Academic literature on the topic 'Thioredoxin; oxidative stress'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thioredoxin; oxidative stress.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thioredoxin; oxidative stress"

1

Berndt, Carsten, Christopher Horst Lillig, and Arne Holmgren. "Thiol-based mechanisms of the thioredoxin and glutaredoxin systems: implications for diseases in the cardiovascular system." American Journal of Physiology-Heart and Circulatory Physiology 292, no. 3 (March 2007): H1227—H1236. http://dx.doi.org/10.1152/ajpheart.01162.2006.

Full text
Abstract:
Reactive oxygen species (ROS) and the cellular thiol redox state are crucial mediators of multiple cell processes like growth, differentiation, and apoptosis. Excessive ROS production or oxidative stress is associated with several diseases, including cardiovascular disorders like ischemia-reperfusion. To prevent ROS-induced disorders, the heart is equipped with effective antioxidant systems. Key players in defense against oxidative stress are members of the thioredoxin-fold family of proteins. Of these, thioredoxins and glutaredoxins maintain a reduced intracellular redox state in mammalian cells by the reduction of protein thiols. The reversible oxidation of Cys-Gly-Pro-Cys or Cys-Pro(Ser)-Tyr-Cys active site cysteine residues is used in reversible electron transport. Thioredoxins and glutaredoxins belong to corresponding systems consisting of NADPH, thioredoxin reductase, and thioredoxin or NADPH, glutathione reductase, glutathione, and glutaredoxin, respectively. Thioredoxin as well as glutaredoxin activities appear to be very important for the progression and severity of several cardiovascular disorders. These proteins function not only as antioxidants, they inhibit or activate apoptotic signaling molecules like apoptosis signal-regulating kinase 1 and Ras or transcription factors like NF-κB. Thioredoxin activity is regulated by the endogenous inhibitor thioredoxin-binding protein 2 (TBP-2), indicating an important role of the balance between thioredoxin and TBP-2 levels in cardiovascular diseases. In this review, we will summarize cardioprotective effects of endogenous thioredoxin and glutaredoxin systems as well as the high potential in clinical applications of exogenously applied thioredoxin or glutaredoxin or the induction of endogenous thioredoxin and glutaredoxin systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Trotter, Eleanor W., and Chris M. Grant. "Overlapping Roles of the Cytoplasmic and Mitochondrial Redox Regulatory Systems in the Yeast Saccharomyces cerevisiae." Eukaryotic Cell 4, no. 2 (February 2005): 392–400. http://dx.doi.org/10.1128/ec.4.2.392-400.2005.

Full text
Abstract:
ABSTRACT Thioredoxins are small, highly conserved oxidoreductases which are required to maintain the redox homeostasis of the cell. Saccharomyces cerevisiae contains a cytoplasmic thioredoxin system (TRX1, TRX2, and TRR1) as well as a complete mitochondrial thioredoxin system, comprising a thioredoxin (TRX3) and a thioredoxin reductase (TRR2). In the present study we have analyzed the functional overlap between the two systems. By constructing mutant strains with deletions of both the mitochondrial and cytoplasmic systems (trr1 trr2 and trx1 trx2 trx3), we show that cells can survive in the absence of both systems. Analysis of the redox state of the cytoplasmic thioredoxins reveals that they are maintained independently of the mitochondrial system. Similarly, analysis of the redox state of Trx3 reveals that it is maintained in the reduced form in wild-type cells and in mutants lacking components of the cytoplasmic thioredoxin system (trx1 trx2 or trr1). Surprisingly, the redox state of Trx3 is also unaffected by the loss of the mitochondrial thioredoxin reductase (trr2) and is largely maintained in the reduced form unless cells are exposed to an oxidative stress. Since glutathione reductase (Glr1) has been shown to colocalize to the cytoplasm and mitochondria, we examined whether loss of GLR1 influences the redox state of Trx3. During normal growth conditions, deletion of TRR2 and GLR1 was found to result in partial oxidation of Trx3, indicating that both Trr2 and Glr1 are required to maintain the redox state of Trx3. The oxidation of Trx3 in this double mutant is even more pronounced during oxidative stress or respiratory growth conditions. Taken together, these data indicate that Glr1 and Trr2 have an overlapping function in the mitochondria.
APA, Harvard, Vancouver, ISO, and other styles
3

Smits, Wiep Klaas, Jean-Yves F. Dubois, Sierd Bron, Jan Maarten van Dijl, and Oscar P. Kuipers. "Tricksy Business: Transcriptome Analysis Reveals the Involvement of Thioredoxin A in Redox Homeostasis, Oxidative Stress, Sulfur Metabolism, and Cellular Differentiation in Bacillus subtilis." Journal of Bacteriology 187, no. 12 (June 15, 2005): 3921–30. http://dx.doi.org/10.1128/jb.187.12.3921-3930.2005.

Full text
Abstract:
ABSTRACT Thioredoxins are important thiol-reactive proteins. Most knowledge about this class of proteins is derived from proteome studies, and little is known about the global transcriptional response of cells to various thioredoxin levels. In Bacillus subtilis, thioredoxin A is encoded by trxA and is essential for viability. In this study, we report the effects of minimal induction of a strain carrying an IPTG (isopropyl-β-d-thiogalactopyranoside)-inducible trxA gene (ItrxA) on transcription levels, as determined by DNA macroarrays. The effective depletion of thioredoxin A leads to the induction of genes involved in the oxidative stress response (but not those dependent on PerR), phage-related functions, and sulfur utilization. Also, several stationary-phase processes, such as sporulation and competence, are affected. The majority of these phenotypes are rescued by a higher induction level of ItrxA, leading to an approximately wild-type level of thioredoxin A protein. A comparison with other studies shows that the effects of thioredoxin depletion are distinct from, but show some similarity to, oxidative stress and disulfide stress. Some of the transcriptional effects may be linked to thioredoxin-interacting proteins. Finally, thioredoxin-linked processes appear to be conserved between prokaryotes and eukaryotes.
APA, Harvard, Vancouver, ISO, and other styles
4

Rohrbach, Susanne, Stefanie Gruenler, Mirja Teschner, and Juergen Holtz. "The thioredoxin system in aging muscle: key role of mitochondrial thioredoxin reductase in the protective effects of caloric restriction?" American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 291, no. 4 (October 2006): R927—R935. http://dx.doi.org/10.1152/ajpregu.00890.2005.

Full text
Abstract:
Cellular redox balance is maintained by various antioxidative systems. Among those is the thioredoxin system, consisting of thioredoxin, thioredoxin reductase, and NADPH. In the present study, we examined the effects of caloric restriction (2 mo) on the expression of the cytosolic and mitochondrial thioredoxin system in skeletal muscle and heart of senescent and young rats. Mitochondrial thioredoxin reductase (TrxR2) is significantly reduced in aging skeletal and cardiac muscle and renormalized after caloric restriction, while the cytosolic isoform remains unchanged. Thioredoxins (mitochondrial Trx2, cytosolic Trx1) are not influenced by caloric restriction. In skeletal and cardiac muscle of young rats, caloric restriction has no effect on the expression of thioredoxins or thioredoxin reductases. Enforced reduction of TrxR2 (small interfering RNA) in myoblasts under exposure to ceramide or TNF-α causes a dramatic enhancement of nucleosomal DNA cleavage, caspase 9 activation, and mitochondrial reactive oxygen species release, together with reduced cell viability, while this TrxR2 reduction is without effect in unstimulated myoblasts under basal conditions. Oxidative stress in vitro (H2O2in C2C12myoblasts and myotubes) results in different changes: TrxR2, Trx2, and Trx1 are induced without alterations in the cytosolic thioredoxin reductase isoforms. Thus aging is associated with a TrxR2 reduction in skeletal muscle and heart, which enhances susceptibility to apoptotic stimuli but is renormalized after short-term caloric restriction. Exogenous oxidative stress does not result in these age-related changes of TrxR2.
APA, Harvard, Vancouver, ISO, and other styles
5

Watson, Walter H., and Dean P. Jones. "Oxidation of nuclear thioredoxin during oxidative stress." FEBS Letters 543, no. 1-3 (April 29, 2003): 144–47. http://dx.doi.org/10.1016/s0014-5793(03)00430-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Masutani, Hiroshi, Yoshimi Yamaguchi, Ryoko Otsuki, Nobue Kanoh, Yuji Kunimoto, Kazuo Murata, and Junji Yodoi. "Important Role of Antioxidants in Oxidative Stress Thioredoxin and Thioredoxin Inducers against Oxidative Stress." Journal of Clinical Biochemistry and Nutrition 37, no. 2 (2005): 45–53. http://dx.doi.org/10.3164/jcbn.37.45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Achard, Maud E. S., Amanda J. Hamilton, Tarek Dankowski, Begoña Heras, Mark S. Schembri, Jennifer L. Edwards, Michael P. Jennings, and Alastair G. McEwan. "A Periplasmic Thioredoxin-Like Protein Plays a Role in Defense against Oxidative Stress in Neisseria gonorrhoeae." Infection and Immunity 77, no. 11 (August 17, 2009): 4934–39. http://dx.doi.org/10.1128/iai.00714-09.

Full text
Abstract:
ABSTRACT Thioredoxin-like proteins of the TlpA/ResE/CcmG subfamily are known to face the periplasm in gram-negative bacteria. Using the tlpA gene of Bradyrhizobium japonicum as a query, we identified a locus (NGO1923) in Neisseria gonorrhoeae that encodes a thioredoxin-like protein (NG_TlpA). Bioinformatics analysis indicated that the predicted NG_TlpA protein contained a cleavable signal peptide at the N terminus, and secondary structure analysis identified a thioredoxin fold with a helical insertion (∼25 residues), similar to that found in B. japonicum TlpA but absent in cytoplasmic thioredoxins. Biochemical characterization of a recombinant form of NG_TlpA revealed a standard redox potential (E0′) of −206 mV. This property and the observation that the oxidized form of the protein exhibited greater thermal stability than the reduced species indicated that NG_TlpA is a reducing thioredoxin and not an oxidizing thiol-disulfide oxidoreductase like DsbA. The thioredoxin activity of NG_TlpA was confirmed in an insulin disulfide reduction assay. A tlpA mutant of N. gonorrhoeae strain 1291 was found to be highly sensitive to oxidative killing by paraquat and hydrogen peroxide, indicating an antioxidant role for the NG_TlpA in this bacterium. The tlpA mutant also exhibited reduced intracellular survival in human primary cervical epithelial cells.
APA, Harvard, Vancouver, ISO, and other styles
8

Flores, Lisa C., Melanie Ortiz, Sara Dube, Gene B. Hubbard, Shuko Lee, Adam Salmon, Yiqiang Zhang, and Yuji Ikeno. "Thioredoxin, oxidative stress, cancer and aging." Longevity & Healthspan 1, no. 1 (2012): 4. http://dx.doi.org/10.1186/2046-2395-1-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Silva-Adaya, Daniela, María E. Gonsebatt, and Jorge Guevara. "Thioredoxin System Regulation in the Central Nervous System: Experimental Models and Clinical Evidence." Oxidative Medicine and Cellular Longevity 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/590808.

Full text
Abstract:
The reactive oxygen species produced continuously during oxidative metabolism are generated at very high rates in the brain. Therefore, defending against oxidative stress is an essential task within the brain. An important cellular system against oxidative stress is the thioredoxin system (TS). TS is composed of thioredoxin, thioredoxin reductase, and NADPH. This review focuses on the evidence gathered in recent investigations into the central nervous system, specifically the different brain regions in which the TS is expressed. Furthermore, we address the conditions that modulate the thioredoxin system in both, animal models and the postmortem brains of human patients associated with the most common neurodegenerative disorders, in which the thioredoxin system could play an important part.
APA, Harvard, Vancouver, ISO, and other styles
10

Bjur, Eva, Sofia Eriksson-Ygberg, Fredrik Åslund, and Mikael Rhen. "Thioredoxin 1 Promotes Intracellular Replication and Virulence of Salmonella enterica Serovar Typhimurium." Infection and Immunity 74, no. 9 (September 2006): 5140–51. http://dx.doi.org/10.1128/iai.00449-06.

Full text
Abstract:
ABSTRACT The effect of the cytoplasmic reductase and protein chaperone thioredoxin 1 on the virulence of Salmonella enterica serovar Typhimurium was evaluated by deleting the trxA, trxB, or trxC gene of the cellular thioredoxin system, the grxA or gshA gene of the glutathione/glutaredoxin system, or the dsbC gene coding for a thioredoxin-dependent periplasmic disulfide bond isomerase. Mutants were tested for tolerance to oxidative and nitric oxide donor substances in vitro, for invasion and intracellular replication in cultured epithelial and macrophage-like cells, and for virulence in BALB/c mice. In these experiments only the gshA mutant, which was defective in glutathione synthesis, exhibited sensitization to oxidative stress in vitro and a small decrease in virulence. In contrast, the trxA mutant did not exhibit any growth defects or decreased tolerance to oxidative or nitric oxide stress in vitro, yet there were pronounced decreases in intracellular replication and mouse virulence. Complementation analyses using defined catalytic variants of thioredoxin 1 showed that there is a direct correlation between the redox potential of thioredoxin 1 and restoration of intracellular replication of the trxA mutant. Attenuation of mouse virulence that was caused by a deficiency in thioredoxin 1 was restored by expression of wild-type thioredoxin 1 in trans but not by expression of a catalytically inactive variant. These results clearly imply that in S. enterica serovar Typhimurium, the redox-active protein thioredoxin 1 promotes virulence, whereas in vitro tolerance to oxidative stress depends on production of glutathione.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thioredoxin; oxidative stress"

1

Gregory, Mary Sarah-Jane, and n/a. "Thioredoxin and Oxidative Stress." Griffith University. School of Health Science, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20040301.082639.

Full text
Abstract:
The experiments described in this thesis involve the expression and characterisation of recombinant truncated thioredoxin (tTrx) and the potential involvement that thioredoxin (Trx) has in the cellular responses to oxidative stress. Truncated Trx (80 amino acids) was expressed from a plasmid containing the ORF for tTrx that had been introduced into E.coli BL-21(DE3) cells. The protein was initially extracted using a combination of high concentrations of urea, high pH levels, and multiple sonification steps to remove the tTrx from inclusion bodies formed during expression. This procedure produced a stable solution of tTrx. Purification of tTrx from this protein solution required anion exchange chromatography followed by gel permeation in a HPLC system to obtain fully purified, recombinant tTrx which allowed further characterisation studies to be undertaken. An initial investigation into tTrx was performed to determine some basic physical, biochemical and functional aspects of this hitherto relatively undefined protein. Analysis by sedimentation equilibrium indicated that freshly prepared tTrx forms a single species with a molecular weight of 18.8kDa. This value indicates that recombinant tTrx naturally forms a dimer in solution that was shown to be non-covalent in nature and stable in solution. The capacity of tTrx to reduce protein disulphide bonds was determined using the insulin reduction assay. Results show that tTrx lacks this particular redox ability. The rate of oxidisation at 4 degrees C was analysed using free thiol determination, sedimentation equilibrium and SDS-PAGE patterning. Results indicated a steady rise in the degree of oxidation of tTrx over an eight day period. After six days the oxidated protein consistently displayed the presence of intramolecular disulphide bonds. Covalently-linked disulphide dimers and higher molecular weight oligomers were detectable after eight days oxidation. An investigation of the reducing capacity of the basic Trx system determined that fully oxidised tTrx was unable to act alone as a substrate for thioredoxin reductase (TR). However, when reduced Trx was added to the system, it appeared capable of acting as an electron donor to the oxidised tTrx in order to reduce disulphide groups. Recombinant tTrx was successfully radiolabelled with Trans 35S-methionine/cysteine for use in cell association studies. No evidence was found to indicate the presence of a receptor for tTrx on either MCF-7 or U-937 cells. Findings suggest that a low level of non-specific binding of tTrx to these cell lines rather than a classical ligand-binding mechanism occurs thus suggesting the absence of a cell surface receptor for tTrx. The role that Trx may play in the cellular responses to oxidative stress was also investigated. The chemical oxidants hydrogen peroxide (H2O2) and diamide were used to establish an in vitro model of oxidative stress for the choriocarcinoma cytotrophoblast cell line JEG-3. Cellular function was assessed in terms of membrane integrity, metabolic activity and the ability to synthesis new DNA following exposure to these oxidants. Results indicated that both agents were capable of causing cells to undergo oxidative stress without inducing immediate apoptosis or necrosis. Initially, JEG-3 cells exposed to 38μM or 75μM H2O2 or 100μM diamide were shown to display altered cell metabolism and DNA synthesis without loss to cell viability or membrane integrity. Cells were also shown to be capable of some short-term recovery but later lapsed into a more stressed state. Expression levels of Trx were studied to determine whether this type of chemical stress caused a change in intercellular protein levels. Both cELISA and western blotting results indicated that only cells exposed to 100μM diamide displayed any significant increase in Trx protein levels after 6 or 8hrs exposure to the oxidant. Further studies over a longer time-frame were also performed. These found that when JEG-3 cells were exposed to 18μM H2O2 or 200μM diamide over 12-48hrs, a positive correlation between increasing endogenous Trx protein levels and a decline in cell proliferation was observed. Cytotrophoblast cells, which are responsible for implantation and placentation, are susceptible to oxidative stress in vivo and their anti-oxidant capacity is fundamental to the establishment of pregnancy. The findings obtained during these studies suggest that Trx plays a role in this process.
APA, Harvard, Vancouver, ISO, and other styles
2

Findlay, Victoria Jane. "The role of thioredoxin peroxidases in the yeast oxidative stress response." Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Susanti, Dwi. "Sulfite reductase and thioredoxin in oxidative stress responses of methanogenic archaea." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/51423.

Full text
Abstract:
Methanogens are a group of microorganisms that utilize simple compounds such as H2 + CO2, acetate and methanol for the production of methane, an end-product of their metabolism.  These obligate anaerobes belonging to the archaeal domain inhabit diverse anoxic environments such as rice paddy fields, human guts, rumen of ruminants, and hydrothermal vents.  In these habitats, methanogens are often exposed to O2 and previous studies have shown that many methanogens are able to tolerate O2 exposure.  Hence, methanogens must have developed survival strategies to be able to live under oxidative stress conditions.  The anaerobic species that lived on Earth during the early oxygenation event were first to face oxidative stress.  Presumably some of the strategies employed by extant methanogens for combating oxidative stress were developed on early Earth.  
Our laboratory is interested in studying the mechanism underlying the oxygen tolerance and oxidative stress responses in methanogenic archaea, which are obligate anaerobe.  Our research concerns two aspects of oxidative stress.  (i) Responses toward extracellular toxic species such as SO32-, that forms as a result of reactions of O2 with reduced compounds in the environment.  These species are mostly seen in anaerobic environments upon O2 exposure due to the abundance of reduced components therein.  (ii) Responses toward intracellular toxic species such as superoxide and hydrogen peroxide that are generated upon entry of O2 and subsequent reaction of O2 with reduced component inside the cell.  Aerobic microorganisms experience the second problem.  Since a large number of microorganisms of Earth are anaerobes and the oxidative defense mechanisms of anaerobes are relatively less studied, the research in our laboratory has focused on this area.  My thesis research covers two studies that fall in the above-mentioned two focus areas.
In 2005-2007 our laboratory discovered that certain methanogens use an unusual sulfite reductase, named F420-dependent sulfite reductase (Fsr), for the detoxification of SO32- that is produced outside the cell from a reaction between oxygen and sulfide.  This reaction occurred during early oxygenation of Earth and continues to occur in deep-sea hydrothermal vents.  Fsr, a flavoprotein, carries out a 6-electron reduction of SO32- to S2-.  It is a chimeric protein where N- and C-terminal halves (Fsr-N and Fsr-C) are homologs of F420H2 dehydrogenase and dissimilatory sulfite reductase (Dsr), respectively.  We hypothesized that Fsr was developed in a methanogen from pre-existing parts.  To begin testing this hypothesis we have carried out bioinformatics analyses of methanogen genomes and found that both Fsr-N homologs and Fsr-C homologs are abundant in methanogens.  We called the Fsr-C homolog dissimilatory sulfite reductase-like protein (Dsr-LP).  Thus, Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP) in methanogens.  During the course of this study, we also identified two new putative F420H2-dependent enzymes, namely F420H2-dependent glutamate synthase and assimilatory sulfite reductase.
Another aspect of my research concerns the reactivation of proteins that are deactivated by the entry of oxygen inside the cell.  Here I focused specifically on the role of thioredoxin (Trx) in methanogens.  Trx, a small redox regulatory protein, is ubiquitous in all living cells.  In bacteria and eukarya, Trx regulates a wide variety of cellular processes including cell divison, biosynthesis and oxidative stress response.  Though some Trxs of methanogens have been structurally and biochemically characterized, their physiological roles in these organisms are unknown.  Our bioinformatics analysis suggested that Trx is ubiquitous in methanogens and the pattern of its distribution in various phylogenetic classes paralleled the respective evolutionary histories and metabolic versatilities.  Using a proteomics approach, we have identified 155 Trx targets in a hyperthermophilic phylogenetically deeply-rooted methanogen, Methanocaldococcus jannaschii.  Our analysis of two of these targets employing biochemical assays suggested that Trx is needed for reactivation of oxidatively deactivated enzymes in M. jannaschii.  To our knowledge, this is the first report on the role of Trx in an organism from the archaeal domain.
During the course of our work on methanogen Trxs, we investigated the evolutionary histories of different Trx systems that are composed of Trxs and cognate Trx reductases.  In collaboration with other laboratories, we conducted bioinformatics analysis for the distribution of one of such systems, ferredoxin-dependent thioredoxin reductase (FTR), in all organisms.  We found that FTR was most likely originated in the phylogenetically deeply-rooted microaerophilic bacteria where it regulates CO2 fixation via the reverse citric acid cycle.

Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
4

Walther, Ashley Elizabeth. "Role of the Schizosaccharomyces pombe Enzyme Thioredoxin Peroxidase in Oxidative Stress Resistance." Thesis, Boston College, 2006. http://hdl.handle.net/2345/420.

Full text
Abstract:
Thesis advisor: Clare O'Connor
Within cells, reactive oxygen species (ROS) are synthesized naturally and in response to environmental stimuli. However, ROS have deleterious effects on a wide range of cellular molecules. Oxidative stress, caused by the ROS generated by the partial reduction of oxygen, is a major cause of cell damage linked to the initiation and progression of numerous diseases. Thioredoxin peroxidase (Tpx1) plays important roles in cellular defense against ROS. Although homologous genes and their functions have been identified in other eukaryotes, the level of activity as well as the necessity of this protective enzyme in S. pombe exposed to oxidative stress has yet to be fully elucidated. To explore the role of the Tpx1 protein in oxidative stress resistance, novel strains were constructed in which the tpx1 gene was overexpressed. The polymerase chain reaction was used to amplify txp1, and the amplified sequence was cloned into the yeast overexpression plasmid, pNMT41, which allows overexpression under the control of the powerful promoter. DNA sequencing was used to determine that the sequences had been properly inserted into the vector. The plasmids were transformed into two leu- yeast strains: FWP6 and TP108-3C. Production of the Tpx1 protein was ensured using Western Blot techniques. Experimentation to test the responses of the tpx1 strain to oxidative stress will employ a variety of reactive oxygen generators, including hydrogen n peroxide, menadione, tert-butyl hydroperoxide, and paraquat. The results generally supported the proposed role of Tpx1 to confer additional resistance against the oxidative stress. In a complementary line of investigation, knockout strains are being constructed to reduce the levels of the Tpx1 in S. pombe. Gene deletion cassettes were constructed for tpx1. Currently, the strains are being analyzed for the successful replacement of the endogenous tpx1 gene by homologous recombination. If the absence of the protein results in decreased cell viability, the role of Tpx1 indicated by the overexpression experiments could be supported
Thesis (BS) — Boston College, 2006
Submitted to: Boston College. College of Arts and Sciences
Discipline: Biology
Discipline: College Honors Program
APA, Harvard, Vancouver, ISO, and other styles
5

Kobayashi(Miura), Mikiko. "Thioredoxin,an anti-oxidant protein,protects mouse embryos from oxidative stress-induced developmental anomalies." Kyoto University, 2002. http://hdl.handle.net/2433/149333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dutta, Khokon Kumar. "Two distinct mechanisms for loss of thioredoxin-binding protein-2 in oxidative stress-induced renal carcinogenesis." Kyoto University, 2007. http://hdl.handle.net/2433/135665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Domènech, Guil Alba 1985. "Oxidative stress in toxicity and signaling : Control of cysteine oxidation and reduction by the redoxin systems of fission yeast." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/664636.

Full text
Abstract:
Schizosaccharomyces pombe, com tots els organismes aeròbics, requereix l’oxigen per viure i té que lidiar amb la conseqüent toxicitat associada dels productes derivats de l’oxigen. Per mantenir l’ambient intracel·lular, S. pombe té sistemes antioxidants que són activats de manera ràpida i reversible. Segons la severtitat de l’estrès sofert, S. pombe té dos importants rutes antioxidants, les vies Pap1 i Sty1, per nivells de peròxid d’hidrogen (H2O2) sub-tòxiques i tòxiques, respectivament. Aquestes cascades inclouen proteïnes sensores que contenen cisteïnes anomenades “thiol switches”, les qual poden “encendre i apagar” les seves activitats. Per aquest motiu, tots els components involucrats en les cascades de senyalització antioxidant han de ser reciclades per poder estar disponibles de nou. Amb aquesta finalitat, els sistemes de reducció, els sistemes tioredoxina i glutatió/glutaredoxina, tenen com a rol principal ser el sistema de “backup” de tots els components de la cascada redox de senyalització en resposta a l’H2O2 en llevats de fissió. Al llarg de la tesis he estudiat la importància d’una correcta activitat dels dos sistemes de reducció en el reciclatge de proteïnes “redox” per evitar toxicitat cel·lular i per assegurar una progressió normal del cicle cel·lular. D’altra banda, he caracteritzat com els llindars de tolerància a l’estrès oxidatiu són important per desencadenar una resposta de senyalització o de toxicitat en S. pombe.
Schizosaccharomyces pombe, as all aerobic organisms, needs oxygen to live and have to deal with the side effects of the toxicity associated to oxygen by-products. To maintain intracellular environment, S. pombe has antioxidant systems that are activated fast and in a reversible manner. Depending on the severity of the oxidative stress suffered, S. pombe has two main antioxidant response pathways, Pap1 and Sty1 pathways, for sub-toxic and toxic hydrogen peroxide (H2O2) levels, respectively. These cascades involve sensor proteins that contain cysteine residues called thiol switches, which can switch on and off their activities. Therefore, all the components involved in the antioxidant signaling cascades have to be recycled in order to be ready to act again. For these reason, the reduction systems, thioredoxin and glutathione/glutaredoxin systems, have an essential role as backup systems of the components of the H2O2 signaling redox relays in fission yeast. Along this thesis I have studied the importance of a proper activity of both reduction systems in the recycling of redox proteins to avoid cell toxicity and to assure a normal cell cycle progression. On the other hand, we characterized how thresholds of oxidative stress tolerance are important to trigger signaling or toxicity responses in S. pombe.
APA, Harvard, Vancouver, ISO, and other styles
8

Loganathan, Usha R. "Characterization of the thioredoxin system in Methanosarcina mazei." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/71334.

Full text
Abstract:
Thioredoxin (Trx) and thioredoxin reductase (TrxR) along with an electron donor form a thioredoxin system. Such systems are widely distributed among the organisms belonging to the three domains of life. It is one of the major disulfide reducing systems, which provides electrons to several enzymes, such as ribonucleotide reductase, methionine sulfoxide reductase and glutathione peroxidase to name a few. It also plays an important role in combating oxidative stress and redox regulation of metabolism. Trx is a small redox protein, about 12 kDa in size, with an active site motif of Cys-X-X-Cys. The reduction of the disulfide in Trx is catalyzed by TrxR. Two types of thioredoxin reductases are known, namely NADPH thioredoxin reductase (NTR) with NADPH as the electron donor and ferredoxin thioredxoin reductase (FTR) which depends on reduced ferredoxin as electron donor. Although NTR is widely distributed in the three domains of life, it is absent in some archaea, whereas FTRs are mostly found in plants, photosynthetic eukaryotes, cyanobacteria, and some archaea. The thioredoxin system has been well studied in plants, mammals, and a few bacteria, but not much is known about the archaeal thioredoxin system. Our laboratory has been studying the thioredoxin systems of methanogenic archaea, and a major focus has been on Methanocaldococcus jannaschii, a deeply rooted archaeon that has two Trxs and one TrxR. My thesis research concerns the thioredoxin system of the late evolving members of the group which are exposed to oxygen more frequently than the deeply rooted members of the group, and have several Trxs and TrxRs. Methanosarcina mazei is one such organism, whose thioredoxin system is composed of one NTR, two FTRs, and five Trx homologs. Characterization of the components of a thioredoxin system sets the basis to further explore its function. I have expressed in Escherichia coli and purified the five Trxs and three TrxRs of M. mazei. I have shown the disulfide reductase activities in MM_Trx1 and MM_Trx5 by their ability to reduce insulin with DTT as the electron donor, and that in MM_Trx3 through the reduction of DTNB by this protein with NADPH as the electron donor, and in the presence of NTR as the enzyme. MM_Trx3 was found to be the only M. mazei thioredoxin to accept electrons through the NTR, and to form a complete Trx - NTR system. The Trx - FTR systems are well studied in plants, and such a system is yet to be defined in archaea. I have proposed a mechanism of action for one of the FTRs. FTR2 harbors a rubredoxin domain, and this unit is the only rubredoxin in this organism. Superoxide reductase, an enzyme that reduces superoxide radical to hydrogen peroxide without forming oxygen, utilizes rubredoxin as the direct electron source and this enzyme is found in certain anaerobes, including Methanosarcina species. Thus, it is possible that FTR2 provides electrons via a Trx to the superoxide reductase of M. mazei. This activity will define FTR2 as a tool in combating oxidative stress in M. mazei. In my thesis research I have laid a foundation to understand a complex thioredoxin system of M. mazei, to find the role of each Trx and TrxR, and to explore their involvement in oxidative stress and redox regulation.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Singh, Komudi. "Oxidant-Induced Cell Death Mediated By A Rho Gtpase In Saccharomyces cerevisiae." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1227716169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tan, Shixiong Biotechnology &amp Biomolecular Sciences Faculty of Science UNSW. "Cellular mechanisms affecting redox homeostasis in response to stress in Saccharomyces cerevisiae." Awarded by:University of New South Wales. Biotechnology & Biomolecular Sciences, 2009. http://handle.unsw.edu.au/1959.4/44627.

Full text
Abstract:
Maintainence of appropriate redox homeostasis is crucial for processes such as protein folding in the endoplasmic reticulum (ER) and to minimise genesis of oxidative stress. Previous studies have indicated a possible link between ER stress and production of reactive oxygen species (ROS) although the cellular mechanisms involved were not fully elucidated. To investigate the cellular mechanisms involved in tolerance to oxidative stress and ER stress, genome-wide screens were performed to identify mutants sensitive to chronic ER stress induced by dithiothreitol and tunicamycin. These screens identified the Cu,Zn superoxide dismutase (SOD1) and genes involved in NADPH generation (RPE1, TKL1) as important for chronic ER stress tolerance. Superoxide anion has been identified as one of the ROS generated during ER stress. The ER oxidoreductase Ero1p, previously implicated in ROS production in vitro, did not appear to be a source of superoxide when the protein was over-expressed. It was also found that cellular NADP(H) levels affected induction of the unfolded protein response (UPR), since cells lacking TKL1 or RPE1 exhibited decreased UPR induction. These data indicate an important role for superoxide dismutase and cellular NADP(H) in survival of cells during ER stress. Subsequent analysis determined that NADPH generation was also required for adaptation to H2O2. Mutants affected in NADPH production were chronically sensitive to H2O2 but resistant to an acute dose. These mutants over-accumulated reduced glutathione (GSH) but maintained normal cellular redox homeostasis. This over- production of GSH was not regulated at the transcriptional level of GSH1 encoding ??- glutamyl cysteine synthetase. These data raise the important question as to how cells maintain cellular glutathione redox balance. To better understand how cells respond to perturbations in glutathione redox homeostasis, cells deleted for GLR1, encoding GSSG reductase, were exposed to extracellular oxidised glutathione (GSSG) and intracellular GSH and GSSG were monitored over time. Intriguingly cells lacking GLR1 showed increased levels of GSH accumulation upon GSSG treatment in a manner independent of GSH synthesis. It was subsequently found that the cytosolic thioredoxin-thioredoxin reductase system contributes to the reduction of GSSG in vivo.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thioredoxin; oxidative stress"

1

Nagarajan, Narayani, and Junichi Sadoshima. "Regulation of Protein Nitrosylation by Thioredoxin 1." In Biochemistry of Oxidative Stress, 163–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45865-6_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

D’Annunzio, Veronica, Virginia Perez, Tamara Mazo, and Ricardo Jorge Gelpi. "Thioredoxin Attenuates Post-ischemic Damage in Ventricular and Mitochondrial Function." In Biochemistry of Oxidative Stress, 177–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45865-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yu, Yezhou, Giovanna Di Trapani, and Kathryn F. Tonissen. "Thioredoxin and Glutathione Systems." In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects, 1–14. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-4501-6_143-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Yezhou, Giovanna Di Trapani, and Kathryn F. Tonissen. "Thioredoxin and Glutathione Systems." In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects, 2407–20. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-15-9411-3_143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Munemasa, Yasunari, Jacky M. K. Kwong, Seok H. Kim, Jae H. Ahn, Joseph Caprioli, and Natik Piri. "Thioredoxins 1 and 2 Protect Retinal Ganglion Cells from Pharmacologically Induced Oxidative Stress, Optic Nerve Transection and Ocular Hypertension." In Retinal Degenerative Diseases, 355–63. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-1-4419-1399-9_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nishinaka, Yumiko, Hiroshi Masutani, Junji Yodoi, and Yong-Chul Kim. "The Gene Regulatory Mechanism of Thioredoxin and Thioredoxin Binding Protein-2/VDUP1 in Cancer Prevention." In Oxidative Stress and Disease, 25–35. CRC Press, 2005. http://dx.doi.org/10.1201/9781420027174.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nakamura, Hajime, Norihiko Kondo, Kiichi Hirota, Hiroshi Masutani, and Junji Yodoi. "Thiols and Thioredoxin in Cellular Redox Control." In Oxidative Stress and Disease. CRC Press, 2003. http://dx.doi.org/10.1201/9780203912874.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ueda, Shugo, Takayuki Nakamura, Hajime Nakamura, and Junji Yodoi. "Redox Regulation of Inflammatory Tissue Damage by Thioredoxin." In Oxidative Stress and Disease, 41–60. CRC Press, 2005. http://dx.doi.org/10.1201/9781420028256.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Su, Dan, and Vadim Gladyshev. "The Roles of Thioredoxin Reductases in Cell Signaling." In Oxidative Stress and Disease. CRC Press, 2005. http://dx.doi.org/10.1201/9781420028362.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Redox Regulation of Inflammatory Tissue Damage by Thioredoxin." In Oxidative Stress, Inflammation, and Health, 73–92. CRC Press, 2005. http://dx.doi.org/10.1201/9781420028256-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thioredoxin; oxidative stress"

1

Or, Etti, David Galbraith, and Anne Fennell. Exploring mechanisms involved in grape bud dormancy: Large-scale analysis of expression reprogramming following controlled dormancy induction and dormancy release. United States Department of Agriculture, December 2002. http://dx.doi.org/10.32747/2002.7587232.bard.

Full text
Abstract:
The timing of dormancy induction and release is very important to the economic production of table grape. Advances in manipulation of dormancy induction and dormancy release are dependent on the establishment of a comprehensive understanding of biological mechanisms involved in bud dormancy. To gain insight into these mechanisms we initiated the research that had two main objectives: A. Analyzing the expression profiles of large subsets of genes, following controlled dormancy induction and dormancy release, and assessing the role of known metabolic pathways, known regulatory genes and novel sequences involved in these processes B. Comparing expression profiles following the perception of various artificial as well as natural signals known to induce dormancy release, and searching for gene showing similar expression patterns, as candidates for further study of pathways having potential to play a central role in dormancy release. We first created targeted EST collections from V. vinifera and V. riparia mature buds. Clones were randomly selected from cDNA libraries prepared following controlled dormancy release and controlled dormancy induction and from respective controls. The entire collection (7920 vinifera and 1194 riparia clones) was sequenced and subjected to bioinformatics analysis, including clustering, annotations and GO classifications. PCR products from the entire collection were used for printing of cDNA microarrays. Bud tissue in general, and the dormant bud in particular, are under-represented within the grape EST database. Accordingly, 59% of the our vinifera EST collection, composed of 5516 unigenes, are not included within the current Vitis TIGR collection and about 22% of these transcripts bear no resemblance to any known plant transcript, corroborating the current need for our targeted EST collection and the bud specific cDNA array. Analysis of the V. riparia sequences yielded 814 unigenes, of which 140 are unique (keilin et al., manuscript, Appendix B). Results from computational expression profiling of the vinifera collection suggest that oxidative stress, calcium signaling, intracellular vesicle trafficking and anaerobic mode of carbohydrate metabolism play a role in the regulation and execution of grape-bud dormancy release. A comprehensive analysis confirmed the induction of transcription from several calcium–signaling related genes following HC treatment, and detected an inhibiting effect of calcium channel blocker and calcium chelator on HC-induced and chilling-induced bud break. It also detected the existence of HC-induced and calcium dependent protein phosphorylation activity. These data suggest, for the first time, that calcium signaling is involved in the mechanism of dormancy release (Pang et al., in preparation). We compared the effects of heat shock (HS) to those detected in buds following HC application and found that HS lead to earlier and higher bud break. We also demonstrated similar temporary reduction in catalase expression and temporary induction of ascorbate peroxidase, glutathione reductase, thioredoxin and glutathione S transferase expression following both treatments. These findings further support the assumption that temporary oxidative stress is part of the mechanism leading to bud break. The temporary induction of sucrose syntase, pyruvate decarboxylase and alcohol dehydrogenase indicate that temporary respiratory stress is developed and suggest that mitochondrial function may be of central importance for that mechanism. These finding, suggesting triggering of identical mechanisms by HS and HC, justified the comparison of expression profiles of HC and HS treated buds, as a tool for the identification of pathways with a central role in dormancy release (Halaly et al., in preparation). RNA samples from buds treated with HS, HC and water were hybridized with the cDNA arrays in an interconnected loop design. Differentially expressed genes from the were selected using R-language package from Bioconductor project called LIMMA and clones showing a significant change following both HS and HC treatments, compared to control, were selected for further analysis. A total of 1541 clones show significant induction, of which 37% have no hit or unknown function and the rest represent 661 genes with identified function. Similarly, out of 1452 clones showing significant reduction, only 53% of the clones have identified function and they represent 573 genes. The 661 induced genes are involved in 445 different molecular functions. About 90% of those functions were classified to 20 categories based on careful survey of the literature. Among other things, it appears that carbohydrate metabolism and mitochondrial function may be of central importance in the mechanism of dormancy release and studies in this direction are ongoing. Analysis of the reduced function is ongoing (Appendix A). A second set of hybridizations was carried out with RNA samples from buds exposed to short photoperiod, leading to induction of bud dormancy, and long photoperiod treatment, as control. Analysis indicated that 42 genes were significant difference between LD and SD and 11 of these were unique.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography