Academic literature on the topic 'Thin films; Elastic properties'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thin films; Elastic properties.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thin films; Elastic properties"

1

Serizawa, Kazufumi, Keisuke Tanaka, Yoshiaki Akiniwa, and Hirohisa Kimachi. "OS06W0448 Finite element analysis of elastic properties of textured thin films." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2003.2 (2003): _OS06W0448. http://dx.doi.org/10.1299/jsmeatem.2003.2._os06w0448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Streitz, F. H., K. Sieradzki, and R. C. Cammarata. "Elastic properties of thin fcc films." Physical Review B 41, no. 17 (June 15, 1990): 12285–87. http://dx.doi.org/10.1103/physrevb.41.12285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hurley, D. C., R. H. Geiss, M. Kopycinska-Müller, J. Müller, D. T. Read, J. E. Wright, N. M. Jennett, and A. S. Maxwell. "Anisotropic elastic properties of nanocrystalline nickel thin films." Journal of Materials Research 20, no. 5 (May 2005): 1186–93. http://dx.doi.org/10.1557/jmr.2005.0146.

Full text
Abstract:
The elastic properties of a nickel film approximately 800 nm thick were measured with nanoindentation, microtensile testing, atomic force acoustic microscopy (AFAM), and surface acoustic wave (SAW) spectroscopy. Values for the indentation modulus (220–223 GPa) and Young’s modulus (177–204 GPa) were lower than predicted for randomly oriented polycrystalline nickel. The observed behavior was attributed to grain-boundary effects in the nanocrystalline film. In addition, the different measurement results were not self-consistent when interpreted assuming elastic isotropy. Agreement was improved by adopting a transversely isotropic model corresponding to the film’s 〈111〉 preferred orientation and reducing the elastic moduli by 10–15%. The SAW spectroscopy results indicated that the film density was 1–2% lower than expected for bulk nickel, consistent with models for nanocrystalline materials. Similar reductions in modulus and density were observed for two additional films approximately 200 and 50 nm thick using AFAM and SAW spectroscopy. These results illustrate how complementary methods can provide a more complete picture of film properties.
APA, Harvard, Vancouver, ISO, and other styles
4

Marques, Francisco C. "Thermal and Elastic Properties of Thin Films." International Journal of Advanced Engineering Research and Science 3, no. 11 (2016): 89–92. http://dx.doi.org/10.22161/ijaers/3.11.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Werner, M., S. Hein, and E. Obermeier. "Elastic properties of thin polycrystalline diamond films." Diamond and Related Materials 2, no. 5-7 (April 1993): 939–42. http://dx.doi.org/10.1016/0925-9635(93)90254-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Dong Nyung. "Elastic properties of thin films of cubic system." Thin Solid Films 434, no. 1-2 (June 2003): 183–89. http://dx.doi.org/10.1016/s0040-6090(03)00538-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mizubayashi, H. "Elastic and Anelastic Properties of Amorphous Thin Films." Le Journal de Physique IV 06, no. C8 (December 1996): C8–769—C8–778. http://dx.doi.org/10.1051/jp4:19968165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Carlotti, G., G. Socino, and L. Doucet. "Elastic properties of spin‐on glass thin films." Applied Physics Letters 66, no. 20 (May 15, 1995): 2682–84. http://dx.doi.org/10.1063/1.113124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bandhu, R. S., R. Sooryakumar, R. F. C. Farrow, D. Weller, M. F. Toney, and T. A. Rabedeau. "Elastic properties of chemically ordered Co3Pt thin films." Journal of Applied Physics 91, no. 5 (March 2002): 2737–41. http://dx.doi.org/10.1063/1.1433924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pagliaro, Mario, Giovanni Palmisano, Eric Le Bourhis, Rosaria Ciriminna, Laura M. Ilharco, and Alexandra Fidalgo. "Enhanced Mechanical Properties in Organofluorosilica Thin Films." Journal of Nanomaterials 2008 (2008): 1–5. http://dx.doi.org/10.1155/2008/964046.

Full text
Abstract:
Fluorinated hybrid organic-inorganic silicates (ORMOSIL) thin films display exceptional mechanical properties in terms of both hardness and elastic modulus that can be finely tuned by varying the angular velocity of the spin coating process. Hence, as traditional alkyl-modified silica xerogels generally show poor mechanical behavior, these materials offer a solution to a major limitation to applicability of ORMOSIL-based films.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thin films; Elastic properties"

1

Sklar, Zenon. "Quantitative acoustic microscopy of coated materials." Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Han Sung. "Prediction Of Elastic Properties Of Micro- And Nano-Scale Thin Films." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1211905997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Deva, Reddy Jayadeep. "Mechanical Properties of Silicon Carbide (SiC) Thin Films." Scholar Commons, 2007. https://scholarcommons.usf.edu/etd/210.

Full text
Abstract:
There is a technological need for hard thin films with high elastic modulus. Silicon Carbide (SiC) fulfills such requirements with a variety of applications in high temperature and MEMS devices. A detailed study of SiC thin films mechanical properties was performed by means of nanoindentation. The report is on the comparative studies of the mechanical properties of epitaxially grown cubic (3C) single crystalline and polycrystalline SiC thin films on Si substrates. The thickness of both the Single and polycrystalline SiC samples were around 1-2 µm. Under indentation loads below 500 µ-Newton both films exhibit Elastic contact without plastic deformation. Based on the nanoindentation results polycrystalline SiC thin films have an elastic modulus and hardness of 422 plus or minus 16 GPa and 32.69 plus or minus 3.218 GPa respectively, while single crystalline SiC films elastic modulus and hardness of 410 plus or minus 3.18 Gpa and 30 plus or minus 2.8 Gpa respectively. Fracture toughness experiments were also carried out using the nanoindentation technique and values were measured to be 1.48 plus or minus 0.6 GPa for polycrystalline SiC and 1.58 plus or minus 0.5 GPa for single crystal SiC, respectively. These results show that both polycrystalline SiC thin films and single crystal SiC more or less have similar properties. Hence both single crystal and polycrystalline SiC thin films have the capability of becoming strong contenders for MEMS applications, as well as hard and protective coatings for cutting tools and coatings for MEMS devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Schwarzer, Norbert. "Modelling of the contact mechanics of thin films using analytical linear elastic approaches." Doctoral thesis, [S.l. : s.n.], 2004. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11244005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

He, Wei. "Mechanical and microstructural properties of thin metal films on compliant substrates." Thesis, Poitiers, 2016. http://www.theses.fr/2016POIT2280/document.

Full text
Abstract:
Le comportement mécanique de films minces métalliques déposés sur des substrats souples joue un rôle déterminant dans les performances de l'électronique flexible et des micro- systèmes électromécaniques (MEMS).Dans un premier temps, une nouvelle méthode est présentée pour caractériser le module d'élasticité de films minces submicroniques. Avec deux couches déposées de chaque côté et sur la moitié du substrat polymère, la corrélation d'image numérique (CIN) a été utilisée pour mesurer simultanément la déformation du film et du substrat in situ au cours d'un essai de traction. La différence entre les déformations mesurées sur la partie vierge et le composite permet d'extraire les propriétés élastiques de films minces de manière simple et avec grande précision. Comme attendu, la distribution des déformations est uniforme au travers de l'épaisseur du film ce qui indique une adhésion parfaite entre le film et le substrat. Dans le cas de films minces de tungstène, de chrome, de nickel et de cuivre, les valeurs de module obtenues sont proches de celles des mêmes matériaux à l'état massif.Dans un deuxième temps, une nouvelle méthode expérimentale utilisant une machine de déformation uniaxiale est présentée pour étudier l'effet Bauschinger dans des films minces métalliques déposés sur des substrats étirables. Grâce à un dispositif original, les films minces sont déposés sur des substrats prétendus et peuvent donc être déformés alternativement en tension et en compression dans un large domaine de déformations. La déformation élastique intra granulaire des films minces polycristallins et la déformation macroscopique du substrat sont mesurées in situ par diffraction des rayons X et CIN respectivement. A partir des courbes « déformation élastique – déformation macroscopique », la réponse mécanique de l'ensemble film / substrat est analysée au vu de l'histoire complète du chargement et de la microstructure (contraintes résiduelles, texture) des films minces
The mechanical behavior of metallic thin films deposited on soft substrates plays a crucial role in the performance of flexible electronics and MicroElectroMechanical Systems (MEMS).At first, a novel method is presented to characterize the in-plane elastic modulus of sub micrometer thin films. With two coating layers bonded symmetrically to half polyimide substrates, Digital Image Correlation (DIC) has been employed to measure time-resolved full-field strain maps of film and substrate during in situ tensile testing. The strain differences between virgin and composite parts allowed to extract the elastic properties of the thin films in a simple way with high precision. As expected, the strain distribution is uniform through the film thickness which indicates a perfect adhesion between the film and the substrate. In the case of tungsten, chromium, nickel and copper films, the values obtained are close to the bulk one.In a second step, a new experimental method using uniaxial tensile testing is presented to study Bauschinger effect in thin metallic films deposited on stretchable substrates. Thanks to our new pre-tensile setup (specific grips), the thin films were deposited on pre-stretched substrates and thus could be deformed alternately in tension and compression within a large strain domain. The elastic intra-granular strain of polycrystalline thin films and true strain of substrates are measured in situ by X-Ray Diffraction (XRD) and DIC. From lattice strain-true strain curves, the mechanical response of copper and nickel /substrate sets is analyzed in view of the complete loading history and the presence of residual stresses and crystallographic texture in thin films
APA, Harvard, Vancouver, ISO, and other styles
6

Schwarzer, Norbert. "Modelling of the contact mechanics of thin films using analytical linear elastic approaches." Doctoral thesis, N. Schwarzer: Arbitrary load distribution on a layered half space, ASME Journal of Tribology, Vol. 122, No. 4, October 2000, 672-681, ISSN 0742-4787; N. Schwarzer, F. Richter, G. Hecht: ”Elastic Field in a Coated Half Space under Hertzian pressure distribution”, J. of Surface & Coatings Technology 114 (1999) 292-304, ISSN 0257-8972; N. Schwarzer, Th. Chudoba, D. Billep, F. Richter: ”Investigation of coating substrate compounds using inclined spherical indentation”, J. of Surface & Coatings Technology 116 – 119 (1999) 244-252, ISSN 0257-8972, 2003. https://monarch.qucosa.de/id/qucosa%3A18161.

Full text
Abstract:
In this work the author presents simulation procedures (mathematical models) with the aim to help determining and analysing the mechanical properties of coating-substrate-systems and finding an “optimal” coating structure which should protect the compound from inelastic deformation under a given range of load conditions. Such procedures may be used as a tool to minimise the search field for experimental work. For this purpose one would need a mathematical model which allows one to calculate the complete elastic field with all its displacement and stress components within a multilayer film on a substrate under given mechanical loading and intrinsic stress conditions. Due to copyright restrictions the author is not allowed to publish the Part II of his habilitation thesis at this place. It concerns the references in meta data.
In der Arbeit werden mathematische Modelle zur Berechnung der mechanischen Eigenschaften geschichtet aufgebauter Materialien unter unterschiedlichsten Lastbedingungen (Kontakt- und intrinsische Beanspruchung) vorgestellt und diskutiert. Auf Grund von Schutzrechtsbestimmungen ist eine Veröffentlichung der in der Habilitation angegebenen Literatur im Teil II an dieser Stelle nicht möglich. Der interessierte Leser wird gebeten die Arbeiten in den entsprechenden Journalen einzusehen. Dies betrifft die in den Metadaten angegebenen Veröffentlichungen des Autors.
APA, Harvard, Vancouver, ISO, and other styles
7

Ashrafi, Behnam. "Theoretical and experimental investigations of the elastic properties of carbon nanotube-reinforced polymer thin films." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21910.

Full text
Abstract:
Nanocomposites are a promising new class of materials for the mechanical components of microstructures such as microactuators and microresonators. This work presents a combination of theoretical and experimental investigations of the utility of carbon nanotube-reinforced composites for designing microstructures. In the theoretical part of this research, the effects of nanotube aspect ratio, dispersion, alignment, and volume fraction on the elastic modulus and longitudinal wave velocity are analyzed by recourse to the Mori-Tanaka theory. The calculated bounds on Young's modulus and wave velocity capture the trend of the experimental results reported in the literature. Polymer-matrix nanocomposites reinforced with aligned, dispersed single-walled carbon nanotubes are identified as excellent candidates for small structures with properties rivaling those of metallic- and ceramic-structures used in the current generation of microelectromechanical systems (MEMS). The experimental part of this research focuses on the manufacture and characterization of carbon nanotube-reinforced polymer thin films. A novel nanoindenter-based bending test is developed for characterizing the elastic properties of nanocomposite thin films. This technique is first numerically verified using finite element methods. Polymer thin films with known mechanical properties are then utilized to validate the technique experimentally. Next, epoxy-matrix and vinyl ester epoxy-matrix nanocomposite films (ranging from 50 to 70 μm in thickness) reinforced with low concentrations (<1% by weight) of single-walled carbon nanotubes are successfully manufactured and characterized. Finally, using carbon nanotube sheets (buckypaper), polymer-matrix nanocomposite films with high volume fractions of carbon nanotubes (30-40%) are manufactured by using two different techniques: vacuum infiltration and hot press. This relatively high content of carbon nanotubes results in a three- to four-fold increase in the elasti
Les nano-composites sont une nouvelle classe de matériaux prometteurs pour les composants mécaniques de microstructures telles que les micro-actuateurs et micro-résonateurs. Ce travail présente une combinaison d'études théoriques et expérimentales sur l'utilité de composites renforcés par des nanotubes de carbone pour la conception de microstructures. Dans la partie théorique de cette recherche, les effets du rapport de forme, de la dispersion, de l'alignement et de la fraction volumique des nanotubes sur le module élastique et la vitesse d'onde longitudinale ont été analysés en utilisant la théorie de Mori-Tanaka. Les limites calculées du module d'Young et de la vitesse d'onde capturent la tendance des résultats expérimentaux rapportés dans la littérature. Les nano-composites à matrice polymère renforcée avec des SWNT alignés et dispersés ont été identifiés comme d'excellents candidats pour de petites structures dont les propriétés rivalisent avec les structures métalliques ou céramiques utilisées dans la présente génération de systèmes micro-électro-mécaniques (MEMS). La partie expérimentale de cette recherche focalise sur la fabrication et la caractérisation de films polymères minces renforcés avec des nanotubes de carbone. Du aux difficultés rencontrées avec les techniques traditionnelles pour la caractérisation du module élastique de films polymère minces, une nouvelle technique, un test en flexion par nano-indentation, a été développée avec succès. La technique a été d'abord vérifiée numériquement par la 00 méthode d'éléments finis. Puis des films polymère minces avec des propriétés connues ont été utilisés pour vérifier cette technique expérimentalement. Par la suite, des films minces (épaisseur variant de 50 à 70 μm) de nano-composite à matrice époxy et vinyle-ester renforcées avec de faibles concentrations de SWNT (1% par masse) ont été fabriqués et caractérisés avec succès
APA, Harvard, Vancouver, ISO, and other styles
8

Chima-Okereke, Chibisi. "The elastic properties of PZT thin films on Pt/SiOâ‚‚/Si substrate measured by nanoindentation." Thesis, Queen Mary, University of London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bock, Florian. "Active learning of interatomic potentials to investigate thermodynamic and elastic properties of Ti0.5Al0.5N at elevated temperature." Thesis, Linköpings universitet, Teoretisk Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176587.

Full text
Abstract:
With the immense increase in the computational power available for the material science community in recent years, a range of new discoveries were made possible. Accurate investigations of large scale atomic systems, however, still come with an extremely high computational demand. While the recent development of Graphics Processing Unit (GPU) accelerated supercomputing might offer a solution to some extent, most well known electronic structure codes have yet to be fully ported to utilize this new power. With a soaring demand for new and better materials from both science and industry, a more efficient approach for the investigation of material properties needs to be implemented. The use of Machine Learning (ML) to obtain Interatomic Potentials (IP) which far outperform the classical potentials has increased greatly in recent years. With successful implementation of ML methods utilizing neural networks or Gaussian basis functions, the accuracy of ab-initio methods can be achieved at the demand of simulations with empirical potentials. Most ML approaches, however, require high accuracy data sets to be trained sufficiently. If no such data is available for the system of interest, the immense cost of creating a viable data set from scratch can quickly negate the benefit of using ML. In this diploma project, the elastic and thermodynamic properties of the Ti0.5Al0.5N random alloy at elevated temperature are therefore investigated using an Active Learning (AL) approach with the Machine Learning Interatomic Potentials (MLIP) package. The obtained material properties are found to be in good agreement with results from computationally demanding ab-initio studies of Ti0.5Al0.5N, at a mere fraction of the demand. The AL approach requires no high accuracy data sets or previous knowledge about the system, as the model is initially trained on low accuracy data which is removed from the training set (TS) at a later stage. This allows for an iterative process of improving and expanding the data set used to train the IP, without the need for large amounts of data.
APA, Harvard, Vancouver, ISO, and other styles
10

Hostert, Carolin [Verfasser]. "Towards designing elastic and magnetic properties of Co-based thin film metallic glasses / Carolin Hildegard Hostert." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1026067758/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Thin films; Elastic properties"

1

K, Jones B., ed. Physical properties of thin metal films. London: Taylor & Francis, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heavens, O. S. Optical properties of thin solid films. New York: Dover Publications, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Volkerts, John P. Magnetic thin films: Properties, performance, and applications. Hauppauge, N.Y: Nova Science Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nanostructured thin films and coatings: Mechanical properties. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khomchenko, Alexander V. Waveguide spectroscopy of thin films. Amsterdam: Elsevier, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Macleod, H. A. Thin film optical filters. 4th ed. Boca Raton: Taylor & Francis, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Optical thin films: Users' handbook. New York: Macmillan, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rancourt, James D. Optical thin films: Users' handbook. New York: McGraw-Hill, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Optical thin films: User handbook. Bellingham, Wash., USA: SPIE Optical Engineering Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nanostructured thin films and surfaces. Weinheim: Wiley-VCH, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thin films; Elastic properties"

1

White, B. E., and R. O. Pohl. "Elastic Properties of Amorphous Thin Films." In Springer Series in Solid-State Sciences, 273–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84888-9_106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chima-Okereke, C., W. L. Roberts, A. J. Bushby, and M. J. Reece. "The Elastic Properties of Ferroelectric Thin Films Measured Using Nanoindentation." In Multifunctional Polycrystalline Ferroelectric Materials, 543–72. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-2875-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ballantine, David S., and Hank Wohltjen. "Elastic Properties of Thin Polymer Films Investigated with Surface Acoustic Wave Devices." In ACS Symposium Series, 222–36. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0403.ch015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Askarpour, Vahid, Murli H. Manghnani, Michael Mendik, and Peter Wachter. "Elastic Properties of Thin Film Silicon Nitride by Brillouin Spectroscopy." In Nondestructive Characterization of Materials VI, 279–83. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2574-5_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Yung-Chun, Wei Li, and Jan D. Achenbach. "Measurements of Thin-Film Elastic Properties by Line-Focus Acoustic Microscopy." In Review of Progress in Quantitative Nondestructive Evaluation, 1797–804. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1987-4_230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hu, Ying Yong, and Wei Min Huang. "Thermal Stress Analysis and Characterization of Thermomechanical Properties of Thin Films on an Elastic Substrate." In Handbook of Manufacturing Engineering and Technology, 1–71. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4976-7_51-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hu, Ying Yong, and Wei Min Huang. "Thermal Stress Analysis and Characterization of Themo-Mechanical Properties of Thin Films on an Elastic Substrate." In Handbook of Manufacturing Engineering and Technology, 3055–133. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-4670-4_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Neubrand, A., A. Mayer, and P. Hess. "Determination of the Thickness, Density and Elastic Properties of Thin Films with Laser Generated Surface Acoustic Waves." In Photoacoustic and Photothermal Phenomena III, 714–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-540-47269-8_183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Goudeau, Philippe, Damien Faurie, Baptiste Girault, Pierre Olivier Renault, Eric Le Bourhis, Pascale Villain, Frederic Badawi, et al. "Strains, Stresses and Elastic Properties in Polycrystalline Metallic Thin Films: In Situ Deformation Combined with X-Ray Diffraction and Simulation Experiments." In Materials Science Forum, 735–40. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-414-6.735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mwema, Fredrick Madaraka, Esther Titilayo Akinlabi, and Oluseyi Philip Oladijo. "Thin Film Growth, Structure, and Properties." In Sputtered Thin Films, 3–30. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021. | Series: Engineering materials book series: CRC Press, 2021. http://dx.doi.org/10.1201/9781003053507-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thin films; Elastic properties"

1

Kurz, Nicolas, Fazel Parsapour, Vladimir Pashchenko, Lutz Kirste, Vadim Lebedev, Paul Muralt, Oliver Ambacher, and Nicolay Pascal. "Determination of Elastic and Piezoelectric Properties of Al0.84Sc0.16N Thin Films." In 2018 IEEE International Ultrasonics Symposium (IUS). IEEE, 2018. http://dx.doi.org/10.1109/ultsym.2018.8579706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Iyer, N., K. Cooper, J. Yang, F. Zenhausern, Alberto D’Amore, Domenico Acierno, and Luigi Grassia. "MEASURING ELASTIC PROPERTIES OF THIN BIOLOGICAL FILMS USING CAPILLARY WRINKLING." In IV INTERNATIONAL CONFERENCE TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2008. http://dx.doi.org/10.1063/1.2989066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thielsch, Roland, Joerg Heber, Torsten Feigl, and Norbert Kaiser. "Stress, microstructure and thermal-elastic properties of evaporated thin MgF_2 - films." In Optical Interference Coatings. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/oic.2004.the6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sakamoto, Kensuke, Tatsuya Omori, Jun-ichi Kushibiki, Satoru Matsuda, and Ken-ya Hashimoto. "Evaluation of elastic properties of SiO2 thin films by ultrasonic microscopy." In 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum (FCS). IEEE, 2015. http://dx.doi.org/10.1109/fcs.2015.7138960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Omori, Tatsuya, Kensuke Sakamoto, Satoshi Suzuki, Jun-ichi Kushibiki, Satoru Matsuda, and Ken-ya Hashimoto. "Characterization of elastic properties of SiO2 thin films by ultrasonic microscopy." In 2014 IEEE International Ultrasonics Symposium (IUS). IEEE, 2014. http://dx.doi.org/10.1109/ultsym.2014.0219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Beghi, Marco G., Carlo E. Bottani, and Rosanna Pastorelli. "Measurement of elastic properties of thin films by surface Brillouin scattering." In International Symposium on Optical Science and Technology, edited by David L. Andrews, Toshimitsu Asakura, Suganda Jutamulia, Wiley P. Kirk, Max G. Lagally, Ravindra B. Lal, and James D. Trolinger. SPIE, 2000. http://dx.doi.org/10.1117/12.401637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shan, Zhaohui, and Suresh K. Sitaraman. "Characterization of Mechanical Properties of Thin Films by Nanoindentation Technique and Finite Element Simulation." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39668.

Full text
Abstract:
Titanium thin films have been widely used in microelectronics due to their good adhesion to substrates, such as Silicon wafer and Quartz. However, mechanical behavior of Titanium thin films has not been well characterized. This paper presents a methodology that combines the nanoindentation technique and finite element modeling to characterize the mechanical (elastic and plastic) properties of thin film with its application on Titanium thin film deposited on silicon substrate. The results show that the elastic properties (Young’s modulus) of the Titanium thin film does not change much from the bulk Titanium, and the plastic properties (yield stress and strain hardening exponent) of the Titanium thin film are higher than those of bulk Titanium. This method is also applicable for the study of mechanical properties of other thin films and small volume materials.
APA, Harvard, Vancouver, ISO, and other styles
8

Pageler, A., Klaus Kosbi, Ulf G. Brauneck, Hans Gerd G. Busmann, and Siegfried Boseck. "Determination of the elastic properties of carbon thin films using scanning acoustic microscopy." In Acousto-Optics and Applications III, edited by Antoni Sliwinski, Bogumil B. J. Linde, and Piotr Kwiek. SPIE, 1998. http://dx.doi.org/10.1117/12.330498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Avile´s, F., L. Llanes, A. I. Oliva, J. E. Corona, M. Aguilar-Vega, and M. I. Lori´a-Bastarrachea. "Elasto-Plastic Properties of Thin Gold Films Over Polymeric Substrates." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66319.

Full text
Abstract:
Metallic thin films have been extensively used as coatings, interconnections, sensors and as part of micro and nano-electromechanical devices (MEMS and NEMS). The conventional substrates utilized to deposit those films are normally rigid, such as silicon. However, for applications where the substrate is subjected to significant mechanical strain (e.g. automotive coatings, electronic textiles, bioengineering, etc.) the film-substrate system needs to be flexible and conformable. Compliant polymeric substrates are ideal candidates for such a task. Some interesting mechanical properties not achieved with conventional rigid substrates can be transmitted to the film by the use of polymeric substrates. In this work, mechanical properties of 50 to 300 nm gold films deposited by thermal deposition over two thermoplastic substrates are investigated. A commercial thermoplastic, Polysulfone (“PSF”), and a home-synthesized isophthalic polyester based on the reaction of 4, 4′-(1-hydroxyphenylidene) phenol and isophthaloyl dichloride (“BAP”) [1] were used as raw materials for substrate production. Substrates were selected based on their good mechanical properties and flexibility. The use of two different substrates allows us to investigate the influence of the substrate mechanical properties in the bimaterial response. Substrates of 80 μm thickness were prepared by solution casting and cut to rectangular shapes of nominal dimensions of 30 mm × 5 mm. High purity (99.999%) commercial gold splatters were used for film deposition. Gold films with thickness of 50, 100, 200, and 300 nm were deposited onto PSF substrates by thermal evaporation inside a vacuum chamber at 3×10−5 Torr. Au films with 100 nm thickness were also deposited over BAP substrates. Four replicates of each type were deposited (at the same time) and used for tensile testing. Tensile testing of Au/PSF (film thickness 50–300 nm) and Au/BAP (film thickness 100 nm) specimens was conducted. Tests of the neat PSF and BAP substrates (6 replicates) were also conducted as a baseline. Tensile testing was conducted in a small universal testing machine with a load cell of 200 N and a cross head speed of 0.05 mm/min. The film mechanical properties were extracted from the tensile response of the film/substrate system, considered as a bimaterial. Based on sum of forces and strain compatibility, the film modulus (Ef) and stress (σf) can be extracted from characteristics of the bimaterial (EBim, σBim) and substrate (Es, σs), to generate a stress-strain curve for the film, see e.g. [2], Ef=1Af[ABimEBim−AsEs]=1+tstfEBim−tstfEs(1a)σf=1Af[P−Ps]=1+tstfσBim−tstfσs(1b) where P is the applied load, A = wt is the cross sectional area and sub-index “Bim” corresponds to the film-substrate bimaterial (ABim = w(ts+tf)). Figure 1 shows film stress (σ)-strain (ε) representative curves for Au films with different thicknesses extracted from the Au/PSF bimaterials. The film behavior presents only a small region of plasticity close to the ultimate strain. Thus, the numerical value of the maximum stress (strength) is close to its yield strength. The large plasticity of the substrate may hinder the plasticity of gold when acting as a bimaterial. As observed from this figure, the film modulus, strength and ultimate strain increase as the film thickness decreases, evidencing a “thickness-effect” not observed in bulk materials. Slightly different properties were obtained for the Au films deposited over the BAP substrate, which evidences some substrate-dependency of the film properties.
APA, Harvard, Vancouver, ISO, and other styles
10

Du, J. "Elastic properties of organic thin film by acoustic microscopy." In QUANTITATIVE NONDESTRUCTIVE EVALUATION. AIP, 2002. http://dx.doi.org/10.1063/1.1472930.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thin films; Elastic properties"

1

Pohl, R. O. Elastic Properties of Thin Film Silicon: Final Report; 1 June 1999--23 August 2002. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/15004716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kornreich, Philipp, T. C. Kuo, and P. Ghosh. Growth and Microstructural Properties of Cadmium Telluride Thin Films. Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada251686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eom, Chang-Beom. Microwave Properties of Atomic Layer Controlled HTS Thin Films. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada473346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bourcier, R. J., J. J. Sniegowski, and V. L. Porter. A novel method to characterize the elastic/plastic deformation response of thin films. Office of Scientific and Technical Information (OSTI), July 1996. http://dx.doi.org/10.2172/399701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xi, Xiaoxing. Lattice Dynamical Properties of Ferroelectric Thin Films at the Nanoscale. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1114213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Green, Peter F. Brush-Coated Nanoparticle Polymer Thin Films: structure-mechanical-optical properties. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1167194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kerli, Süleyman, Ümit Alver, Hasan Eskalen, and Ali Kemal Soğuksu. Electrochemical Properties and Photocatalytic Activity of In2O3‑Co3O4 Thin Films. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, March 2019. http://dx.doi.org/10.7546/crabs.2019.03.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morton, S., J. Tobin, M. Spangenberg, J. Neal, T. Shen, G. Waddill, J. Matthew, et al. Magnetic properties of ultra thin epitaxial Fe films on GaAs(001). Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/15009722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Park, K. Electrochemical and Electrochromic Properties of Nanoworm-shaped Ta2O5-Pt Thin-Films. Office of Scientific and Technical Information (OSTI), May 2004. http://dx.doi.org/10.2172/826936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Smith, B. K., G. LaVigne, J. J. Sniegowski, and C. D. Brown. Thin teflon-like films for MEMS: Film properties and reliability studies. Office of Scientific and Technical Information (OSTI), July 1998. http://dx.doi.org/10.2172/656699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography