2S/Sn surface structures.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Biomolecular and Physical Sciences
Full Text
APA, Harvard, Vancouver, ISO, and other styles
22

Uzarraga, salazar Rafael. "Effet de l’oxygène sur le métabolisme énergétique d’Aquifex aeolicus, bactérie hyperthermophile, hydrogénotrophe et microaérophile." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4811.

Full text
Abstract:
Cette thèse porte sur l'écophysiologie et la physiologie d'une bactérie hyperthermophile et microaérophile, Aquifex aeolicus, cultivée dans différentes conditions d'oxygénation. Au cours de ce travail, trois systèmes expérimentaux (jarres, microcosmes et fermenteur) ont été testés : (1) le nouveau système de jarres qui été mis au point est muni de microplaques de 24 puits couplé à un robot. Il permet d'étudier un grand nombre de facteurs trophiques ou de formulations de milieux de cultures tout en conservant une atmosphère de composition constante, (2) pour l'étude de facteurs trophiques gazeux, l'utilisation des microcosmes a été montrée peu adaptée, amenant même dans certains cas, à des interprétations erronées, et, 3) le fermenteur reste le meilleur outil pour étudier l'influence de la concentration en O2 dissous (pO2) sur le métabolisme d'A. aeolicus. A partir des cinétiques de croissance obtenues en fermenteur, il a été établi que la densité de biomasse est constante et que la vitesse de croissance est maximale pour une pO2 comprise, respectivement, entre 0.006 et 6 mg/L et, entre 1 et 2 mg/L. Pour des pO2 supérieures à 2 mg/L, il a été montré que l'oxygène a un effet toxique sur la croissance d'A. aeolicus. Pour des conditions optimales d'oxygénation (pO2=1.5 mg/L) et lorsque l'H2 (100 mL/min) limite la croissance, le catabolisme énergétique est alors dévié vers la consommation du thiosulfate. En effet, pour les débits d'H2 de 450 et 100 mL/min, d'une part 97 et 79 % de l'O2 sont respectivement réduits par l'hydrogène et d'autre part 3 et 21 % de l'O2 sont respectivement réduits par le thiosulfate
This manuscript addresses the physiology and ecophysiology of the microaerophilic hyperthermophilic bacterium Aquifex aeolicus, grown under different oxygen-supply conditions. Three experimental systems, jar, microcosm and fermentor were tested in those experiments: (1) a newly-engineered jar system containing 24-well microplates coupled to an automated controller. This system allows to study a broad spectrum of trophic factors or culture media formulations while maintaining a constant atmospheric composition; (2) microcosm systems were, here, proved ill-adapted to studying gas-phase trophic factors, and in some cases even to leading to false interpretations; 3) the fermentor system remains the best tool to studying the influence of dissolved O2 concentration (pO2) on A. aeolicus metabolism. Based on in-fermentor growth kinetic curves, we established that biomass density was maximum and constant at a pO2 in the range 0.006 to 6 mg/L and growth rate was maximum at a pO2 of about 2 mg/L. At a pO2 over 2 mg/L, oxygen level had a toxic effect on A. aeolicus growth. Under optimal oxygen supply (pO2 = 1.5 mg/L) and when H2 (100 mL/min) is the growth-limiting factor, energy catabolism is diverted towards thiosulfate consumption: at H2 flow-rates of 450 and 100 mL/min, 97% and 79% of O2 is reduced by hydrogen while 3% and 21% of O2 is reduced by thiosulfate, respectively. Under over-oxygenation conditions (pO2 = 10.5 and 12 mg/L), growth was correlated to high thiosulfate consumption whereas the expression of genes encoding hydrogenases was significantly downregulated and hydrogenase activity was null
APA, Harvard, Vancouver, ISO, and other styles
23

Wirth, Volker. "Temperaturabhängige elektrooptische und elektrostriktive Untersuchungen an Kristallen mit ferroischen Phasenumwandlungen." [S.l. : s.n.], 1999. http://deposit.ddb.de/cgi-bin/dokserv?idn=958982511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

au, Suchun@central murdoch edu, and Suchun Zhang. "Oxidation of Refractory Gold Concentrates and Simultaneous Dissolution of Gold in Aerated Alkaline Solutions." Murdoch University, 2004. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20041201.152201.

Full text
Abstract:
The oxidation of refractory gold concentrates containing arsenopyrite and pyrite and the simultaneous dissolution of gold in aerated alkaline solutions at ambient temperatures and pressures without the addition of cyanide has been studied. It involves the following aspects: the chemistry of the oxidation of pure arsenopyrite and pyrite minerals in aerated alkaline solutions; the kinetics of oxidation of arsenopyrite and the simultaneous dissolution of gold in such solutions; the kinetics of simultaneous dissolution of gold during the alkaline oxidation of refractory gold concentrates; the electrochemistry of gold in alkaline solutions containing thiosulfate or monothioarsenate; the effect of copper on the leaching of gold in alkaline thiosulfate solutions; and the leaching of gold in alkaline solutions with thioarsenites. The nature and proportions of the products of the oxidation of arsenopyrite in aerated alkaline solutions have been studied using high pressure ion chromatography techniques that have shown that thiosulfate and a new species, monothioarsenate, are the main oxidation products of arsenopyrite apart from arsenate and sulfite. The alkaline oxidation of pyrite primarily yields thiosulfate and sulfite. A kinetic investigation of the oxidation of arsenopyrite with air or oxygen has shown that the initial rate of arsenopyrite oxidation is proportional to the concentration of dissolved oxygen. A reaction mechanism for the oxidation of arsenopyrite has been proposed, which involves an anodic oxidation of the mineral involving hydroxyl ions coupled to a cathodic process for oxygen reduction which is partially controlled by mass transfer of dissolved oxygen to the mineral surface. Detailed studies of the dissolution behaviour of gold in aerated alkaline solutions in the presence of thiosulfate or monothioarsenate by electrochemical and leaching methods have demonstrated that the dissolution rate is very low as compared to that of gold in alkaline cyanide or ammoniacal thiosulfate solutions. It has been found that copper ions catalyze the dissolution of gold in the thiosulfate solutions in the absence of ammonia. The leaching experiments also have shown that gold may dissolve in alkaline thioarsenite solutions, which provides a possible new process option for the leaching of gold. The oxidation of refractory arsenical gold concentrates in aerated alkaline solutions results in the formation of thiosulfate, arsenate and sulfate as well as the dissolution of gold, copper and iron. It appears that the dissolution of gold is due to the complex reactions of gold with thiosulfate ions promoted by the catalytic effect of copper ions. Up to 80% of the gold may be extracted during the oxidation of selected refractory arsenical
APA, Harvard, Vancouver, ISO, and other styles
25

Chieng, Pau. "Recovery of silver from lead/zinc flotation tailings by thiosulfate leaching /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19152.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wei, Wei. "Application of ammonium-citrate-thiosulfate leaching on awaruite-bearing serpentinite ores." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58184.

Full text
Abstract:
Nickel is an important alloying element of stainless steel and non-ferrous alloys. Awaruite as an alternative nickel source is gaining attention at the depletion of sulfide nickel and the high cost of laterite nickel, which are traditional nickel resources. In view of the absence of a nickel recovery method from awaruite resources, UBC hydrometallurgy laboratory developed an in-house hydrometallurgical technology of atmospheric leaching in ammonium-citrate-thiosulfate solution. Ammonium selectively dissolves nickel in the presence of oxygen while citrate acts as a ferric chelator and thiosulfate a depassivation agent of nickel-iron alloy. In order to prepare the technology for pilot testing, in-depth batch leaching tests as well as preliminary solvent extraction tests were conducted and reported in this study. The leaching tests on an alternative source had an optimized result of ~85% nickel extraction. The nickel leaching reactions were believed under surface reaction control as indicated by the estimated activation energy of 54.4kJ/mol through kinetic model fitting of leaching test data. However, the leaching tests with high pulp density (>10%) and recycled liquor simulating industrial settings demonstrated hindered nickel extraction due to iron accumulation. Specifically, a targeted comparison test showed that in order to retain 80% nickel extraction at 30% pulp density, simultaneous increases to four times the original ammonia concentration and six times the original citrate concentration are required in comparison with the 10% pulp density baseline test. Therefore, this technology needs to be improved on iron removal and economical leach reagents recycle for commercialization. In the solvent extraction study, ACORGA K2000 as an ideal reagent candidate based on hydroxyoxime was tested on synthetic PLS containing 1 g/L Nickel (II), 0 – 0.8 g/L Fe (III), 0.1 – 0.5 M citrate and 1.5 – 6 M total ammonia. Hydroxyoxime has been proven effective in separating base metals from ammoniacal media. Results revealed that complete separation of nickel from iron was achieved at 5 v/o reagent solution concentration. Nickel can also be readily eluted with diluted sulfuric acid at pH = 1. The extraction kinetics was found to be relatively slow with 30 min of mixing/settling time required to reach equilibrium.
Applied Science, Faculty of
Materials Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
27

Daenzer, Renaud. "The modes of gold loss in the calcium thiosulfate leaching system." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/64237.

Full text
Abstract:
The processing of gold is becoming more complicated due to the increasingly complex nature of the remaining gold-bearing ore bodies. This worldwide phenomenon is the driving force for the development of alternative technologies for the leaching and recovery of gold from so-called double refractory ores. Barrick Gold recently commercialized a unique calcium thiosulfate leaching plant to treat these problematic ores after an autoclave pre-treatment with simultaneous recovery of the dissolved gold-thiosulfate complex onto anion exchange resins. Nonetheless, this new process can experience unexpected losses in gold from solution. It is hypothesized that the reagent’s degradation products known as polythionates and various mineral additions could adversely affect soluble gold stability along with their known detrimental effect on gold recovery. This dissertation aims to understand the possible causes of gold losses by means of a thorough investigation of the effects of polythionate and mineral additions into synthetic calcium thiosulfate leaching solutions. A series of batch leaching experiments were subsequently conducted on actual preg-robbing ores to further elucidate the effects of polythionates on the stability soluble gold complexes in the calcium thiosulfate system. A subsequent study on the rates of polythionate species loading on the resin and their competitive loading behaviour was made and extended to include their effects on the displacement of gold from the resin. This was demonstrated in the form of gold loading isotherms tailored to the calcium thiosulfate leaching system. Ultimately, the processes of gold leaching from refractory ores and gold recovery by resin loading in the presence of polythionates were tied together in a last study to quantify their harmful outcomes on overall gold extraction.
Applied Science, Faculty of
Materials Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
28

Benyahya, Matlub Mohammed. "Corrosion behaviour of austenitic steels in basic thiosulfate gold leaching environments." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44373.

Full text
Abstract:
Thiosulfate leaching of gold is being proposed as an environmentally friendly alternative to the dominant cyanide-leaching technology. Thiosulfate leaching is, to a large extent, dependent on the availability of materials of construction. There are indications that materials of construction could be a major issue if not addressed; particularly their corrosion resistance. Therefore, understanding the corrosion behaviour of materials of construction, such as stainless steels, in this medium is critical to the future development and acceleration of industrial implementation of this new technology. The debate surrounding the use of cyanide in the mining industry has fuelled considerable investigation into the development of some more environmentally benign alternatives. The thiosulfate process has been widely accepted by researchers around the world as a potential alternative lixiviant for the leaching and recovery of gold. Moreover, sodium thiosulfate is relatively nontoxic and, consequently, from an environmental standpoint, has a definite advantage over cyanide. Comparing reagent unit costs, sodium thiosulfate is far cheaper than sodium cyanide. Thus, with similar or even slightly higher lixiviant consumption, the application of thiosulfate for gold recovery can be economical and compete directly with cyanidation. ‘Rust never sleeps!’, so says a popular song. In a broad sense, corrosion appears to be the reverse process of extraction. In this process, most metals tend to presume a chemicallycombined state rather than a pure metallic form achieving, in the process, the most energy stable iii form possible. Thus, freshly-extracted metals, as well as finished metallic products, tend to deteriorate when exposed to certain environments. Thiosulfate has been identified as such an environment in mining and other industries, where thiosulfate-dominated processes, such as thiosulfate gold leaching, are strongly believed to highly promote localized corrosion. In this work, the pitting corrosion behaviour of 304- and 316-type stainless steels were studied using cyclic polarization techniques and electrochemical impedance spectroscopy (EIS) run on a thiosulfate system at several pH and temperature levels in the presence and absence of chloride ions. The stainless steels studied were found to show similar general corrosion behaviour with varying degrees of corrosion resistance to pitting as control variables were regularly perturbed. The results indicate that SS316 has a relatively lower corrosion rate and is more resistant to localized corrosion than SS304 under the conditions considered. The presence of thiosulfate seems to activate both anodic and cathodic current densities of steel in chloride solutions. The higher the thiosulfate concentration is, the greater the current densities. In addition, for both alloys, the corrosion rate generally increases as the magnitude of the variables is increased; except when the content of chloride ions is altered. Thiosulfate seems to promote passivation in the presence of chloride ions and deter interaction of those ions with the surface of the metal alloys by the formation of an adsorption layer of sulfur that seems to protect the metal surface.
APA, Harvard, Vancouver, ISO, and other styles
29

Lai, Yueh (Yves). "Thiosulfate leaching of natural Acanthite ore in copper-ammonia-ammonium sulfate medium." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/61358.

Full text
Abstract:
Silver is commonly present in acanthite in nature. Reagents like cyanide are used to extract silver from acanthite ores. However, cyanide can potentially damage human health and environment. The use of cyanide is tightly regulated, thus forcing the industry to seek for alternatives. Thiosulfate is currently the most promising alternative. The leaching chemistry of silver with thiosulfate is complex and maybe supplemented with additives such as ammonia, copper and even ethylenediaminetetraacetic acid. The efficiency of silver leaching is improved with the use of these additives. The use of cyanide for silver leaching in Navidad project in Argentina is not permitted, so the use of thiosulfate leaching as an alternative was investigated. The application of thiosulfate leaching to Navidad ores containing acanthite was the focus of this thesis. This thesis provides experimental evidence that supports the use of thiosulfate with additives as a promising alternative to conventional cyanidation method for the Navidad deposits and for similar deposits, wherever found. Thiosulfate leaching of silver is known for two pathways: silver in acanthite is substituted by cupric or by cuprous ion. The cupric pathway is thermodynamically more favourable, but various factors may affect extraction. Batch leaching tests showed that Navidad ore samples may be leached using thiosulfate, with silver extraction affected by variables including thiosulfate concentration, ammonia concentration, initial copper addition, pH, temperature, EDTA addition and the presence or absence of air sparging. The most significant variables were thiosulfate concentration, ammonia concentration, copper addition and pH. Cyanidation yielded 91.2% extraction of silver from a sample of Loma de la Plata, and thiosulfate leaching with 0.2 M of thiosulfate and 1.0 M of ammonia yielded comparable extractions: 92.1% and 87.0%, respectively. Initial copper addition increases extraction rate from 66.2% to 72.3% after 72 hours, and air sparging increases extraction rate to 84.8% after 72 hours. Other samples from the Navidad Project were also tested and found to be amenable to thiosulfate leaching. LDLPMC and Connector Zone (CZMC) sample were found to have potential for thiosulfate leaching to achieve a high silver extraction.
Applied Science, Faculty of
Materials Engineering, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
30

Lee, Jaeheon. "Gold cementation on copper in thiosulfate solution: Kinetic, electrochemical, and morphological studies." Diss., The University of Arizona, 2003. http://hdl.handle.net/10150/280482.

Full text
Abstract:
Cyanidation has been used for more than a century for precious metal recovery and it is still in use today. Cyanide is a very toxic chemical and if not used appropriately will cause environmental problems. There is considerable attention devoted to the development of non-cyanide lixiviants for the process of gold and silver ores. Thiosulfate solution is one of the proposed alternatives to cyanide and gold cementation by copper has been suggested as a promising method for gold recovery from leaching solution. Copper powder and rotating disc electrode were used for the kinetic study. The rate of gold cementation on copper disc is proportional to the initial gold concentration and disc rotating speed. The cementation reaction exhibited two distinct kinetic regions, an initial slow rate followed by an enhanced rate. The activation energy of the reaction was 5.9 kJ/mol at low copper concentration and the reaction is mass transport controlled. With 30 ppm initial copper concentration, there was noticeable decrease in the reaction rate in high temperature range. EDS, XRD, and XPS analysis revealed that the deposits are a Au-Cu alloy instead of pure gold. The alloy composition ranged from Au₃Cu to AuCu₃ depending on the initial Cu/Au mole ratio in solution and applied potential. Electrochemical studies were performed using rotating disc electrode and electrochemical quartz crystal nanobalance. Evans' diagrams were constructed under various experimental conditions. Corrosion current increased with increasing gold concentration, disc rotating speed, as well as thiosulfate concentration. These results confirmed those obtained in the kinetic study. Corrosion potential measurements indicated that passivation onset time was changed by gold concentration, copper concentration and disc rotating speed. Gold(I)-thiosulfate reduction was found to occur at approximately -250 mV vs. SHE using EQCN. Copper adions on the gold surface contributed to the underpotential deposition of copper and the underpotential deposition is the mechanism of alloy formation in cementation system. (Abstract shortened by UMI.)
APA, Harvard, Vancouver, ISO, and other styles
31

McFadden, Clare Elizabeth. "Investigating the role of thiosulfate sulfurtransferase in adipose tissue dysfunction in obesity." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31183.

Full text
Abstract:
Obesity is associated with dysfunction of adipose tissue due to oxidative stress and inflammation, leading to insulin resistance. Thiosulfate sulfurtransferase (Tst) was previously identified as an adipose-expressed anti-diabetic gene that protects against diet-induced metabolic impairment when upregulated in adipose tissue of mice. TST is a mitochondrial enzyme involved in the metabolism of cyanide, reactive oxygen species (ROS) and endogenous hydrogen sulfide (H2S). This thesis tested the hypothesis that TST maintains metabolic health in the face of dietary obesity. To do this, I investigated the adipose-tissue phenotypes and metabolic consequences of Tst gene deletion (Tst–/– mice) and of adipose tissue-specific overexpression of human TST (Ad-hTST mice) after exposure to high fat diet (HFD). After 20 weeks of HFD, Tst–/– mice exhibited impaired glucose tolerance despite unchanged adipose tissue inflammatory cell infiltration, protein carbonylation and unfolded protein response activation. However, levels of mRNA encoding mitochondrial antioxidant enzymes including superoxide dismutase 2 and peroxiredoxin 3 were lower in Tst–/– mice on HFD. Unexpectedly, chow-fed Tst-/- mice had lower body weight and fat mass than wild-type controls highlighting a potential effect of Tst on fat accumulation with age. A new mouse model with high expression of human TST genetically targeted to adipose tissue (Ad-hTST) was developed using the LoxP / Cre recombinase expression system, with a parent line expressing Cre under the control of the adiponectin promoter to confer adipose specificity. The Ad-hTST mice were found to gain a similar amount of weight and fat mass to control mice when exposed to 6 weeks of HFD. However, Ad-hTST mice had impaired glucose tolerance with no change in inflammatory cell infiltration, mRNA levels of antioxidant enzymes or unfolded protein response genes. Thus, unexpectedly, overexpression of human TST in adipose tissue of mice results in a detrimental metabolic phenotype. In vivo and in vitro experiments were conducted to test the hypothesis that TST protects against ROS accumulation. Paraquat was tested as an inducer of oxidative stress in vivo in wild-type, Tst-/- and Tst+/- mice. At the doses used (25mg/kg and under), mice became unwell and lost weight, with no increase in markers of oxidative stress in adipose or lung. The production of mitochondrial ROS in response to exogenous hydrogen peroxide (H2O2) exposure was increased in primary adipocytes from Tst-/- mice in vitro. However, primary hepatocytes showed reduced mitochondrial ROS production in response to H2O2 exposure. ROS production in hepatocytes was unaffected by pre-incubation with a H2S donor, an inhibitor of H2S-producing enzyme CSE or N-acetyl-cysteine, an antioxidant. TST may therefore influence mitochondrial ROS production differently in cell types such as adipocytes and hepatocytes. Disposal of exogenous H2O2 was unchanged in primary adipocytes from Tst-/- and Ad-hTST mice, and this was not affected by pre-incubation with sodium thiosulfate, a TST substrate. Metabolic changes in response to HFD may be influenced by alteration in TST expression, however the current data suggest it is unlikely to occur through the prevention of excessive local ROS accumulation in adipose tissue. Mice lacking the Tst gene globally and mice with adipose-specific overexpression of the human TST gene have a similarly impaired metabolic response to HFD. The phenotype of adipose-specific human TST-overexpressing mice does not recapitulate the protective metabolic phenotype produced by overexpression of the endogenous mouse Tst gene. In conclusion, TST may influence adipose tissue due to its role in the oxidation of H2S, however, by the current means, it does not appear to substantially impact the response of this tissue to oxidative stress.
APA, Harvard, Vancouver, ISO, and other styles
32

Oraby, Elsayed A. "Gold leaching in thiosulfate solutions and its environmental effects compared with cyanide." Thesis, Curtin University, 2009. http://hdl.handle.net/20.500.11937/148.

Full text
Abstract:
Nowadays, keeping mining and the environment sustainable is a major concern all over the world. Using toxic chemicals such as cyanide and mercury in the gold leaching process is one of the main factors that need to be considered in terms of the environment. Finding alternative lixiviants is one solution that would decrease the uses of these toxic chemicals. Thiosulfate is one of the most promising alternative substitutes to cyanide kinetically and environmentally.Gold leaching in thiosulfate solutions was evaluated environmentally and kinetically in different ways: (1) applying a closed system to leach gold (2) evaluating the environmental and metallurgical optimum thiosulfate leaching characteristics for pure gold and pure silver and gold silver alloys (4, 8, 20 and 50 wt % silver), (3) studying the electrochemical behavior of gold, silver, and gold/silver alloys (4) optimizing the leaching conditions of gold ore samples supplied from Centamin Egypt Limited Company, (5) finally, studying the ability of thiosulfate solutions to dissolve mercury and evaluating gold, copper, and mercury recovery from ion-exchange resins.The study showed that the leaching rate of gold and silver in the closed vessel was greater than that obtained in the open vessel by 30% and 45% respectively. To avoid the losses of ammonia a closed leaching system is recommended. Gold and silver leaching in thiosulfate solution is preferable kinetically and environmentally if conducted in a closed vessel system.The effect silver alloyed with gold was evaluated and the result showed that the dissolution rate of pure gold is higher than that form 4 and 8 wt% Ag alloys. And the dissolution rate of gold from 20 and 50% silver alloys is more than that obtained for pure gold. The silver dissolution rate is sensitive to copper(II) concentration being 1.67 x 10-5 mol.m-2.s-1 at an initial copper(II) concentration of 1.25 mM and 6.6x10-5 mol.m-2.s-1 at an initial copper(II) concentration of 10 mM. Silver dissolution is more sensitive to ammonia than gold.From the electrochemical study on gold/silver alloys, it was found that an increase in silver in the alloy results in an increase of the current density from both gold and silver oxidation in thiosulfate solutions in the range of potentials 0.242- 0.542 V. Also, it was found that in thiosulfate solutions containing thiourea, the oxidation current of gold/silver alloys decreased and the oxidation current from pure gold after the standard potential for gold oxidation (150 mV) is higher than the total oxidation current from gold-silver alloys.Leaching of a selected gold ore using thiosulfate solutions for 24 hours suggested the optimum conditions to leach the ore to be 0.2 – 0.4 M thiosulfate, 400 mM NH3, 10 -20 mM Cu(II), 30 ºC, 300 rpm, no air supplied, solid/liquid ratio 20%, and mean particle size of < -106 μm.Finally, the study showed that mercury dissolves in thiosulfate solutions as it dissolves in cyanide. Mercury dissolves in thiosulfate solutions in the order: HgS2
APA, Harvard, Vancouver, ISO, and other styles
33

Ilankoon, Nirmala Damayanthi. "Adsorption of Gold from Thiosulfate Leaching Solutions using Polyethylenimine Functionalised Magnetic Nanoparticles." Thesis, Curtin University, 2020. http://hdl.handle.net/20.500.11937/80605.

Full text
Abstract:
In this research polyethylenimine coated iron oxide magnetic nanoparticles (PEI-MNPs), as a novel adsorbent, was evaluated for the adsorption of gold from thiosulfate leaching solutions that contain gold, copper and calcium thiosulfate. This novel adsorbent can simply be separated from the solution using an external magnetic field, followed by gold adsorption. Gold elution from the adsorbent was simple and rapid.
APA, Harvard, Vancouver, ISO, and other styles
34

O'Malley, Glen Peter. "Recovery of gold from thiosulfate solutions and pulps with anion-exchange resins." Thesis, O'Malley, Glen Peter (2002) Recovery of gold from thiosulfate solutions and pulps with anion-exchange resins. PhD thesis, Murdoch University, 2002. https://researchrepository.murdoch.edu.au/id/eprint/3355/.

Full text
Abstract:
With growing environmental and occupational safety concerns over the use of cyanide in gold processing, more acceptable alternatives are receiving increased interest. The most promising of the possible alternatives is thiosulfate. However, as activated carbon is not an effective substrate for the adsorption of the gold thiosulfate complex, the thiosulfate process lacks a proven in-pulp method for recovering dissolved gold. Anion exchange resins offer a possible route for in-pulp recovery. This thesis describes work aimed at evaluating the effectiveness of commercially available anion exchange resins for the recovery of gold from thiosulfate leach liquors and pulps. It was found that Strong-base resins are superior at accommodating the gold thiosulfate complex compared to Weak-base resins, which means Strong-base resins have a greater capacity to compete with other anions in leach solutions. Strong-base resins were therefore the preferred choice of resin for recovery of gold from thiosulfate leach solutions and pulps. Work with a selected commercial Strong-base resin showed that competing polythionates (particularly tri- and tetrathionate) lower the maximum possible loading of gold but that gold is selectively recovered over other base-metal anions in typical leach solutions. From kinetic experiments, it was found that competing polythionates did not affect the initial rate of loading of gold but displaced the loaded gold at long times. Thus it would be important to minimise the contact time of the resin with the pulp. Equilibrium loading isotherms of gold in the presence of competing anions could be analysed by treating the ion exchange reaction as a simple chemical reaction. However, a stoichiometry and equilibrium quotient which does not follow that normally used for anion exchange, was required to describe the experimental data. A single value for the equilibrium constant also cannot be used to describe the data over the range of concentrations for a given competing anion. The order of selectivity of the anions for the anion exchange resin could be explained by the difference in structure and the charge of each anion. The rate of loading of gold is controlled by mass transport in the aqueous phase in the presence of weakly competing anions such as sulfate and thiosulfate. An attempt was made to describe the more complex loading curves obtained in the presence of stronger competing anions such as sulfite, trithionate and tetrathionate in which it was found that the loading of gold increased to a maximum before declining to a lower equilibrium value. The difference in the rate of loading between the macroporous and gel anion exchange resins was explained by the difference in the location of their functional groups. Operation of a small-scale resin-in-pulp plant showed that gold could be recovered from a leach pulp to yield loadings of gold of up to 6000 mg L-1 and loadings of copper below 100 mg L-1. Under ideal conditions, the gold concentration in the barren pulp could contain less than 0.01 mg L-1. Throughout the trial it was shown that loaded copper would be displaced by gold which would result in the loading of copper falling from 2000 mg L-1 in the last stage to lower than 100 mg L-1 on the resin in the first stage. It was observed that some of the dissolved gold precipitated or adsorbed on the solids during leaching. Some of this adsorbed gold was found to be recovered by the anion exchange resins that would have reported to the tails if a solid/liquid separation method was employed. Gold was efficiently eluted with a nitrate solution and the two-step elution process using aerated ammonia followed by nitrate effectively stripped all the copper and gold from the resin. This process was found not to materially affect the equilibrium gold concentration on the resin after eight cycles, thus allowing the resin to be recycled without the need for regeneration. Electrochemical studies showed that the gold thiosulfate complex was reduced on stainless steel from a nitrate solution. Conventional electrowinning could therefore be used to recover the gold from the eluant.
APA, Harvard, Vancouver, ISO, and other styles
35

Deutsch, Jared Luke. "Fundamental aspects of thiosulfate leaching of silver sulfide in the presence of additives." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/40336.

Full text
Abstract:
Thiosulfate is a promising alternative for leaching silver sulfide ores such as those at the epithermal Yanacocha deposit. These ores suffer from low silver recovery, high mercury extraction and environmental challenges when treated with conventional cyanide. In this study, cupric-ammonia, ferric-ethylenediaminetetraacetic acid (EDTA), ferric-oxalate and ferric-citrate are tested with thiosulfate in a series of rotating disk experiments with silver sulfide and with ore from Yanacocha. This thesis publishes experimental evidence that supports the use of thiosulfate with different additives as a potential alternative to conventional cyanidation for silver sulfide leaching. The leaching of silver sulfide by cupric-ammonia thiosulfate can occur either by the substitution of cupric or cuprous for silver. The cupric catalyzed reaction is favored due to a thermodynamic barrier to the cuprous reaction. Rotating disk experiments demonstrate that cupric-ammonia leaching is under mixed chemical/diffusion control. The leaching rate is maximized by stabilizing cupric in solution with ammonia and increasing the availability of thiosulfate for silver dissolution. The addition of EDTA to this system decreased the leaching rate of the silver sulfide disk by lowering the cupric reactivity, but accelerated silver leaching of the ore, likely due to the prevention of passive oxide film formation on sulfides. Ferric complexes used were found to be very unreactive towards thiosulfate, but are reduced by sulfides present in the ore. Ferric-EDTA was the most effective oxidant of the three for leaching silver sulfide with thiosulfate. Silver recovery of the ground ore in batch leaching tests is low due to quartz locking of silver, with cupric-ammonia and ferric-EDTA leaches exposed to air recovering 31% and 26% after 24 hours, respectively. Cyanidation recovered 34% silver with a 95% confidence interval of 28-37%. The slightly lower recovery by thiosulfate may be due to silver minerals which are not amenable to thiosulfate leaching.
APA, Harvard, Vancouver, ISO, and other styles
36

Scott, Leonard Lindsay. "Electrolytic manufacture of thiosulfate-free solutions of sodium hydrosulfite from aqueous sodium bisulfite." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/10241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Birich, Alexander [Verfasser]. "Early Stage Gold Recovery from Printed Circuit Boards via Thiosulfate Leaching / Alexander Birich." Düren : Shaker, 2020. http://d-nb.info/1224168054/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mason, Michael R., and William B. Miller. "Ethylene-Induced Flower Bud Abortion in Easter Lily is Inhibited by Silver Thiosulfate." College of Agriculture, University of Arizona (Tucson, AZ), 1989. http://hdl.handle.net/10150/216059.

Full text
Abstract:
Flower bud abortion, or "blasting" was shown to be at least partially caused by treating plants with ethephon, a chemical that releases ethylene. In floricultural greenhouses, ethylene could accumulate to levels that could induce commercially significant levels of flower bud injury. Silver thiosulfate (STS) was shown to be a potent inhibitor of ethephon injury. STS at (1 to 2 mM) could be applied as early as the visible bud stage (approximately 5 to 6 weeks before flowering) without phytotoxic effects. Using current silver prices, the material cost for our treatment is less than 0.4 cents per plant. Based on these results, a preventative STS application could potentially reduce much of the flower bud abortion seen in commercial greenhouses.
APA, Harvard, Vancouver, ISO, and other styles
39

Kappes, Mariano Alberto. "Evaluation of thiosulfate as a substitute for hydrogen sulfide in sour corrosion fatigue studies." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1322090561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

San, Khin Aye. "Synthesis of Alkanethiolate-Capped Metal Nanoparticles Using Alkyl Thiosulfate Ligand Precursors for Selective Catalytic Reactions." Thesis, California State University, Long Beach, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10286714.

Full text
Abstract:

Stable and isolable alkanethiolate-stabilized Pt nanoparticles (PtNP) were synthesized using the two-phase thiosulfate method with sodium S-alkylthiosulfate as ligand precursor. The mechanistic formation of octanethiolate-capped PtNP (Pt-SC8) from both sodium S-octylthiosulfate and 1-octanethiol ligands was investigated by using 1H NMR and UV-vis spectroscopy, which revealed the formation of different Pt complexes as the reaction intermediates. The partially poisoned PtNP with thiolate monolayer ligands was further investigated for the hydrogenation of various alkynes to understand the organic ligands-induced geometric and electronic surface properties of colloidal Pt nanoparticle catalysts. In addition, alkanethiolate-capped Pd nanoparticles (PdNP) were prepared using reversed thiosulfate addition method with S-octylthiosulfate as ligand precursor. Various synthetic conditions were applied to the modified two-phase method in order to control the average core size and surface ligand density. The obtained nanoparticles were characterized by 1H NMR, UV-vis spectroscopy, infrared spectroscopy (IR), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM).

APA, Harvard, Vancouver, ISO, and other styles
41

Husman, Stephen H., and Thomas Doerge. "The Effects of Foliar Applies Potassium Thiosulfate on Upland Cotton Lint Yield and Fibert Quality." College of Agriculture, University of Arizona (Tucson, AZ), 1993. http://hdl.handle.net/10150/209582.

Full text
Abstract:
A replicated field study was conducted at the Maricopa Agricultural Center in 1992 investigating Upland cotton lint yield and fiber quality response to foliar applied potassium thiosulfate. Applications were applied at early, peak, and late bloom. There were no significant yield or lint quality response by treatment.
APA, Harvard, Vancouver, ISO, and other styles
42

Atluri, Vasudeva Prasad 1959. "Recovery of gold and silver from ammoniacal thiosulfate solutions containing copper by resin ion exchange method." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276566.

Full text
Abstract:
This research was undertaken to study the suitable physico-chemical conditions for the selective recovery of gold and silver from simulated thiosulfate leach liquors containing copper, gold or silver, ammonia and thiosulfate using three anion exchange resins. In particular, the effect of chemical variables such as thiosulfate, cupric ion and ammonia concentrations and the solution potential of the system on the batch loading of silver and gold onto the resins have been investigated in detail. Pourbaix diagrams have been constructed to understand the stability of this complex system under various Eh and pH conditions. The experimental results indicate that IRA-400 resin has the highest capacity for both silver and gold compared to IRA-68 and IRA-94. All the three resins investigated are not selective to silver and gold over copper. The elution studies using ammonium thiosulfate solutions have revealed that selective elution of silver from copper is not possible, while some selectivity can be achieved between gold and copper. (Abstract shortened with permission of author.)
APA, Harvard, Vancouver, ISO, and other styles
43

Emerson, Barry Sean. "Targeting hydrogen sulfide breakdown for regulation of myocardial injury and repair." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/17947.

Full text
Abstract:
Hydrogen sulfide (H2S) is an endogenous gasotransmitter that regulates vascular function and blood pressure, and also protects the heart from injury associated with myocardial infarction (MI). The mitochondrial enzyme thiosulfate sulfurtransferase (TST) has a putative role in the breakdown of H2S but its role in the cardiovascular system is unknown. I hypothesised that TST reduces cardiovascular H2S availability and that inhibiting TST activity may therefore ameliorate cardiovascular pathology. In the heart, TST was expressed by cardiomyocytes and vascular smooth muscle cells. Tst-/- mice all survived to adulthood and had normal cardiac structure and function. Cardiac and hepatic H2S breakdown rates were reduced and H2S levels were higher in the blood of Tst-/- mice. However, in heart tissue, protein levels for the H2S-activated Nrf2 downstream targets, thioredoxin (Trx1) and heme oxygenase-1 (HO-1) were comparable. In contrast, protein levels for the cardiac specific H2S-synthetic enzyme, cystathionine gamma lyase (CSE) was reduced, suggesting a homeostatic negative feedback mechanism to maintain H2S at non-toxic levels. Respiration, measured using an oxygen-sensing electrode was normal in isolated mitochondria from whole Tst-/- compared to control C57BL6 hearts. Endothelial nitric oxide synthase (eNOS) protein expression was lower in Tst-/- hearts, highlighting potential cross talk between H2S and nitric oxide (NO) signalling. TST was expressed in whole aorta homogenates and in isolated endothelial cells from aorta and small intramuscular vessels of the hindlimb from C57BL/6N control mice. Myography and western blotting revealed a greater influence of NO in aorta from Tst-/- mice that was associated with increased phosphorylation of the activating serine1177 residue of eNOS (PeNOSSer1177). NO plays a lesser role in resistance arteries, but in comparison to control vessels, small mesenteric vessels from Tst-/- mice was more reliant on small and intermediate calcium activated potassium channels for relaxation. Tst-/- mice were normotensive, despite this alteration in the regulation of vascular tone. However, metabolic cage experiments identified that Tst-/- mice presented with diuresis, polydipsia, and increased urinary electrolyte excretion of sodium, potassium and chloride, possibly to compensate for increased vascular tone in order to maintain stable blood pressure. To investigate the role of TST in regulating the response to pathological challenge, MI was induced by coronary artery ligation (CAL). In control mice, gene expression of CSE was downregulated by 2 days after CAL, but TST expression was 12-fold increased, suggesting regulation of H2S bioavailability during the acute MI-healing phase. Tst-/- male mice had a 40% greater incidence of cardiac rupture during infarct healing and surviving Tst-/- mice had greater left ventricular dilatation and impaired function compared to controls. Ex vivo, isolated perfused hearts from Tst-/- mice were more susceptible to ischaemia/ reperfusion injury, suggesting an additional role of TST in determining cardiomyocyte susceptibility to injury. In conclusion, these data indicate that cardiovascular H2S bioavailability is regulated through degradation by TST. The data presented here provide evidence for significant tissue specific crosstalk between H2S synthetic and degradative mechanisms and between H2S and other local regulatory mechanisms, including ion channels and NOS. We infer TST has a physiological role in the kidney where its loss leads to changes in renal electrolyte and water handling, although other compensatory mechanisms prevent a change in blood pressure. Under conditions of pathological challenge following MI, loss of TST is detrimental, illustrating its key role in removal of H2S. The data refute the original hypothesis that TST inhibition would be protective against cardiovascular pathology. Further studies in mice with tissue specific deletion of TST are now required to more fully reveal the cardiovascular role of TST.
APA, Harvard, Vancouver, ISO, and other styles
44

Hutt, Lee Philip. "Taxonomy, physiology and biochemistry of the sulfur bacteria." Thesis, University of Plymouth, 2017. http://hdl.handle.net/10026.1/8612.

Full text
Abstract:
Inorganic sulfur-oxidising Bacteria are present throughout the Proteobacteria and inhabit all environments of Earth. Despite these facts they are still poorly understood in terms of taxonomy, physiology, biochemistry and genetics. Using phylogenetic and chemotaxonomic analysis two species that were erroneously classified as Thiobacillus trautweinii spp. in 1921 and 1934 are in fact novel chemolithoheterotrophic species for which the names Pseudomonas trautweiniana sp. nov. and Achromobacter starkeyanus sp. nov. are proposed, respectively. These species were found to oxidise thiosulfate in a “fortuitous” manor when grown in continuous culture and increases in maximum theoretical growth yield (YMAX) and maximum specific growth rate (μMAX) were observed. Cytochrome c linked thiosulfate-dependent ATP production was confirmed in both species, confirming “true” chemolithoheterotrophy. Evidence is presented that the ATP concentration governs the benefits of chemolithoheterotrophy. There were significant changes in enzyme activities, including enzymes of the TCA cycle that might be affecting amino acid synthesis. This is strong evidence that chemolithoheterotrophy gives a strong physiological boost and evolutionary advantage over strictly heterotrophic species. An autotrophic species that was historically placed in Thiobacillus was also shown to be a novel species for which the name Thermithiobacillus parkerianus sp. nov. is proposed. The enzyme profiles of Thermithiobacillus parkerianus differed significantly between different inorganic sulfur growth substrates and was the first time all TCA cycle enzymes were assayed in a member of the Acidithiobacillia. The properties of thiosulfate dehydrogenase varied significantly between Pseudomonas sp. Strain T, Achromobacter sp. Strain B and Thermithiobacillus sp. ParkerM both in terms of optimal parameters and the effect of inhibitors. This evidence adds to the increasing body of work indicating there to be at least two thiosulfate dehydrogenases present in the Bacteria.
APA, Harvard, Vancouver, ISO, and other styles
45

d'Aloya, de Pinilla Anna. "Heterogeneous electrochemical reactions taking place on metallic iron in ammoniacal-carbonate solutions containing dissolved nickel, cobalt, copper and thiosulfate ions." Thesis, d'Aloya de Pinilla, Anna (2015) Heterogeneous electrochemical reactions taking place on metallic iron in ammoniacal-carbonate solutions containing dissolved nickel, cobalt, copper and thiosulfate ions. PhD thesis, Murdoch University, 2015. https://researchrepository.murdoch.edu.au/id/eprint/29416/.

Full text
Abstract:
In the Caron process, nickeliferous laterite ores undergo a pyrometallurgical pre-treatment step, in which their nickel and cobalt content is reduced to the metallic state. This is followed by leaching in ammoniacal-carbonate solutions, where metallic nickel and cobalt dissolve by forming complexes with ammonia. Since the reductive pre-treatment step also results in some metallic iron being formed, nickel and cobalt are present in the pre-reduced ore mainly as ferro-alloys. As a result, the dissolution behaviour of metallic nickel and cobalt is strongly influenced by the behaviour of metallic iron. In particular, the passivation of iron has been identified as a potential factor contributing to the relatively low metal value recoveries suffered by the process (80-82% nickel and 50-60% cobalt). The present study consists of an investigation into various heterogeneous reactions involving metallic iron and ions commonly found in Caron leach liquors, namely nickel(II), cobalt(II), copper(II) and thiosulfate, in order to identify interactions which may adversely affect the extraction efficiency. The study was carried out using a combination of electrochemical and surface characterisation techniques, as well as thermodynamic calculations. Metallic iron was found to generally dissolve in ammoniacal-carbonate solutions by forming ferrous ammine complexes, but a few specific conditions were found to promote its spontaneous passivation: the presence of copper(II) ions and the presence of both cobalt(II) and thiosulfate ions. In the presence of copper(II) ions, the passivation process was promoted by the cementation and subsequent redissolution of metallic copper, as confirmed by surface characterisation studies. However, when thiosulfate ions were also present, passivation was not observed and the formation of a partially adherent layer containing metallic copper dendrites and cuprous sulfide took place on the iron surface. In the presence of both cobalt(II) and thiosulfate ions, the passivation process, which was not observed when either species was present on its own, was promoted by the formation of an amorphous cobalt sulfide or polysulfide species. The loss of cobalt from the leach solution into this layer was identified as another potential factor contributing to the poor cobalt extractions suffered by the process.
APA, Harvard, Vancouver, ISO, and other styles
46

Billaut-Laden, Ingrid. "Etude du polymorphisme génétique de la mercaptopyruvate sulfurtransférase (MPST) et de la thiosulfate sulfurtransférase (TST ou rhodanèse), enzymes impliquées dans la détoxication des cyanures chez l'homme." Lille 2, 2006. http://www.theses.fr/2006LIL2S014.

Full text
Abstract:
La Mercaptopyruvate Sulfurtransférase (MPST) et la Thiosulfate Sulfurtransférase (TST) sont deux enzymes jouant un rôle central dans la détoxification des cyanures. Un défaut d'activité, d'origine génétique, de ces enzymes pourrait être à l'origine de variations interindividuelles de susceptibilité à la toxicité des cyanures et être impliqué dans la genèse et/ou l'évolution de maladies héréditaires. Notre travail a consisté à évaluer la nature et l'étendue de la variabilité de la séquence nucléotidique des gènes de ces deux enzymes dans une population d'individus sains et de patients atteints de deux pathologies intestinales à composante environnementale et génétique, à l'aide d'une stratégie basée sur le couplage de l'analyse du polymorphisme de conformation de fragments d'ADN simple brin générés par réaction de polymérisation en chaîne (PCR-SSCP) et du séquençage. Ce travail nous a permis d'identifier de nombreux variants de ces gènes. L'étude in vitro et in vivo des conséquences fonctionnelles de ces variants sur l'expression des gènes et l'activité des enzymes codées a ensuite été effectuée. Les résultats de ce travail démontrent pour la première fois l'existence d'un polymorphisme génétique fonctionnel de la MPST et de la TST. Les conséquences cliniques de ces polymorphismes restent à démonter
The Mercaptopyruvate Sulfurtransférase (MPST) and the Thiosulfate Sulfurtransférase (TST) are both key enzymes in cyanide detoxification. A deficiency of genetic origin in MPST or TST activity would lead to interindividual variability in susceptibility to cyanide and, consequently, could be involved in the pathogenesis of environmental diseases (ulcerative colitis and Crohn disease). The present work consisted first in the mutational screening of the MPST and TST genes in DNA samples from large groups of healthy individuals and patients, using a PCR-SSCP strategy and sequencing. This strategy allowed us to identify numerous polymorphisms in both genes. The functional consequences of some of the identified polymorphisms were then assessed by in vitro and in vivo assays. Our findings revealed for the first time the existence of a functional genetic polymorphism of MPST and TST. The clinical relevance of these genetic polymorphisms remains to be analysed
APA, Harvard, Vancouver, ISO, and other styles
47

Booker, Anne Elizabeth. "Halanaerobium congolense: A Transplanted Microbe that Dominates HydraulicallyFractured Well Microbial Communities." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543356084632083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ragupathy, Roobinidevi. "Characterisation of the roles of SstR and SstA in Salmonella enterica serovar Typhimurium." Thesis, University of Manchester, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.719313.

Full text
Abstract:
Salmonella enterica is an important cause of food poisoning and is responsible for approximately a billion human infections each year. Disease manifestation in humans varies from severe systemic enteric (typhoid) fever to self-limiting gastroenteritis depending upon the infecting S. enterica serovar. S. Typhimurium is responsible for acute gastroenteritis in humans but causes a typhoid-like disease in mice and thus serves as an important model for studying the pathogenesis of systemic salmonellosis. Following ingestion, S. Typhimurium employs a variety of virulence mechanisms to survive within its host and establishes infection in the intestinal tract by invading the epithelial cells. Recent studies have revealed the importance of sulfur compounds in the intestine, such as tetrathionate and thiosulfate for the disease progression. S. Typhimurium is capable of utilising these sulfur compounds as terminal electron acceptors for its anaerobic respiration and thus gains a growth advantage over host microbiota during infection. However, the regulation of sulfur availability within S. Typhimurium and the mechanisms involved in mitigating cellular sulfide toxicity are not well-defined. During this study, we have identified the sstRA operon in S. Typhimurium encoding a deduced SmtB/ArsR family of transcriptional regulatory protein (SstR) and a deduced rhodanese-family sulfurtransferase (SstA) and demonstrated a role in mitigating the effects of cellular sulfide toxicity. SstR has been confirmed to act as a transcriptional repressor from the sstRA operator-promoter and the SstR-dependent repression is alleviated by low pH and sulfide stress (sodium thiosulfate), consistent with a role for SstR in sensing sulfide stress to trigger gene expression. Electrophoretic mobility shift assays confirm binding of purified SstR to the sstRA operator-promoter region. Furthermore, a conserved pair of cysteine residues within SstR was identified to be crucial for alleviating SstR-mediated repression, with the substitution of either cysteine causing constitutive repression. This is consistent with SstR inducer-responsiveness involving a thiol-based redox switch. Importantly, S. Typhimurium mutants lacking the sstRA operon have reduced tolerance to sulfide stress, consistent with the sstRA operon having a role in cellular sulfide detoxification. Work is continuing to further characterise the roles of sstR and sstA in S. Typhimurium on their contributions to infections.
APA, Harvard, Vancouver, ISO, and other styles
49

Amaral, Fábio Augusto Dornelles do. "Extração de metais de lodos galvânicos através do processo de sulfatação e lixiviação com tiossulfato." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/127696.

Full text
Abstract:
O objetivo deste trabalho é a extração de Au, Ag, Cu e Zn a partir de dois tipos de lodos galvânicos utilizando um processo híbrido de sulfatação seletiva e lixiviação com tiossulfato de sódio e amônio. Nos experimentos realizados, o lodo galvânico foi misturado com um agente promotor de sulfato (enxofre, sulfato de ferro ou pirita) e foi tratado por processos pirometalúrgicos a temperaturas até 750◦C. Nesta fase, este agente sulfatante é oxidado térmicamente, transformando a atmosfera do forno e os óxidos metálicos em sulfatos solúveis em água. Depois disso, os sulfatos foram tratados por lixiviação com água para a recuperação de Ag, Cu, Ni e Zn. Como o ouro não forma sulfatos nesta reação, foi realizada uma segunda fase de lixiviação utilizando tiossulfato de sódio e de amônio, reagentes eficazes e menos prejudiciais ao ambiente do que o cianeto. Diferentes parâmetros foram analisados como qual agente promotor de sulfatação apresentou a maior recuperação de metais em solução, a proporção ótima lodo galvânico/ agente sulfatação, a temperatura de forno, o tempo de aquecimento no forno e o tempo de lixiviação. Além disso, uma comparação da recuperação de ouro com cianeto e tiossulfato de sódio e de amônio foi realizada. A configuração que demonstrou a melhor recuperação de metal em solução tinha uma proporção de 1: 0,4 de lodo galvânico/enxofre, uma temperatura de forno de 550◦C, um tempo de aquecimento de 90 minutos e um tempo de lixiviação em água de 15 minutos. Usando estes parâmetros, as taxas de recuperação de 75% de prata, 68% de cobre, 52% de Ni e 67% de Zn foram obtidas. A lixiviação de tiossulfato de sódio resultou em uma recuperação de 78% do Au, próximos aos valores obtidos utilizando cianeto.
The purpose of this work is the selective extraction of Au, Ag, Cu and Zn from two types of galvanic sludge using a mixed process of sulfate roasting and sodium thiosulfate and ammonium thiosulfate leaching. In the experiments, the sludge was mixed with a sulfate promoter (sulfur, iron sulfate or pyrite) and treated by pyrometallurgical processes at temperatures up to 750◦C. At this stage, this agent is thermally oxidized, turning the furnace atmosphere and the metallic oxides into water-soluble sulfates. Afterward, the sulfates can be treated by leaching with water for recovery of Ag, Cu, Ni and Zn. The gold does not form sulfates in this reaction and was recovered through a second leaching stage using sodium and ammonium thiosulfate, an effective reagent and less harmful to the environment than cyanide. Different parameters as the sulfate promoter that achieves the highest recovery of metals, the proportion of galvanic sludge to sulfating agent, the temperature, the heating time in the oven and the leaching time were evaluated. Additionally, a comparison of gold recovery using cyanide versus sodium and ammonium thiosulfate was performed. The configuration that showed the best metal recovery included a 1:0.4 ratio of sludge to sulfur, an oven temperature of 550◦C, a roasting time of 90 minutes and a water leaching time of 15 minutes. Using these parameters, recovery rates of 75 % of the silver, 68% of the copper, 52% of Ni and 67% of the Zn were obtained. The sodium thiosulfate leaching resulted in a recovery of 78% of the Au, close to the values obtained using cyanide.
APA, Harvard, Vancouver, ISO, and other styles
50

Omarjee, Loukman. "Atteintes Cardiovasculaires du Pseudoxanthome Élastique : Aspects Physiopathologiques et Stratégies Thérapeutiques." Thesis, Angers, 2019. https://dune.univ-angers.fr/documents/dune15886.

Full text
Abstract:
L’objectif global de cette thèse était d’étudier, à partir de la cohorte des patients du centre de référence PXE du CHU d’Angers, différente aspects du phénotype cardiovasculaire (CV) du PXE. Ainsi, dans un premier travail, nous avons pu montrer dans l’étude GOCAPXE, que les calcifications ectopiques seraient un processus actif pouvant être détecté par une imagerie moléculaire utilisant un traceur spécifique de l’activité ostéoblastique, le 18-Fluorure de Sodium (18F-NaF); que ce processus était détectable avant même que ces calcifications ne soient visibles par les techniques d’imageries classiques; que ce processus était localisé aux zones habituellement lésées dans le PXE : les plis de flexion et le cou pour la peau et l’artère fémorale superficielle pour le vaisseau. Cette technique mériterait d’être validée dans une étude longitudinale et son rôle en tant biomarqueur diagnostique et de suivi serait ainsi envisageable. Le deuxième travail de cette thèse a été d’étudier les conséquences morphologiques et fonctionnelles d’une augmentation chronique de la pression artérielle chez les patients PXE. Cette question était pertinente car dans la littérature, la question d’une hypertension artérielle (HTA) chez les PXE reste controversée. Nous avons ainsi montré pour la première fois que dans un modèle d’HTA induite par le Deoxycorticostérone (DOCA)-Salt chez la souris Abcc6-/- cette augmentation de la pression artérielle induisait un remodelage CV avec à la fois de la fibrose et des calcifications dystrophiques. Les résultats de cette étude suggèrent la nécessité d’un contrôle optimal de la pression artérielle chez les patients PXE. Le troisième travail de cette thèse a été de caractériser une lésion de la carotide interne détectée avec une fréquence élevée dans la cohorte angevine. Nous avons pu montrer que cette anomalie était une hypoplasie de la carotide interne d’origine probablement congénitale. Chez les patients de la cohorte angevine, cette lésion était associée à des anévrismes intracrâniens mais nous n’avons pas retrouvé d’association avec la survenue d’accident vasculaire cérébral. Ainsi, les résultats de cette étude invitent les praticiens prenant en charge des patients PXE à la rechercher systématiquement dans le bilan vasculaire d’un patient PXE. Si une telle lésion est retrouvée, une imagerie vasculaire intracrânienne devrait être proposée à la recherche d’anévrismes et leur prise en charge discuté en concertation multidisciplinaire. Enfin, le dernier travail a permis de montrer qu’un traitement systémique par le Thiosulfate de Sodium (STS), utilisé dans la calciphylaxie rénale, était efficace sur la régression des calcifications artérielles et cutanées chez une jeune garçon ayant un phénotype CV gravissime résultant de la combinaison délétères de plusieurs gènes pathogènes du spectre PXE Ce traitement mériterait d’être validé dans un essai thérapeutique chez l’humain mais aussi la démonstration de ses mécanismes d’action dans le modèle murin Abcc6-/-. Nous suggérons d’utiliser ce traitement en cas de PXE sévère et rapidement progressif notamment sur le plan vasculaire. Au terme de ce travail de thèse, nous avons montré que le gène ABCC6 était impliqué dans le remodelage vasculaire à la fois au niveau développemental (Hypoplasie Carotidienne) mais aussi acquis (Fibrose, Calcification Cardiaque Dystrophique). Nous avons montré aussi que les calcifications dans le PXE étaient tissus et localisations spécifiques, que ces calcifications étaient actives. Enfin nous avons ouvert la porte à un traitement des formes graves du PXE avec le Thiosulfate de Sodium. Une approche thérapeutique multimodale ciblant plusieurs mécanismes concourant aux calcifications seraient judicieux à évaluer dans les futurs essais cliniques
Since the discovery of the ABCC6 gene in 2000, mutations are at the origin of PseudoxanthomeElastic (PXE), knowledge of genetics, pathophysiology, phenotypic characterizations have has mademajor advances, notably with the Discovery in 2013 of the fundamental role of Pyrophosphateinorganic (PPi) as a deficient anti‐calcifying factor in patients. The overall goal of this thesis was tostudy, from the cohort of patients at the center of PXE reference of the CHU d'Angers, differentaspects of cardiovascular phenotype (CV) of PXE. Thus, in a first work, we were able to show in thestudy GOCAPXE, that ectopic calcifications would be a active process that can be detected by imagingUsing a specific activity tracer Osteoblastic, 18‐sodium fluoride (18F‐NaF); that this process wasdetectable even before these calcifications are not visible by conventional imaging techniques; thatthis process was localized to areas usually injured in the PXE: flexion folds and neck for skin and thesuperficial femoral artery for the vessel. This technique should be validated in a study longitudinaland its role as a diagnostic biomarker In this way, monitoring and monitoring could be considered.The second work of this thesis was to study the morphological consequences and functional of achronic increase in blood pressure in PXE patients. This question was relevant because in theliterature, the question of a high blood pressure (hypertension) in PXE remains controversial. Wehave thus shown for the first time that in a model of HTA induced by the Deoxycorticosterone(DOCA)‐Salt in Abcc6‐/‐ this increase in blood pressure led to a CV remodeling with both fibrosis andcalcifications dystrophic. The results of this study suggest need for optimal control of blood pressurein patients. The third work of this thesis was to characterize a lesion of the internal carotid detectedwith high frequency in the Angevine cohort. We have could show that this abnormality washypoplasia of the Probably congenital internal carotid. In the patients of the angevine cohort, thislesion was associated with intracranial aneurysms but we have not found in association with theoccurrence of vascular accident brain. Thus, the results of this study invite practitioners supportingPXE patients to search for it systematically in the vascular balance of a PXE patient. If such a lesion isfound, vascular imaging Intracranial should be proposed to research Aneurysms and theirmanagement discussed in consultation multidisciplinary. Finally, the latest work has made it possibleto show that systemic treatment with Thiosulphate Sodium (STS), used in renal calciphylaxia, waseffective on the regression of arterial calcifications and skin in a young boy with a phenotype CVGravel resulting from the deleterious combination of several pathogenic genes of the PXE spectrumThis treatment would deserve be validated in a human therapeutic trial but also the demonstrationof its mechanisms of action in the Abcc6‐/‐murin model. We suggest using this treatment for severeand rapidly progressive PXE especially on the vascular plane.At the end of this thesis work, we showed that the ABCC6 gene was involved in vascular remodelingat both at the developmental level (Carotid Hypoplasia) but also acquired (Fibrosis, CardiacCalcification Dystrophic). We also showed that calcifications in PXE were tissues and locationsspecific, that these calcifications were active. Finally we have opened the door to a treatment ofsevere forms of PXE with Sodium Thiosulphate. An approach multimodal therapy targeting multiplemechanisms this would be useful to evaluate in future clinical trials
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!