Journal articles on the topic 'Thin materials'

To see the other types of publications on this topic, follow the link: Thin materials.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Thin materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Horiuchi, Noriaki. "Atomically thin materials." Nature Photonics 12, no. 11 (October 26, 2018): 641. http://dx.doi.org/10.1038/s41566-018-0294-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lara-Padilla, E., Maximino Avendano-Alejo, and L. Castaneda. "Transparent Conducting Oxides: Selected Materials for Thin Film Solar Cells." International Journal of Science and Research (IJSR) 11, no. 7 (July 5, 2022): 372–80. http://dx.doi.org/10.21275/sr22628033513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ishii, Hitoshi, Yohei Taguchi, Kazuo Ishii, and Hirofumi Akagi. "OS11W0239 Ultrasonic bending fatigue testing method for thin sheet materials." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS11W0239. http://dx.doi.org/10.1299/jsmeatem.2003.2._os11w0239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wellen, M. "8.1 Thin-layer Materials." Materials Science Forum 366-368 (March 2001): 549–59. http://dx.doi.org/10.4028/www.scientific.net/msf.366-368.549.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tsebrenko, M. V., N. M. Rezanova, and T. I. Sizevich. "Thin-fibre filtering materials." Fibre Chemistry 24, no. 1 (January 1992): 4–7. http://dx.doi.org/10.1007/bf00557167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Donges, Axel. "Measuring Extra-thin Materials." Optik & Photonik 9, no. 2 (May 2014): 52–54. http://dx.doi.org/10.1002/opph.201400043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tang, Wen, Tao Ruan Wan, and Donjing Huang. "Interactive thin elastic materials." Computer Animation and Virtual Worlds 27, no. 2 (June 5, 2015): 141–50. http://dx.doi.org/10.1002/cav.1666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Noudem, Jacques G. "Superconducting materials by design: Bulk with artificial thin walls as cryo-magnets." Mechanik, no. 2 (February 2015): 124/13–124/23. http://dx.doi.org/10.17814/mechanik.2015.2.73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lavine, Marc S. "A family of thin materials." Science 372, no. 6547 (June 10, 2021): 1162.10–1164. http://dx.doi.org/10.1126/science.372.6547.1162-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

García de Abajo, F. Javier, and Alejandro Manjavacas. "Plasmonics in atomically thin materials." Faraday Discussions 178 (2015): 87–107. http://dx.doi.org/10.1039/c4fd00216d.

Full text
Abstract:
The observation and electrical manipulation of infrared surface plasmons in graphene have triggered a search for similar photonic capabilities in other atomically thin materials that enable electrical modulation of light at visible and near-infrared frequencies, as well as strong interaction with optical quantum emitters. Here, we present a simple analytical description of the optical response of such kinds of structures, which we exploit to investigate their application to light modulation and quantum optics. Specifically, we show that plasmons in one-atom-thick noble-metal layers can be used both to produce complete tunable optical absorption and to reach the strong-coupling regime in the interaction with neighboring quantum emitters. Our methods are applicable to any plasmon-supporting thin materials, and in particular, we provide parameters that allow us to readily calculate the response of silver, gold, and graphene islands. Besides their interest for nanoscale electro-optics, the present study emphasizes the great potential of these structures for the design of quantum nanophotonics devices.
APA, Harvard, Vancouver, ISO, and other styles
11

Martins, R., H. Águas, V. Silva, I. Ferreira, A. Cabrita, and E. Fortunato. "Silicon nanostructure thin film materials." Vacuum 64, no. 3-4 (January 2002): 219–26. http://dx.doi.org/10.1016/s0042-207x(01)00339-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tiwari, A. N. "Thin film chalcogenide photovoltaic materials." Thin Solid Films 480-481 (June 2005): 1. http://dx.doi.org/10.1016/j.tsf.2004.12.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mirkin, Chad A., and W. Brett Caldwell. "Thin film, fullerene-based materials." Tetrahedron 52, no. 14 (April 1996): 5113–30. http://dx.doi.org/10.1016/0040-4020(96)00118-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Leskelä, Markku, and Markku Tammenmaa. "Materials for electroluminescent thin films." Materials Chemistry and Physics 16, no. 3-4 (February 1987): 349–71. http://dx.doi.org/10.1016/0254-0584(87)90105-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bauer, G. H. "Thin film solar cell materials." Applied Surface Science 70-71 (June 1993): 650–59. http://dx.doi.org/10.1016/0169-4332(93)90596-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Nakajima, Hideo, and Kazuaki Fukamichi. "Preface: Materials Science on Thin Films." Bulletin of the Japan Institute of Metals 29, no. 4 (1990): 212. http://dx.doi.org/10.2320/materia1962.29.212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Richter, Frank. "Thermophysics of superhard thin film materials." High Temperatures-High Pressures 32, no. 5 (2000): 521–34. http://dx.doi.org/10.1068/htwi6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Barber, Z. H., and M. G. Blamire. "High throughput thin film materials science." Materials Science and Technology 24, no. 7 (July 2008): 757–70. http://dx.doi.org/10.1179/174328408x293612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Polman, A. "Erbium implanted thin film photonic materials." Journal of Applied Physics 82, no. 1 (July 1997): 1–39. http://dx.doi.org/10.1063/1.366265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kellogg, Diane S., Bruce E. Waymack, Douglas D. Mcrae, and R. William Dwyer. "Smolder Rates of Thin Cellulosic Materials." Journal of Fire Sciences 15, no. 5 (September 1997): 390–403. http://dx.doi.org/10.1177/073490419701500504.

Full text
Abstract:
Linear burn rates were determined for thin, cellulosic materials (papers and cotton fabrics) held in the horizontal plane by measuring the rate of radial increase of the circular burn pattern. Linear burn rates were determined for freely smoldering materials and for materials in contact with polyurethane foam. The linear burn rates of the freely smoldering materials were found to be inversely proportional to basis weight. This relationship held over basis weights from 0.8 to 24 oz/yd2. The linear burn rates of the materials in contact with poly urethane foam were also inversely proportional to basis weight and were reduced about 16% from the free smolder rate. The effect of potassium ion content was also examined. A minimum level of potassium, approximately 1300 ppm, was re quired for sustained smoldering combustion. Above this minimum level, the ion content did not have a significant effect on the linear burn rate.
APA, Harvard, Vancouver, ISO, and other styles
21

Simmons-Potter, K., B. G. Potter Jr, D. C. Meister, and M. B. Sinclair. "Photosensitive thin film materials and devices." Journal of Non-Crystalline Solids 239, no. 1-3 (October 1998): 96–103. http://dx.doi.org/10.1016/s0022-3093(98)00724-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sang Bub Lee, J. G. Amar, and F. Family. "Thin film growth of incompatible materials." Physica A: Statistical Mechanics and its Applications 245, no. 3-4 (November 1997): 337–54. http://dx.doi.org/10.1016/s0378-4371(97)00399-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sealy, Cordelia. "Thin film materials go beyond silicon." Materials Today 19, no. 5 (June 2016): 251–52. http://dx.doi.org/10.1016/j.mattod.2016.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Jiang, Biao, Johan E. Carlson, Miguel Castaño Arranz, Philip Lindblad, and Johan öhman. "Ultrasonic Imaging through Thin Reverberating Materials." Physics Procedia 70 (2015): 380–83. http://dx.doi.org/10.1016/j.phpro.2015.08.099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kreider, Kenneth G., and A. W. Ruff. "Materials for thin-film wear sensors." Surface and Coatings Technology 86-87 (December 1996): 557–63. http://dx.doi.org/10.1016/s0257-8972(96)02946-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Quandt, E., and H. Holleck. "Materials development for thin film actuators." Microsystem Technologies 1, no. 4 (September 1995): 178–84. http://dx.doi.org/10.1007/bf01371492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Marchenko, V. G., E. A. Kolomytsev, and V. A. Pchelintsev. "Thermal embrittlement of thin-sheet materials." Chemical and Petroleum Engineering 28, no. 2 (February 1992): 125–27. http://dx.doi.org/10.1007/bf01148837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Susarrey Huerta, Orlando, Maribel Mendoza Nuñez, Pedro A. Tamayo Meza, and Alexander S. Balankin. "Mechanics of Randomly Folded Thin Materials." Advanced Materials Research 65 (March 2009): 33–38. http://dx.doi.org/10.4028/www.scientific.net/amr.65.33.

Full text
Abstract:
In this work, the mechanical properties of randomly folded thin sheets in the hydrostatic and non-hydrostatic stress states were studied. It is pointed out that under the hydrostatic compression the sheet, rigidity is governed by the volume dependence of its enthalpy, whereas in a non-hydrostatic stress state, the rigidity of folded sheets is controlled by the shape dependence of the Edwards entropy of the network of crumpling creases. Furthermore, the stress relaxation in folded sheets after uni-axial compression was studied. It was found that stress relaxation in folded elasto-plastic sheets differs from this in the folded predominantly plastic sheets and obeys an unusual relaxation law with the universal characteristic exponent.
APA, Harvard, Vancouver, ISO, and other styles
29

Fraxedas, J. "Thin films of molecular organic materials." Journal of Physics: Condensed Matter 20, no. 18 (March 7, 2008): 180301. http://dx.doi.org/10.1088/0953-8984/20/18/180301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhou, X. W., D. A. Murdick, B. Gillespie, J. J. Quan, Haydn N. G. Wadley, Ralf Drautz, and David Pettifor. "Atomic Assembly of Thin Film Materials." Materials Science Forum 539-543 (March 2007): 3528–33. http://dx.doi.org/10.4028/www.scientific.net/msf.539-543.3528.

Full text
Abstract:
The atomic-scale structures and properties of thin films are critically determined by the various kinetic processes activated during their atomic assembly. Molecular dynamics simulations of growth allow these kinetic processes to be realistically addressed at a timescale that is difficult to reach using ab initio calculations. The newest approaches have begun to enable the growth simulation to be applied for a wide range of materials. Embedded atom method potentials can be successfully used to simulate the growth of closely packed metal multilayers. Modified charge transfer ionic + embedded atom method potentials are transferable between metallic and ionic materials and have been used to simulate the growth of metal oxides on metals. New analytical bond order potentials are now enabling significantly improved molecular dynamics simulations of semiconductor growth. Selected simulations are used to demonstrate the insights that can be gained about growth processes at surfaces.
APA, Harvard, Vancouver, ISO, and other styles
31

Shu, Y. C. "Heterogeneous Thin Films of Martensitic Materials." Archive for Rational Mechanics and Analysis 153, no. 1 (June 1, 2000): 39–90. http://dx.doi.org/10.1007/s002050000088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Steckelmacher, W. "The materials science of thin films." Vacuum 46, no. 1 (January 1995): 85. http://dx.doi.org/10.1016/0042-207x(95)80054-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

OSAKA, Tetsuya, Hiroshi MATSUBARA, and Naganori MASUBUCH. "Preparation of electroless-plated thin films for functional thin film materials." NIPPON KAGAKU KAISHI, no. 10 (1989): 1659–66. http://dx.doi.org/10.1246/nikkashi.1989.1659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Suzuki, Toshimasa. "Interface Structure of Practical Electroceramic Thin Film Materials." Materia Japan 42, no. 12 (2003): 896. http://dx.doi.org/10.2320/materia.42.896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

INOMATA, Takashi. "Evaluation of Optical Thin Films and Development of Functional Thin Film Materials." Journal of The Surface Finishing Society of Japan 71, no. 10 (October 1, 2020): 613–19. http://dx.doi.org/10.4139/sfj.71.613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Miyazaki, Yuzuru. "Miyazaki Laboratory research in: thermoelectric materials, organic thin films, photovoltaic thin films." Impact 2018, no. 5 (August 20, 2018): 19–21. http://dx.doi.org/10.21820/23987073.2018.5.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

PAZAER, Jamadil Azwad, Koji MAKITA, Tempei TANAKAMARU, Shunichi NABEYA, and Yoshihito MATSUMURA. "High responsive giant magnetostrictive materials thin film." Journal of Advanced Science 20, no. 1/2 (2008): 33–36. http://dx.doi.org/10.2978/jsas.20.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kosyachkov, A., L. Wang, J. Anzellotti, R. Hallock, and C. Hodgson. "Thin Film Materials for Optical Interference Filters." Key Engineering Materials 538 (January 2013): 345–48. http://dx.doi.org/10.4028/www.scientific.net/kem.538.345.

Full text
Abstract:
Abstract. Microstructural, optical and mechanical properties of oxide and fluoride films are examined. Superior optical quality, durability and environmental stability are achieved for oxides deposited by ion assist reactive ion beam sputtering and thermal evaporation. The materials and deposition techniques are discussed with regards to manufacturing of optical interference filters for near-UV – mid-IR wavelengths. High performance of thin film materials and optical filters is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
39

Trzaska, Maria. "Chemically and electrochemically deposited thin-layer materials." Annales de chimie Science des Matériaux 32, no. 4 (August 23, 2007): 325–44. http://dx.doi.org/10.3166/acsm.32.325-344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zhang, Peng, Y. Y. Lau, and R. M. Gilgenbach. "Thin film contact resistance with dissimilar materials." Journal of Applied Physics 109, no. 12 (June 15, 2011): 124910. http://dx.doi.org/10.1063/1.3596759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Toth, Milos, and Igor Aharonovich. "Single Photon Sources in Atomically Thin Materials." Annual Review of Physical Chemistry 70, no. 1 (June 14, 2019): 123–42. http://dx.doi.org/10.1146/annurev-physchem-042018-052628.

Full text
Abstract:
Layered materials are very attractive for studies of light–matter interactions at the nanoscale. In particular, isolated quantum systems such as color centers and quantum dots embedded in these materials are gaining interest due to their potential use in a variety of quantum technologies and nanophotonics. Here, we review the field of nonclassical light emission from van der Waals crystals and atomically thin two-dimensional materials. We focus on transition metal dichalcogenides and hexagonal boron nitride and discuss the fabrication and properties of quantum emitters in these systems and proof-of-concept experiments that provide a foundation for their integration in on-chip nanophotonic circuits. These experiments include tuning of the emission wavelength, electrical excitation, and coupling of the emitters to waveguides, dielectric cavities, and plasmonic resonators. Finally, we discuss current challenges in the field and provide an outlook to further stimulate scientific discussion.
APA, Harvard, Vancouver, ISO, and other styles
42

Ouaddari, M., S. Delprat, F. Vidal, M. Chaker, and Ke Wu. "Microwave characterization of ferroelectric thin-film materials." IEEE Transactions on Microwave Theory and Techniques 53, no. 4 (April 2005): 1390–97. http://dx.doi.org/10.1109/tmtt.2005.845759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Henry, R. L., E. J. Cukauskas, S. B. Qadri, A. H. Singer, and G. G. Campisi. "Thin film growth of oxide superconductor materials." IEEE Transactions on Magnetics 25, no. 2 (March 1989): 2352–55. http://dx.doi.org/10.1109/20.92780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Osborne, Ian S. "Getting a sense of atomically thin materials." Science 355, no. 6324 (February 2, 2017): 490.9–491. http://dx.doi.org/10.1126/science.355.6324.490-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lyn’kov, L. M., V. A. Bogush, E. A. Senkovets, and S. M. Zavadskii. "Thin-film nickel coatings on fiber materials." Technical Physics Letters 29, no. 8 (August 2003): 641–42. http://dx.doi.org/10.1134/1.1606774.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Livanov, Konstantin, Asaf Nissenbaum, and H. Daniel Wagner. "Nanocomposite thin film coatings for brittle materials." Nanocomposites 2, no. 4 (October 1, 2016): 162–68. http://dx.doi.org/10.1080/20550324.2016.1254926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cooke, M. D., D. A. Allwood, D. Atkinson, G. Xiong, C. C. Faulkner, and R. P. Cowburn. "Thin single layer materials for device application." Journal of Magnetism and Magnetic Materials 257, no. 2-3 (February 2003): 387–96. http://dx.doi.org/10.1016/s0304-8853(02)01280-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kahn, Ethan, Mingzu Liu, Tianyi Zhang, He Liu, Kazunori Fujisawa, George Bepete, Pulickel M. Ajayan, and Mauricio Terrones. "Functional hetero-interfaces in atomically thin materials." Materials Today 37 (July 2020): 74–92. http://dx.doi.org/10.1016/j.mattod.2020.02.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Tong, X., A. Trivedi, H. Jia, M. Zhang, and P. Wang. "Enzymic Thin Film Coatings for Bioactive Materials." Biotechnology Progress 24, no. 3 (June 6, 2008): 714–19. http://dx.doi.org/10.1021/bp0704135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

He, J. H., J. K. Luo, M. A. Hopcroft, H. R. Le, and D. F. Moore. "Nanomechanical characterisation of MEMS thin film materials." International Journal of Computational Materials Science and Surface Engineering 2, no. 3/4 (2009): 342. http://dx.doi.org/10.1504/ijcmsse.2009.027491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography