Academic literature on the topic 'Thin tungsten films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thin tungsten films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thin tungsten films"

1

Essaidi, H., J. C. Bernede, J. Pouzet, M. Zoaeter, and A. Khelil. "Tungsten diselenide thin films synthesized on tungsten foils." Materials Science and Engineering: B 26, no. 1 (August 1994): 67–71. http://dx.doi.org/10.1016/0921-5107(94)90189-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dubček, P., Nenad Radić, S. Bernstorff, K. Salamon, and O. Milat. "Nanosize Structure of Sputter-Deposited Tungsten Carbide Thin Films." Solid State Phenomena 99-100 (July 2004): 251–54. http://dx.doi.org/10.4028/www.scientific.net/ssp.99-100.251.

Full text
Abstract:
The structure of thin films of tungsten-carbon, deposited onto monocrystalline silicon substrates by reactive magnetron sputtering (argon + benzene) in a wide range of preparation parameters has been investigated by GISAXS. Substrates were in a fixed position relative to the two adjacent cylindrical magnetrons. Benzene partial pressure was varied from 1% to 10% of the total working gas pressure. A series of samples were prepared, with the substrate held at room temperature and 400°C, and the substrate potential held at floating potential or biased -70 V with respect to the discharge plasma. The bulk particle contribution to the scattering was investigated outside of the specular plane, applying a two dimensional CCD detector. For higher values of benzene partial pressure, the generated films consist of densely packed tungsten carbide grains in an amorphous, carbon rich matrix, while, in some cases, the lower benzene pressure resulted in isolated carbon rich particles in tungsten carbide. From earlier work it is known that the preparation parameters influence the film’s chemical composition, the relatively complex dependence of particle sizes on benzene partial pressure can be explained as a function of the relative carbon content.
APA, Harvard, Vancouver, ISO, and other styles
3

Haghiri-Gosnet, A. M., F. R. Ladan, C. Mayeux, and H. Launois. "Stresses in sputtered tungsten thin films." Applied Surface Science 38, no. 1-4 (September 1989): 295–303. http://dx.doi.org/10.1016/0169-4332(89)90550-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adachi, Masatoshi, Akira Kawabata, and Fumio Takeda. "Preparation of Tungsten-Bronze Thin Films." Japanese Journal of Applied Physics 30, Part 1, No. 9B (September 30, 1991): 2208–11. http://dx.doi.org/10.1143/jjap.30.2208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Djerdj, I., And M. Tonejc, Ant Tonejc, and N. Radic. "XRD analysis of tungsten thin films." Acta Crystallographica Section A Foundations of Crystallography 60, a1 (August 26, 2004): s242. http://dx.doi.org/10.1107/s0108767304095200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Zenghai, Dayong Guan, Guohua Gao, Guangming Wu, and Haoran Wang. "Gasochromic properties of novel tungsten oxide thin films compounded with methyltrimethoxysilane (MTMS)." RSC Advances 7, no. 65 (2017): 41289–96. http://dx.doi.org/10.1039/c7ra03648e.

Full text
Abstract:
Thick tungsten–silicon films with long-term gasochromic performance were synthesized from methyltrimethoxysilane (MTMS) and tungsten oxide sols. The WO3–MTMS films exhibited a stable network with tungsten and silicon bonds.
APA, Harvard, Vancouver, ISO, and other styles
7

Chiu, Hsin-Tien, and Shiow-Huey Chuang. "Tungsten nitride thin films prepared by MOCVD." Journal of Materials Research 8, no. 6 (June 1993): 1353–60. http://dx.doi.org/10.1557/jmr.1993.1353.

Full text
Abstract:
Polycrystalline tungsten nitride thin films were grown by low pressure metallo-organic chemical vapor deposition (MOCVD) using (tBuN)2W(NHtBu)2 as the single-source precursor. Deposition of uniform thin films on glass and silicon substrates was carried out at temperatures 723–923 K in a cold-wall reactor, while the precursor was vaporized at 333–363 K. The growth rates were 2–10 nm/min depending on the condition employed. Bulk elemental composition of the thin films, studied by wavelength dispersive spectroscopy (WDS), is best described as WNx (x = 0.7–1.8). The N/W ratio decreased with increasing temperature of deposition. X-ray diffraction (XRD) studies showed that the films have cubic structures with the lattice parameter a = 0.414–0.418 nm. The lattice parameter decreased with decreasing N/W ratio. Stoichiometric WN thin films showed an average lattice parameter a of 0.4154 nm. X-ray photoelectron spectroscopy (XPS) showed that binding energies of the W4f7/2, W4f5/2, and N1s electrons were 33.0, 35.0, and 397.3 eV, respectively. Elemental distribution within the films, studied by secondary ion mass spectroscopy (SIMS) and Auger spectroscopy depth profilings, was uniform. The SIMS depth profiling also indicated that C and O concentrations were low in the film. Volatile products trapped at 77 K were analyzed by gas chromatography–mass spectroscopy (GC–MS) and nuclear magnetic resonance (NMR). Isobutylene, acetonitrile, hydrogen cyanide, and ammonia were detected in the condensable mixtures. Possible reaction pathways were proposed to speculate the origin of these molecules.
APA, Harvard, Vancouver, ISO, and other styles
8

Gouy‐Pailler, Ph, and Y. Pauleau. "Tungsten and tungsten–carbon thin films deposited by magnetron sputtering." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, no. 1 (January 1993): 96–102. http://dx.doi.org/10.1116/1.578725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Potts, Stephen E., Claire J. Carmalt, Christopher S. Blackman, Thomas Leese, and Hywel O. Davies. "Tungsten imido complexes as precursors to tungsten carbonitride thin films." Dalton Transactions, no. 42 (2008): 5730. http://dx.doi.org/10.1039/b808650h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Widenkvist, Erika, Ronald A. Quinlan, Brian C. Holloway, Helena Grennberg, and Ulf Jansson. "Synthesis of Nanostructured Tungsten Oxide Thin Films." Crystal Growth & Design 8, no. 10 (October 2008): 3750–53. http://dx.doi.org/10.1021/cg800383c.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thin tungsten films"

1

Ma, Shuguo. "Reactions of Alcohols and Organophosphonates on Tungsten Trioxide Epitaxial Films." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/MaS2003.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Borer, Aidan. "Internal stress and adhesion in laser photoanalytically deposited tungsten films." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.258167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Qadri, Muhammad Usman. "Tungsten oxide nanostructures and thin films for optical gas sensors." Doctoral thesis, Universitat Rovira i Virgili, 2014. http://hdl.handle.net/10803/279291.

Full text
Abstract:
En aquesta tesis doctoral s’han investigat capes primes i nanostructures de WO3 per sensat òptic de gasos. S’han realitzats els estudis de la síntesis dels materials nanoestructurats, la possible fabricació del dispositiu i les propietats per la detecció dels gasos. Han estat investigades les capes primes de WO3, amb uns grossors al voltant de les 550 nm, crescudes mitjançant RF sputtering. Aquestes capes varen ser dopades amb nanopartícules de Pt i es varen estudiar les seves propietats de sensat òptic de gas sota la influencia de H2, CO i NOx. Aquestes capes mostraren una reposta i recuperacions ràpides sota la influencia dels gasos anteriorment esmentats. Les capes no dopades de WO3 mostren una resposta òptica detectable al gas NOx, mentre que les capes dopades amb nanopartícules de Pt mostres una resposta al H2 a temperatura ambient. De manera similar, la resposta gasocromica de les nanoagulles al gas NH3 tambe va ser investigada. Les nanoagulles de WO3 decorades amb nanopartícules de Pt i Au mostren una resposta òptica quan estan exposades a NH3 gas a temperatura ambient. És la primera vegada que es reporta la resposta òptica del WO3 a temperatura ambienti es descriu en aquesta tesis. Finalment, de manera semblant a les capes primes, el temps de detecció i recuperació de les nanoagulles als gasos; és ràpid i de l’ordre de segons. En resum, la recerca realitzada en el si d’aquesta tesis, ha complert els objectius d’investigar i desenvolupar uns sensors òptics de gasos fets de WO3 i en forma de nanoestructures i capes primers. De manera exitosa, aquest material s’ha implementat per la detecció òptica de NH3, CO, NOx i H2. Basant-nos en aquests resultats, l’avaluació final és que el WO3 és un bon material com a candidat de futurs dispositius òptics per la detecció de gasos.
En esta tesis doctoral se han investigados capas delgadas i nanoestructuras de WO3 para el sensado óptico de gases. Se han relaizado estudios de las síntesis de materiales nanoestructurados, la posible fabricación del dispositivo y las propiedades para la detección de gases. Se han investigado capas delgadas de WO3 con unos grosores cercanos a 550 nm, crecidas mediante pulverización catódica de radiofrecuencia. Dichas capas fueron dopadas con nanopartículas de Pt y se estudiaron sus propiedades para el sensado óptico de gases como el H2, Co y NOx. Estas capas mostraron un respuesta y recupèración rápidas bajo la influencia de los gases mencionados anteriormente. Las capas no dopadas de WO3 mustran una respuesta óptica mediable al NOx mientras que las dopadas con Pt muestran repsuesta al H2 a temperatura ambiente. De manera similar, la respuesta gasocrómica de nanoagujas de WO3 decoardas con nanopartículas de Pt y Au muestran una respuesta óptica a temperatura ambiente cuando se exponen a NH3. Por primera vez y en esta tesis se reporta la respuesta óptica del WO3 a temperatura ambiente. Finalmente y de manera similar a las capas delgadas, los tiempos de respuesta y recuperación de las nanoagujas de WO3 es rápido y del orden de segundos. En resumen, la investigtación que se ha desarrollado en esta tesis ha cumplido los objetivos de desarrollar sensores ópticos basados en nanomateriales de WO3. Se ha implementado la detección de NH3, CO, NOx y H2. de forma exitosa. Basandonos en estos resultados podemos concluir que el WO3 representa un buen material candiudato a ser integrado en futuros dispositivos ópticos para el sensado de gases.
n this doctoral thesis, WO3 based thin films and nanostructures have been investigated for optical gas sensing. The nano structured material synthesis, device fabrication and their gas sensing properties have been studied. WO3 thin films with thicknesses around 550 nm, grown by RF sputtering have been investigated for optical gas sensing using absorbance spectroscopy. These films were doped with Pt nanoparticles and subjected to optical gas sensing under the influence of H2, CO and NOx. These films showed fast response and recovery under the influence of mentioned gases. The response and recovery time is in the range of seconds. The bare WO3 films show a measureable optical response to NOx. The films doped with Pt nanoparticles show a response to H2 at room temperature. Similarly, the gasochromic response of WO3 nanoneedles was investigated upon the exposure to NH3. The nanoneedles decorated with Au and Pt show optical response when exposed to NH3 gas at room temperature. The optical response at room temperature of these nanoneedles is presented in this doctoral thesis for the first time. Similarly to thin films, nanoneedles have also shown a fast response and recovery time in the range of seconds. In summary, this PhD research program successfully fulfilled its objectives to investigate and develop novel WO3 optical sensors based on nanostructures and thin films. During the work the author has successfully employed this material for optically sensing the mentioned gases such as NH3, CO, NOx, and H2. The evaluation of these results indicates that WO3 is a good candidate for designing future devices for optical gas sensing.
APA, Harvard, Vancouver, ISO, and other styles
4

Johansson, Malin. "Nanocrystalline Tungsten Trioxide Thin Films : Structural, Optical and Electronic Characterization." Doctoral thesis, Uppsala universitet, Fasta tillståndets fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-211855.

Full text
Abstract:
This thesis concerns experimental studies of nanocrystalline tungsten trioxide thin films. Functional properties of WO3 have interesting applications in research areas connected to energy efficiency and green nanotechnology. The studies in this thesis are focused on characterization of fundamental electronic and optical properties in the semiconducting transition metal oxide WO3. The thesis includes also applied studies of photocatalytic and photoelectrochemical properties of the material.     All nanocrystalline WO3 thin films were prepared using DC magnetron sputtering. It was found that structures like hexagonal and triclinic phase with different properties can be produced with sputtering technique. Thin film deposition has been performed using different process parameters with emphasis on sputter pressure and films that mainly consist of monoclinic γ-phase, with small contributions of ε-phase. Changes in the pressure are shown to affect the number of oxygen vacancies in the WO3 thin film, with close to stoichiometric WO3 formed at high pressures (30 mTorr), and slightly sub-stochiometric WO3-x, x = 0.005 at lower pressures (10 mTorr). Both stoichiometric and sub-stoichiometric thin films have been characterized by several structural, optical and electronic techniques.    The electronic structure and especially band gap states have been explored and optical properties of WO3 and WO3-x have been studied in detail. The band gap has been determined to be in the range 2.7-2.9 eV. Absorption due to polaron absorption (W5+  -W6+), oxygen vacancy sites (Vo -W6+), and due to differently charged oxygen vacancy states in the band gap have been determined by spectrophotometry and photoluminescence spectroscopy, in good agreement with resonant inelastic x-ray spectroscopy and theoretical calculations. The density of electronic states in the band gap was determined from cyclic voltammetry measurements, which correlate with O vacancy concentration as compared with near infrared absorption.      By combining different experimental methods a thorough characterization of the band gap states have been possible and this opens up the opportunity to tailor the WO3 functionalities. WO3 has been shown to be visible active photocatalyst, and a promising electrode material as inferred from photo-oxidation and water splitting measurements, respectively. Links between device performance in photoelectrochemical experiments, charge transport and the electronic structure have been elucidated.
APA, Harvard, Vancouver, ISO, and other styles
5

Moslemzadeh, Nasser. "Geometric and electronic structure of dysprosium thin films on tungsten surfaces." Thesis, University of Liverpool, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Chen. "Electrodeposition of adherent copper film on unmodified tungsten." Thesis, University of North Texas, 2004. https://digital.library.unt.edu/ark:/67531/metadc5541/.

Full text
Abstract:
Adherent Cu films were electrodeposited onto polycrystalline W foils from purged solutions of 0.05 M CuSO4 in H2SO4 supporting electrolyte and 0.025 M CuCO3∙Cu(OH)2 in 0.32 M H3BO3 and corresponding HBF4 supporting electrolyte, both at pH = 1. Films were deposited under constant potential conditions at voltages between -0.6 V and -0.2 V vs Ag/AgCl. All films produced by pulses of 10 s duration were visible to the eye, copper colored, and survived a crude test called "the Scotch tape test", which stick the scotch tape on the sample, then peel off the tape and see if the copper film peels off or not. Characterization by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray photon spectroscopy (XPS) confirmed the presence of metallic Cu, with apparent dendritic growth. No sulfur impurity was observable by XPS or EDX. Kinetics measurements indicate that the Cu nucleation process in the sulfuric bath is slower than in the borate bath. In both baths, nucleation kinetics do not correspond to either instantaneous or progressive nucleation. Films deposited from 0.05 M CuSO4/H2SO4 solution at pH > 1 at -0.2 V exhibited poor adhesion and decreased Cu reduction current. In both borate and sulfate baths, small Cu nuclei are observable by SEM upon deposition at higher negative overpotentials, while only large nuclei (~ 1 micron or larger) are observed upon deposition at less negative potentials.
APA, Harvard, Vancouver, ISO, and other styles
7

Shen, Luming. "Multi-scale modeling and simulation of multi-physics in film delamination /." free to MU campus, to others for purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3144456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fan, Li. "ELECTRODEPOSITION OF SULFIDE-CONTAINING THIN FILMS, AND THEIR APPLICATION TO ELECTROCHEMICAL SYSTEMS." OpenSIUC, 2019. https://opensiuc.lib.siu.edu/theses/2495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ashraf, Sobia. "Aerosol assisted chemical vapour deposition of tungsten and molybdenum oxide thin films." Thesis, University College London (University of London), 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Dojun. "Chemical vapor deposition of tungsten-based diffusion barrier thin films for copper metallization." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0041042.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Thin tungsten films"

1

Pritchard, Hywyn. The production of thin tungsten films by low pressure chemical vapour deposition. Salford: University of Salford, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

W, Walkiewicz J., Clark A. E, and United States. Bureau of Mines., eds. Adhesion of diamond films on tungsten. [Washington, D.C.?]: U.S. Dept. of the Interior, Bureau of Mines, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thin tungsten films"

1

Irwin, K. D., B. Cabrera, R. King, and B. Tigner. "Quantum Efficient Detection of Phonons with Tungsten Thin Films." In Springer Series in Solid-State Sciences, 486–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rasinski, Marcin, Martin Balden, Stefan Jong, Philipp-Andre Sauter, Malgorzata Lewandowska, and Krzysztof Jan Kurzydlowski. "High resolution analysis of tungsten doped amorphous carbon thin films." In Materials Challenges and Testing for Supply of Energy and Resources, 107–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23348-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gouy-Pailler, Ph, and Y. Pauleau. "Characterization of Tungsten Films and Hard Tungsten-Carbon Coatings Prepared by DC Magnetron Sputtering Process." In Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices, 539–43. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1727-2_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zayim, E. O., and A. Tabatabaei Mohseni. "Structural and Optical Properties of Tungsten Oxide Based Thin Films and Nanofibers." In Low-Dimensional and Nanostructured Materials and Devices, 291–307. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25340-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Luby, S., E. Majkova, V. Daniska, R. Senderak, E. D’ Anna, G. Leggieri, A. Luches, and M. Martino. "Pulsed Excimer Laser Induced Reactions at the Tungsten-Silicon Interface." In Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices, 545–49. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1727-2_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lusis, A., J. Kleperis, and E. Pentjuss. "Properties of Multi Phase Interfaces on the Tungsten Trioxide Particles in the Thin Films." In Defects and Surface-Induced Effects in Advanced Perovskites, 261–66. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4030-0_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nam, Sung Pill, Sung Gap Lee, and Young Hie Lee. "Structural and Electrical Properties of Vanadium Tungsten Oxide Thin Films Grown on Pt/TiO2/SiO2/Si Substrates." In Eco-Materials Processing and Design IX, 73–76. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-472-3.73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hutchins, MG, NS Butt, and AJ Topping. "Electrochromic Tungsten Oxide Thin Films." In World Renewable Energy Congress VI, 259–64. Elsevier, 2000. http://dx.doi.org/10.1016/b978-008043865-8/50048-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

GRANOVIST, CLAES-GÖRAN. "Electrochromic Tungsten-Oxide–Based Thin Films: Physics, Chemistry, and Technology." In Physics of Thin Films, 301–70. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-12-533017-6.50010-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Woodruff, David W., and Joan M. Redwing. "Chemical vapor deposition of fine-grained equiaxed tungsten films." In Metallurgical Coatings and Thin Films 1991, 215–20. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-89455-7.50044-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thin tungsten films"

1

Lee, Yongjun, Ganesh Ghimire, Youngbum Kim, Changwon Seo, and Jeongyong Kim. "Improved light emission and suppression of exciton exciton annihilation rate in monolayer tungsten disulfide by laser irradiation (Conference Presentation)." In Nanostructured Thin Films XI, edited by Tom G. Mackay and Akhlesh Lakhtakia. SPIE, 2018. http://dx.doi.org/10.1117/12.2320871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guo, Qixin, Mitsuhiro Nishio, and Hiroshi Ogawa. "Tungsten thin films deposition on tool steel substrates." In 4th International Conference on Thin Film Physics and Applications, edited by Junhao Chu, Pulin Liu, and Yong Chang. SPIE, 2000. http://dx.doi.org/10.1117/12.408473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Usha, K. S., R. Sivakumar, and C. Sanjeeviraja. "Studies on nickel-tungsten oxide thin films." In LIGHT AND ITS INTERACTIONS WITH MATTER. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4898241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Goiz, O., F. Chávez, P. Zaca-Morán, J. G. Ortega-Mendoza, G. F. Pérez-Sánchez, N. Morales, C. Felipe, and R. Peña-Sierra. "Tungsten nanostructured thin films obtained via HFCVD." In SPIE NanoScience + Engineering, edited by Raúl J. Martín-Palma, Yi-Jun Jen, and Tom G. Mackay. SPIE, 2011. http://dx.doi.org/10.1117/12.893850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Se-Hee, Maeng J. Seong, Esra Ozcan, C. Ed Tracy, Fatma Z. Tepehan, and Satyen K. Deb. "Lithium insertion in tungsten oxide thin films." In International Symposium on Optical Science and Technology, edited by Carl M. Lampert, Claes-Goran Granqvist, and Keith L. Lewis. SPIE, 2001. http://dx.doi.org/10.1117/12.448249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Szekeres, Anna M., and D. S. Gogova. "Optical constants of thin CVD-Tungsten oxide films." In OPTIKA '98: Fifth Congress on Modern Optics, edited by Gyorgy Akos, Gabor Lupkovics, and Andras Podmaniczky. SPIE, 1998. http://dx.doi.org/10.1117/12.321009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhen, Yingpeng, Tao Gao, and Bjorn Petter Jelle. "Synthesis and characterization of tungsten oxide electrochromic thin films." In 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2018. http://dx.doi.org/10.1109/nano.2018.8626293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chaix-Pluchery, O., G. Lucazeau, F. Meyer, V. Aubry-Fortuna, and R. Madar. "Raman study of tungsten disilicide formation in thin films." In European Workshop Materials for Advanced Metallization. MAM'97 Abstracts Booklet. IEEE, 1997. http://dx.doi.org/10.1109/mam.1997.621108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chaix-Pluchery, O., G. Lucazeau, F. Meyer, V. Aubry-Fortuna, and R. Madar. "Raman study of tungsten disilicide formation in thin films." In European Workshop Materials for Advanced Metallization. MAM'97 Abstracts Booklet. IEEE, 1998. http://dx.doi.org/10.1109/mam.1998.887563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lv, Gang, Yonggang Wu, Heyun Wu, Leijie Ling, and Zihuan Xia. "Preparation and characterization of tungsten oxide thin films with high electrochromic performance." In Seventh International Conference on Thin Film Physics and Applications, edited by Junhao Chu and Zhanshan Wang. SPIE, 2010. http://dx.doi.org/10.1117/12.887560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography