To see the other types of publications on this topic, follow the link: Thin tungsten films.

Journal articles on the topic 'Thin tungsten films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Thin tungsten films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Essaidi, H., J. C. Bernede, J. Pouzet, M. Zoaeter, and A. Khelil. "Tungsten diselenide thin films synthesized on tungsten foils." Materials Science and Engineering: B 26, no. 1 (August 1994): 67–71. http://dx.doi.org/10.1016/0921-5107(94)90189-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dubček, P., Nenad Radić, S. Bernstorff, K. Salamon, and O. Milat. "Nanosize Structure of Sputter-Deposited Tungsten Carbide Thin Films." Solid State Phenomena 99-100 (July 2004): 251–54. http://dx.doi.org/10.4028/www.scientific.net/ssp.99-100.251.

Full text
Abstract:
The structure of thin films of tungsten-carbon, deposited onto monocrystalline silicon substrates by reactive magnetron sputtering (argon + benzene) in a wide range of preparation parameters has been investigated by GISAXS. Substrates were in a fixed position relative to the two adjacent cylindrical magnetrons. Benzene partial pressure was varied from 1% to 10% of the total working gas pressure. A series of samples were prepared, with the substrate held at room temperature and 400°C, and the substrate potential held at floating potential or biased -70 V with respect to the discharge plasma. The bulk particle contribution to the scattering was investigated outside of the specular plane, applying a two dimensional CCD detector. For higher values of benzene partial pressure, the generated films consist of densely packed tungsten carbide grains in an amorphous, carbon rich matrix, while, in some cases, the lower benzene pressure resulted in isolated carbon rich particles in tungsten carbide. From earlier work it is known that the preparation parameters influence the film’s chemical composition, the relatively complex dependence of particle sizes on benzene partial pressure can be explained as a function of the relative carbon content.
APA, Harvard, Vancouver, ISO, and other styles
3

Haghiri-Gosnet, A. M., F. R. Ladan, C. Mayeux, and H. Launois. "Stresses in sputtered tungsten thin films." Applied Surface Science 38, no. 1-4 (September 1989): 295–303. http://dx.doi.org/10.1016/0169-4332(89)90550-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adachi, Masatoshi, Akira Kawabata, and Fumio Takeda. "Preparation of Tungsten-Bronze Thin Films." Japanese Journal of Applied Physics 30, Part 1, No. 9B (September 30, 1991): 2208–11. http://dx.doi.org/10.1143/jjap.30.2208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Djerdj, I., And M. Tonejc, Ant Tonejc, and N. Radic. "XRD analysis of tungsten thin films." Acta Crystallographica Section A Foundations of Crystallography 60, a1 (August 26, 2004): s242. http://dx.doi.org/10.1107/s0108767304095200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Zenghai, Dayong Guan, Guohua Gao, Guangming Wu, and Haoran Wang. "Gasochromic properties of novel tungsten oxide thin films compounded with methyltrimethoxysilane (MTMS)." RSC Advances 7, no. 65 (2017): 41289–96. http://dx.doi.org/10.1039/c7ra03648e.

Full text
Abstract:
Thick tungsten–silicon films with long-term gasochromic performance were synthesized from methyltrimethoxysilane (MTMS) and tungsten oxide sols. The WO3–MTMS films exhibited a stable network with tungsten and silicon bonds.
APA, Harvard, Vancouver, ISO, and other styles
7

Chiu, Hsin-Tien, and Shiow-Huey Chuang. "Tungsten nitride thin films prepared by MOCVD." Journal of Materials Research 8, no. 6 (June 1993): 1353–60. http://dx.doi.org/10.1557/jmr.1993.1353.

Full text
Abstract:
Polycrystalline tungsten nitride thin films were grown by low pressure metallo-organic chemical vapor deposition (MOCVD) using (tBuN)2W(NHtBu)2 as the single-source precursor. Deposition of uniform thin films on glass and silicon substrates was carried out at temperatures 723–923 K in a cold-wall reactor, while the precursor was vaporized at 333–363 K. The growth rates were 2–10 nm/min depending on the condition employed. Bulk elemental composition of the thin films, studied by wavelength dispersive spectroscopy (WDS), is best described as WNx (x = 0.7–1.8). The N/W ratio decreased with increasing temperature of deposition. X-ray diffraction (XRD) studies showed that the films have cubic structures with the lattice parameter a = 0.414–0.418 nm. The lattice parameter decreased with decreasing N/W ratio. Stoichiometric WN thin films showed an average lattice parameter a of 0.4154 nm. X-ray photoelectron spectroscopy (XPS) showed that binding energies of the W4f7/2, W4f5/2, and N1s electrons were 33.0, 35.0, and 397.3 eV, respectively. Elemental distribution within the films, studied by secondary ion mass spectroscopy (SIMS) and Auger spectroscopy depth profilings, was uniform. The SIMS depth profiling also indicated that C and O concentrations were low in the film. Volatile products trapped at 77 K were analyzed by gas chromatography–mass spectroscopy (GC–MS) and nuclear magnetic resonance (NMR). Isobutylene, acetonitrile, hydrogen cyanide, and ammonia were detected in the condensable mixtures. Possible reaction pathways were proposed to speculate the origin of these molecules.
APA, Harvard, Vancouver, ISO, and other styles
8

Gouy‐Pailler, Ph, and Y. Pauleau. "Tungsten and tungsten–carbon thin films deposited by magnetron sputtering." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, no. 1 (January 1993): 96–102. http://dx.doi.org/10.1116/1.578725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Potts, Stephen E., Claire J. Carmalt, Christopher S. Blackman, Thomas Leese, and Hywel O. Davies. "Tungsten imido complexes as precursors to tungsten carbonitride thin films." Dalton Transactions, no. 42 (2008): 5730. http://dx.doi.org/10.1039/b808650h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Widenkvist, Erika, Ronald A. Quinlan, Brian C. Holloway, Helena Grennberg, and Ulf Jansson. "Synthesis of Nanostructured Tungsten Oxide Thin Films." Crystal Growth & Design 8, no. 10 (October 2008): 3750–53. http://dx.doi.org/10.1021/cg800383c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Girault, B., D. Eyidi, P. Goudeau, T. Sauvage, P. Guerin, E. Le Bourhis, and P. O. Renault. "Controlled nanostructuration of polycrystalline tungsten thin films." Journal of Applied Physics 113, no. 17 (May 7, 2013): 174310. http://dx.doi.org/10.1063/1.4803699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Manciu, Felicia S., Jose L. Enriquez, William G. Durrer, Young Yun, Chintalapalle V. Ramana, and Satya K. Gullapalli. "Spectroscopic analysis of tungsten oxide thin films." Journal of Materials Research 25, no. 12 (December 2010): 2401–6. http://dx.doi.org/10.1557/jmr.2010.0294.

Full text
Abstract:
We present a detailed study of the morphology and composition of tungsten oxide (WO3) thin films, grown by radio frequency magnetron reactive sputtering at substrate temperatures varied from room temperature (RT) to 500 °C, using infrared (IR) absorption, Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). This work includes valuable new far-IR results about structural changes in microcrystalline WO3. Both IR absorption and Raman techniques reveal an amorphous sample grown at RT and initial crystallization into monoclinic structures for samples grown at temperatures between 100 and 300 °C. The Raman spectra of the samples grown at high temperatures indicate, apart from the monoclinic structure, a strain effect, with a distribution revealed by confocal Raman mapping. XPS indicates that the film surface maintains the stoichiometry WOx, with a value of x slightly greater than 3 at RT due to oxygen contamination, which decreases with increasing temperature.
APA, Harvard, Vancouver, ISO, and other styles
13

Shen, Pei Kang, and Alfred C. C. Tseung. "Study of electrodeposited tungsten trioxide thin films." Journal of Materials Chemistry 2, no. 11 (1992): 1141. http://dx.doi.org/10.1039/jm9920201141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Yang, Hwa-Yueh, X. A. Zhao, and M. A. Nicolet. "Characterization of cosputtered tungsten carbide thin films." Thin Solid Films 158, no. 1 (March 1988): 37–44. http://dx.doi.org/10.1016/0040-6090(88)90300-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hembram, K. P. S. S., Rajesh Thomas, and G. Mohan Rao. "Microstructural evolution of tungsten oxide thin films." Applied Surface Science 256, no. 2 (October 2009): 419–22. http://dx.doi.org/10.1016/j.apsusc.2009.06.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Srivastava, P. K., V. D. Vankar, and K. L. Chopra. "R.F. magnetron sputtered tungsten carbide thin films." Bulletin of Materials Science 8, no. 3 (June 1986): 379–84. http://dx.doi.org/10.1007/bf02744149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Taylor, Todd A., and Howard H. Patterson. "Spectroscopic Properties of WO3 Thin Films: Polarized FT-IR/ATR, X-Ray Diffraction, and Electronic Absorption." Applied Spectroscopy 48, no. 6 (June 1994): 674–77. http://dx.doi.org/10.1366/000370294774368992.

Full text
Abstract:
The Fourier transform infrared/micro-attenuated total reflectance (FT-IR/mATR), X-ray diffraction (XRD), and electronic absorption properties of thin tungsten oxide films are characterized. Thin films of tungsten oxide (100–500 Å) deposited on SiO2 exhibit a different orientation or structure than thicker films. A p-polarized longitudinal optical (LO) mode at 970 cm−1 occurs in all ATR spectra of WO3 thin films and is one of the strongest IR bands in the spectra. The spectroscopic properties of tungsten oxide films are characterized as a function of substrate and heat treatment.
APA, Harvard, Vancouver, ISO, and other styles
18

Хуболов, Борис Магометович. "ELECTRIC CRYSTALLIZATION OF THIN FILMS OF SODIUM - TUNGSTEN BRONZE." Physical and Chemical Aspects of the Study of Clusters, Nanostructures and Nanomaterials, no. 12() (December 15, 2020): 213–21. http://dx.doi.org/10.26456/pcascnn/2020.12.213.

Full text
Abstract:
В работе рассмотрены вопросы получения тонких пленок натрийвольфрамовых бронз кубической структуры методом электрокристаллизации. Приведены основные параметры полученных пленок. Сняты спектры отражения пленок для неокрашенных и окрашенных пленок. Исследование приповерхностного слоя монокристаллов натрий-вольфрамовых бронз методами протонографии и ядерных реакций показало их высокое структурное совершенство. Анодная и катодная поляризации монокристаллов приводят к изменению структуры их приповерхностного слоя. Обеднение по натрию приповерхностного слоя присутствует и при катодной и при анодной поляризации, и глубина обеднения растет с ростом времени поляризации величины напряжения. Электронографией исследованы тонкие пленки натрийвольфрамовых бронз, установлена аморфная структура свеженапыленных пленок для всех температур подложки. Отжиг электронным лучом приводит к кристаллизации пленок. The paper considers the problems of obtaining thin films of sodium-tungsten bronzes of a cubic structure by the method of electrocrystallization. The main parameters of the obtained films are presented. The reflection spectra of the films were recorded for uncolored and colored films. Investigation of the near-surface layer of sodium-tungsten bronze single crystals by protonography and nuclear reactions showed their high structural perfection. The anodic and cathodic polarizations of single crystals lead to a change in the structure of their surface layer. Depletion in sodium of the nearsurface layer is present at both cathodic and anodic polarization, and the depletion depth increases with increasing polarization time of the voltage value. Thin films of sodium-tungsten bronzes have been investigated by electron diffraction, and the amorphous structure of freshly deposited films has been established for all substrate temperatures. Annealing with an electron beam leads to crystallization of the films.
APA, Harvard, Vancouver, ISO, and other styles
19

Ziakhodadadian, Siamak, and Tianhui Ren. "Structural and tribological properties of tungsten oxide thin film on a silicon substrate." Journal of Chemical Research 44, no. 11-12 (May 20, 2020): 744–49. http://dx.doi.org/10.1177/1747519820923100.

Full text
Abstract:
In this work, tungsten oxide thin films are deposited on silicon substrates using the hot filament chemical vapor deposition system. The influence of substrate temperature on the structural, morphological, and elemental composition of the tungsten oxide thin films is investigated using X-ray diffraction, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy techniques. Also, the mechanical and tribological properties of these thin films are considered using nanoindentation and scratch tests. Based on X-ray diffraction results, it can be concluded that tungsten oxide thin films are synthesized with a cubic WO3 structure. From field-emission scanning electron microscopy images, it can be seen that tungsten oxide thin films are made of crystal clusters which have grown vertically on the substrate surface. In addition, the results exhibit two asymmetric W4d5/2 and W4d7/2 peaks which can be assigned to W5+ and W4+ species, respectively. The mechanical results show that the hardness and the elastic modulus increase on raising the substrate temperature up to 600 °C. From the tribological performances, the friction coefficient of the tungsten oxide thin film decreases on increasing the substrate temperature.
APA, Harvard, Vancouver, ISO, and other styles
20

Duta, Anca, Alexandru Enesca, and Luminita Andronic. "Tailoring Photocatalytic Properties of Tungsten Oxide Thin Films." Advanced Materials Research 79-82 (August 2009): 847–50. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.847.

Full text
Abstract:
The structural and surface properties of thin, metal oxides films can be tailored by including various additives in the precursors’ systm. The paper presents a comparative approach concerning the properties of WO3 thin layers obtained via spray pyrolysis deposition (SPD) using hydrophilic and hydrophobic polymers as additives. The influence of the thin films composition and morphology is reported, considering their applications of photocatalyst in the advanced treatment of waters resulted in the dye finishing industry, containing methylen blue and methyl orange.
APA, Harvard, Vancouver, ISO, and other styles
21

Jiang, Miao, Feng Hou, Ting Xian Xu, and Ming Xia Xu. "Study on Gas Sensing Properties of WO3 Thin Films." Key Engineering Materials 280-283 (February 2007): 319–22. http://dx.doi.org/10.4028/www.scientific.net/kem.280-283.319.

Full text
Abstract:
Tungsten oxide thin films were prepared by an inorganic-sol-gel dip-coating process, where the sol was obtained by adding citric acid, as chelating agent, to the ammonia solution of tungstic acid. The resultant thin films were a mixture of monoclinic and tetragonal phases of WO3 and, after being pretreated at 600°C and sintered at 650°C, the average grain size of the polycrystalline films was about 500 nm. The gas-sensing properties of WO3 thin films were tested at temperatures ranging from 500° to 600°C and in nitrogen gas containing 5vol% O2 or 5vol% H2. The WO3 sensors exhibited a good sensitivity and response speed at the temperature of 550°C.
APA, Harvard, Vancouver, ISO, and other styles
22

ARITA, MASASHI, and ISAO NISHIDA. "DEFECTS OF A15 SMALL PARTICLES IN TUNGSTEN THIN FILMS." Surface Review and Letters 03, no. 01 (February 1996): 1191–94. http://dx.doi.org/10.1142/s0218625x9600214x.

Full text
Abstract:
Crystal defects of A15 small particles in tungsten thin films were studied by means of transmission electron microscopy. Defects found in nanoscale crystals were analyzed to have special structure containing the Zr4Al3-type structure unit.
APA, Harvard, Vancouver, ISO, and other styles
23

Lee, Seokwon, Jung Hyun Kim, Young Park, and Wonseok Choi. "Analysis of the Properties of Tungsten Carbide Thin Films According to the Sputtering Radio Frequency Power." Science of Advanced Materials 12, no. 10 (October 1, 2020): 1568–71. http://dx.doi.org/10.1166/sam.2020.3794.

Full text
Abstract:
In this study, we investigated characteristics of tungsten carbide thin film according to carbon and tungsten ratio. Tungsten carbide thin film was co-sputtered on silicon substrate and glass substrates using an RF magnetron sputtering system. To analyze the characteristics according to the composition ratio of the tungsten carbide thin film, the RF powers of carbon/tungsten target were divided into 100 W/100 W, 125 W/75 W, 150 W/50 W, and 175 W/25 W, respectively. Hall measurement and 4 points probes were used to measure electrical properties of the tungsten carbide thin films. Raman and field emission scanning electron microscope (FE-SEM) analysis were performed.
APA, Harvard, Vancouver, ISO, and other styles
24

Pouzet, J., J. C. Bernede, A. Khellil, H. Essaidi, and S. Benhida. "Preparation and characterization of tungsten diselenide thin films." Thin Solid Films 208, no. 2 (February 1992): 252–59. http://dx.doi.org/10.1016/0040-6090(92)90652-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Nam, Sung-Pill, Hyun-Ji Noh, Sung-Gap Lee, and Young-Hie Lee. "Electrical properties of vanadium tungsten oxide thin films." Materials Research Bulletin 45, no. 3 (March 2010): 291–94. http://dx.doi.org/10.1016/j.materresbull.2009.12.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

LeGore, L. J., R. J. Lad, S. C. Moulzolf, J. F. Vetelino, B. G. Frederick, and E. A. Kenik. "Defects and morphology of tungsten trioxide thin films." Thin Solid Films 406, no. 1-2 (March 2002): 79–86. http://dx.doi.org/10.1016/s0040-6090(02)00047-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ashrit, P. V., G. Bader, and Vo-Van Truong. "Electrochromic properties of nanocrystalline tungsten oxide thin films." Thin Solid Films 320, no. 2 (May 1998): 324–28. http://dx.doi.org/10.1016/s0040-6090(97)00796-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Patil, P. S., and P. R. Patil. "Photoelectrochemical characterization of sprayed tungsten oxide thin films." Solar Energy Materials and Solar Cells 33, no. 3 (July 1994): 293–300. http://dx.doi.org/10.1016/0927-0248(94)90232-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Peverini, Luca, Eric Ziegler, and Igor Kozhevnikov. "Dynamic scaling in sputter grown tungsten thin films." Thin Solid Films 515, no. 14 (May 2007): 5541–45. http://dx.doi.org/10.1016/j.tsf.2006.12.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Djerdj, I., A. M. Tonejc, A. Tonejc, and N. Radić. "XRD line profile analysis of tungsten thin films." Vacuum 80, no. 1-3 (October 2005): 151–58. http://dx.doi.org/10.1016/j.vacuum.2005.08.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tawarayama, Hiromasa, Hiroshi Kawazoe, and Hideo Hosono. "Hydrogen permeation of tungsten phosphate glass thin films." Solid State Ionics 180, no. 6-8 (May 14, 2009): 556–59. http://dx.doi.org/10.1016/j.ssi.2008.12.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pletschen, W., N. Herres, M. Maier, M. Seelmann-Eggebert, J. Wagner, A. Voigt, and H. P. Strunk. "Properties of sequentially sputtered tungsten silicide thin films." Applied Surface Science 38, no. 1-4 (September 1989): 259–68. http://dx.doi.org/10.1016/0169-4332(89)90547-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Atak, Gamze, İlknur Bayrak Pehlivan, José Montero, Daniel Primetzhofer, Claes G. Granqvist, and Gunnar A. Niklasson. "Electrochromism of nitrogen-doped tungsten oxide thin films." Materials Today: Proceedings 33 (2020): 2434–39. http://dx.doi.org/10.1016/j.matpr.2020.01.332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wiltner, A., and Ch Linsmeier. "Surface alloying of thin beryllium films on tungsten." New Journal of Physics 8, no. 9 (September 8, 2006): 181. http://dx.doi.org/10.1088/1367-2630/8/9/181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Anwar, Shahid, and Sharmistha Anwar. "Thermal stability studies of tungsten nitride thin films." Surface Engineering 33, no. 4 (October 14, 2016): 276–81. http://dx.doi.org/10.1080/02670844.2016.1238675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Green, Mino, and Z. Hussain. "Optical properties of lithium tungsten bronze thin films." Journal of Applied Physics 74, no. 5 (September 1993): 3451–58. http://dx.doi.org/10.1063/1.354545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li, B. Z., and R. G. Aitken. "Electrical transport properties of tungsten silicide thin films." Applied Physics Letters 46, no. 4 (February 15, 1985): 401–3. http://dx.doi.org/10.1063/1.95592.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Liu, Guojun, and Yue Kuo. "Reactive Ion Etching of Titanium Tungsten Thin Films." Journal of The Electrochemical Society 154, no. 7 (2007): H653. http://dx.doi.org/10.1149/1.2737631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Haghiri‐Gosnet, A. M., F. R. Ladan, C. Mayeux, H. Launois, and M. C. Joncour. "Stress and microstructure in tungsten sputtered thin films." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 7, no. 4 (July 1989): 2663–69. http://dx.doi.org/10.1116/1.575770.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Talley, Kevin R., John Mangum, Craig L. Perkins, Rachel Woods‐Robinson, Apurva Mehta, Brian P. Gorman, Geoff L. Brennecka, and Andriy Zakutayev. "Synthesis of Lanthanum Tungsten Oxynitride Perovskite Thin Films." Advanced Electronic Materials 5, no. 7 (June 3, 2019): 1900214. http://dx.doi.org/10.1002/aelm.201900214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Depero, L. E., S. Groppelli, I. Natali-Sora, L. Sangaletti, G. Sberveglieri, and E. Tondello. "Structural Studies of Tungsten–Titanium Oxide Thin Films." Journal of Solid State Chemistry 121, no. 2 (February 1996): 379–87. http://dx.doi.org/10.1006/jssc.1996.0051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Shen, Y. G., Y. W. Mai, W. E. McBride, D. R. McKenzie, and Q. C. Zhang. "Oxygen-induced amorphous structure of tungsten thin films." Applied Physics Letters 75, no. 15 (October 11, 1999): 2211–13. http://dx.doi.org/10.1063/1.124967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pérez‐Casero, R., J. Perrière, J. P. Enard, and J. M. Martínez‐Duart. "Plasma oxidation mechanisms in tungsten silicide thin films." Journal of Applied Physics 78, no. 1 (July 1995): 514–18. http://dx.doi.org/10.1063/1.360635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Baker, Colin C., and S. Ismat Shah. "Reactive sputter deposition of tungsten nitride thin films." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 20, no. 5 (September 2002): 1699–703. http://dx.doi.org/10.1116/1.1498278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Nava, F., G. Riontino, and E. Galli. "Metastable phase formation in tungsten-silicon thin films." Journal of Non-Crystalline Solids 104, no. 2-3 (September 1988): 195–202. http://dx.doi.org/10.1016/0022-3093(88)90388-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yao, J. N., P. Chen, and A. Fujishima. "Electrochromic behavior of electrodeposited tungsten oxide thin films." Journal of Electroanalytical Chemistry 406, no. 1-2 (April 1996): 223–26. http://dx.doi.org/10.1016/0022-0728(96)04552-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Car, T., N. Radić, J. Ivkov, E. Babić, and A. Tonejc. "Crystallization kinetics of amorphous aluminum-tungsten thin films." Applied Physics A: Materials Science & Processing 68, no. 1 (January 1, 1999): 69–73. http://dx.doi.org/10.1007/s003390050855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sakamoto, Wataru, Toshinobu Yogo, Takae Kuroyanagi, and Shin-ichi Hirano. "Synthesis of Sr2KNb5O15 Thin Films by Chemical Solution Deposition Method." Journal of Materials Research 14, no. 4 (April 1999): 1495–502. http://dx.doi.org/10.1557/jmr.1999.0200.

Full text
Abstract:
Crack-free and transparent Sr2KNb5O15 (SKN) thin films have been synthesized by the chemical solution deposition method. A homogeneous and stable precursor solution was prepared via controlling the reaction of metal alkoxides. SKN precursor was found to be the complex alkoxide between Sr[Nb(OEt)6]2 and KNb(OEt)6 with high structural symmetry. SKN powders and thin films on fused silica substrates directly crystallized to the polycrystalline tetragonal tungsten bronze phase at 600 °C. Highly oriented SKN thin films with the tetragonal tungsten bronze phase were fabricated on MgO(100) and Pt(100)/MgO(100) substrates. Two crystal lattice planes of SKN were intergrown at an orientation of 18.5° on MgO(100). The dielectric constant of SKN thin films on Pt(100)/MgO(100) was about 590 at 20 °C at 1 kHz.
APA, Harvard, Vancouver, ISO, and other styles
49

McClatchie, S., H. Thomas, and D. V. Morgan. "Plasma enhanced chemical vapour deposition of tungsten and tungsten silicide thin films." Applied Surface Science 73 (November 1993): 58–63. http://dx.doi.org/10.1016/0169-4332(93)90146-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Takano, Katsuyoshi, Aichi Inouye, Shunya Yamamoto, Atsumi Miyashita, and Masahito Yoshikawa. "Effect of Tungsten Valences on Gasochromic Coloration in Tungsten Oxide Thin Films." Transactions of the Materials Research Society of Japan 32, no. 1 (2007): 159–62. http://dx.doi.org/10.14723/tmrsj.32.159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography