Academic literature on the topic 'Thin film depositions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thin film depositions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thin film depositions"
ILIESCU, Ciprian. "A COMPREHENSIVE REVIEW ON THIN FILM DEPOSITIONS ON PECVD REACTORS." Annals of the Academy of Romanian Scientists Series on Science and Technology of Information 14, no. 1-2 (2021): 12–24. http://dx.doi.org/10.56082/annalsarsciinfo.2021.1-2.12.
Full textKuchakova, Iryna, Maria Daniela Ionita, Eusebiu-Rosini Ionita, Andrada Lazea-Stoyanova, Simona Brajnicov, Bogdana Mitu, Gheorghe Dinescu, et al. "Atmospheric Pressure Plasma Deposition of Organosilicon Thin Films by Direct Current and Radio-frequency Plasma Jets." Materials 13, no. 6 (March 13, 2020): 1296. http://dx.doi.org/10.3390/ma13061296.
Full textGutwirth, Jan, Magdaléna Kotrla, Tomáš Halenkovič, Virginie Nazabal, and Petr Němec. "Tailoring of Multisource Deposition Conditions towards Required Chemical Composition of Thin Films." Nanomaterials 12, no. 11 (May 27, 2022): 1830. http://dx.doi.org/10.3390/nano12111830.
Full textUsha Rajalakshmi, P., and Rachel Oommen. "Structural and Optical Characterization of Chemically Deposited Cuprous Oxide (Cu2O) Thin Film." Advanced Materials Research 678 (March 2013): 118–22. http://dx.doi.org/10.4028/www.scientific.net/amr.678.118.
Full textTuttle, B. A., and R. W. Schwartz. "Solution Deposition of Ferroelectric Thin Films." MRS Bulletin 21, no. 6 (June 1996): 49–54. http://dx.doi.org/10.1557/s088376940004608x.
Full textHsieh, Chi Hua, Li Te Tsou, Sheng Hao Chen, Huai Yi Chen, Yao Jen Lee, Chiung Hui Lai, and Horng Show Koo. "Comparison of Characteristics of Rapid Thermal and Microwave Annealed Amorphous Silicon Thin Films Prepared by Electron Beam Evaporation and Low Pressure Chemical Vapor Deposition." Advanced Materials Research 663 (February 2013): 372–76. http://dx.doi.org/10.4028/www.scientific.net/amr.663.372.
Full textNadzari, Khairul Aizat, Muhammad Firdaus Omar, Nor Shahira Md Rudin, and Abd Khamim Ismail. "Structural Analysis of DLC Thin Film Using X-Ray Reflectivity and Raman Spectroscopy Techniques." Key Engineering Materials 908 (January 28, 2022): 543–48. http://dx.doi.org/10.4028/p-x8wahl.
Full textSoonmin, Ho. "Recent Advances in the Growth and Characterizations of SILAR-Deposited Thin Films." Applied Sciences 12, no. 16 (August 16, 2022): 8184. http://dx.doi.org/10.3390/app12168184.
Full textGent, Enno, Dereje H. Taffa, and Michael Wark. "Multi-Layered Mesoporous TiO2 Thin Films: Photoelectrodes with Improved Activity and Stability." Coatings 9, no. 10 (September 28, 2019): 625. http://dx.doi.org/10.3390/coatings9100625.
Full textAli, N., M. A. Iqbal, S. T. Hussain, M. Waris, and S. A. Munair. "Optoelectronic Properties of Cadmium Sulfide Thin Films Deposited by Thermal Evaporation Technique." Key Engineering Materials 510-511 (May 2012): 177–85. http://dx.doi.org/10.4028/www.scientific.net/kem.510-511.177.
Full textDissertations / Theses on the topic "Thin film depositions"
Imam, Mewlude. "CVD Chemistry of Organoborons for Boron-Carbon Thin Film Depositions." Doctoral thesis, Linköpings universitet, Tunnfilmsfysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-141548.
Full textChoi, Y. J. "Very high frequency plasma enhanced chemical vapour depositions for thin film transistors." Thesis, University of Cambridge, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597635.
Full textCALDIROLA, STEFANO. "Characterization of a supersonic plasma source for nanostructured thin films deposition." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/94564.
Full textKroely, Laurent. "Process and material challenges in the high rate deposition of microcrystalline silicon thin films and solar cells by Matrix Distributed Electron Cyclotron Resonance plasma." Phd thesis, Ecole Polytechnique X, 2010. http://pastel.archives-ouvertes.fr/pastel-00550241.
Full textXiao, Zhigang. "Synthesis of Functional Multilayer Coatings by Plasma Enhanced Chemical Vapor Deposition." Cincinnati, Ohio : University of Cincinnati, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1081456822.
Full textLau, Kenneth Ka Shun 1972. "Chemical vapor deposition of fluorocarbon films for low dielectric constant thin film applications." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/16748.
Full textIncludes bibliographical references.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Pulsed plasma enhanced and hot filament chemical vapor deposition have produced fluorocarbon films with the potential use as low dielectric constant interconnect materials in microelectronic circuits. Solid-state nuclear magnetic resonance spectroscopy was demonstrated as a valuable film characterization tool to understand structure-property processing fundamentals, quantifying film bonding environments and tracing structural instabilities. Thermal lability in fluorocarbon films was attributed to terminal end groups and low molecular weight molecules. High temperature thermal stability was achieved by minimizing such labile sources through a clean deposition of high molecular weight chains of poly(tetrafluoroethylene). Poly(tetrafluoroethylene) film porosity was introduced and controlled through the competition between nucleation and growth of film. Porous poly(tetrafluoroethylene) films were further integrated into a bridge layer and air gap dielectric interconnect scheme. With fluorocarbon materials deposited through such chemical vapor deposition methods, dielectric constants ranging from 2.1 to below 1.5 were conceivably attainable, thus potentially satisfying dielectric interconnect requirements to beyond the 0.1 [mu]m technology node.
by Kenneth Ka Shun Lau.
Ph.D.
Kim, Gwang-Soo 1975. "Multiscale modeling of thin film deposition processes." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29277.
Full textIncludes bibliographical references.
Ionized physical vapor deposition (IPVD) and electrochemical deposition (ECD) are two major thin film deposition processes in the microelectronics industry. The ion fluxes with high kinetic energies in IPVD process involve complex surface interactions that affect overall topology of the microscale features. Copper ECD process involves complex surface reactions and transport phenomena that ranges over different length scales. In this work, predictive simulation tools for these two processes have been developed by investigating the surface reaction and the transport phenomena in IPVD and ECD processes. In the IPVD process, molecular dynamics (MD) techniques with embedded-atom potentials are used to study the surface reactions for atoms with high impinging energies (30 - 50 eV). The surface reaction rates are combined with ballistic transport and level set methods. The resulting tool demonstrates the effect of the kinetic energy driven surface diffusion on the feature profile evolution. For the ECD process of copper, detailed surface kinetic mechanisms are developed based on the competitive adsorption/desorption model in the presence of three representative additives, poly ethylene glycol (PEG) and bis-(sodium sulfoprophyl) (SPS) and chloride. The proposed kinetic mechanism is capable of describing the synergistic effect of different additives on the copper deposition. Statistically designed experiments were performed with the rotating disk electrode (RDE) apparatus. A hydrodynamic model was developed for RDE and is used to fit the kinetic parameters that are independent of the transport effect.
(cont.) A reactor scale model is developed based on the Galerkin finite element method. The model includes momentum transport, transient mass transport, potential distribution and detailed surface kinetic mechanisms. The experimental film thickness uniformity on the blank wafer with commercial electrochemical deposition cell is compared with the simulation result. The reactor scale model is used to investigate the various effects on the film thickness uniformity including terminal effects and mass transport effects. The analysis shows the qualitative difference between two effects and how they can be eliminated. Also, the reactor scale simulation tool is used to model the pulse plating process. Improved performance of the pulse plating over the constant current operation suggests that the relaxation period is the critical parameter that determines the film thickness uniformity. A computationally efficient feature scale model is developed. Mass transport, potential distribution and detailed surface reactions are included in the model ...
by Gwang-Soo Kim.
Ph.D.
Garza, Ezra. "Pulsed Laser Deposition of Thin Film Heterostructures." ScholarWorks@UNO, 2011. http://scholarworks.uno.edu/td/459.
Full textRycroft, Ian M. "Electric, magnetic and optical properties of thin films, ultra thin films and multilayers." Thesis, University of Reading, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318142.
Full textChen, Yi. "Organic thin film transistors with mono-crystalline rubrene films by horizontal hot wall deposition." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66699.
Full textEn raison de leur potentiel de pouvoir contribuer à la diminution des coûts dans la fabrication des écrans plats flexibles, les transistors à couche mince organiques (OTFTs) ont attiré énormément d'intérêts dans les dernières décennies.Les avances récentes dans les théories sur les semiconducteurs organiques ainsi que celles sur les techniques de déposition et de croissance ont résulté au développement des OTFTs basés sur des couches organiques monocrystallines avec des performances approchant et même excédant celles dérivées des techniques de fabrication de TFTs de silicium amorphe qui sont couramment dominantes en industrie. Dans cette étude, des efforts ont étés mis pour explorer des méthodes convenables à la fabrication des transistors couches minces basés sur des semiconducteurs organiques à mobilité élevée comme le rubrène et le pentacène.Dans les premières étapes de cette étude, des OTFTs avec du rubrène monocrystalline dont la croissance a été atteinte par la méthode PVT ont été fabriqués et mesurés avec une max,eff = 1.07 cm^2/V-s, un ION/IOFF ~ 10^5 et un VT = 0 V. Il est à noter que ces couches de rubrène sont typiquement fragiles et l'adhésion aux substrats était souvent faible ce qui résultait en une reproductibilité réduite de dispositifs opérationnels. C'est alors que la déposition directe des couches minces organiques aux substrats devient une mesure nécessaire pour résoudre ces problèmes. Dans cette étude, une méthode de déposition à paroi chaude horizontale (HHWD) a été développée pour la déposition directe sous basse pression (P ~ 10^-6 torr)des couches de rubrène à haute qualité sur des substrats. Les couches résultantes sont continues avec une bonne couverture, tandis que des différentes phases structurelles amorphes et monocrystallines sont présentes. Par des études intensives sur la morphologie des couches et$
Books on the topic "Thin film depositions"
A, Hopwood Jeffrey, ed. Ionized physical vapor deposition. San Diego: Academic Press, 2000.
Find full textJaworek, Anatol. Electrospray technology for thin-film devices deposition. Hauppauge, N.Y: Nova Science, 2010.
Find full textKonuma, Mitsuharu. Film Deposition by Plasma Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.
Find full textIonized-cluster beam deposition and epitaxy. Park Ridge, N.J., U.S.A: Noyes Publications, 1988.
Find full textKonuma, Mitsuharu. Plasma techniques for film deposition. Harrow, U.K: Alpha Science International, 2005.
Find full text1950-, Konuma Mitsuharu, ed. Film deposition by plasma techniques. Berlin: Springer-Verlag, 1992.
Find full textPhotochemical vapor deposition. New York: Wiley, 1992.
Find full textMoroșanu, C. E. Thin films by chemical vapour deposition. Amsterdam: Elsevier, 1990.
Find full textThin-film deposition: Principles and practice. New York: McGraw-Hill, 1995.
Find full textKrishna, Seshan, ed. Handbook of thin-film deposition processes and techniques: Principles, methods, equipment, and applications. Park Ridge, N.J: Noyes Publications, 2000.
Find full textBook chapters on the topic "Thin film depositions"
Sivaram, Srinivasan. "Thin Film Phenomena." In Chemical Vapor Deposition, 8–40. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-4751-5_2.
Full textEl-Kareh, Badih. "Thin Film Deposition." In Fundamentals of Semiconductor Processing Technology, 87–167. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2209-6_3.
Full textYates, John T. "Thin Film Deposition." In Experimental Innovations in Surface Science, 309–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17668-0_29.
Full textCampedelli, Roberto, Luca Lamagna, Silvia Nicoli, and Andrea Nomellini. "Thin Film Deposition." In Silicon Sensors and Actuators, 75–103. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80135-9_3.
Full textAngus, John C., Alberto Argoitia, Roy Gat, Zhidan Li, Mahendra Sunkara, Long Wang, and Yaxin Wang. "Chemical vapour deposition of diamond." In Thin Film Diamond, 1–14. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0725-9_1.
Full textRobertson, J. "Deposition of diamond-like carbon." In Thin Film Diamond, 107–16. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0725-9_9.
Full textMwema, Fredrick Madaraka, Tien-Chien Jen, and Lin Zhu. "Methods of Thin Film Deposition." In Thin Film Coatings, 17–76. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003202615-2.
Full textJang, Jin. "Poly-Si TFTs by Direct Deposition Methods." In Thin Film Transistors, 799–816. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4615-0397-2_18.
Full textRath, J. K. "Thin-Film Deposition Processes." In Advanced Silicon Materials for Photovoltaic Applications, 235–85. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118312193.ch7.
Full textNazabal, Virginie, and Petr Němec. "Amorphous Thin Film Deposition." In Springer Handbook of Glass, 1293–332. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93728-1_37.
Full textConference papers on the topic "Thin film depositions"
Yang, Yu, De Z. Shen, Jiying Zhang, Xiaowei Zhao, Yuxue Liu, D. X. Zhao, and Xiwu Fan. "Photoluminescence properties of ultrathin CdSe layer depositions in ZnSe matrix." In 4th International Conference on Thin Film Physics and Applications, edited by Junhao Chu, Pulin Liu, and Yong Chang. SPIE, 2000. http://dx.doi.org/10.1117/12.408453.
Full textCARP, Mihaela, Violeta DEDIU, Florian PISTRITU, Edwin A. LASZLO, and Ciprian ILIESCU. "Effective control of TEOS–PECVD thin film depositions." In 2020 International Semiconductor Conference (CAS). IEEE, 2020. http://dx.doi.org/10.1109/cas50358.2020.9268003.
Full textXu, Zhigang, Corydon Hilton, Bobby Watkins, Sergey Yarmolenko, and Jag Sankar. "Thin YSZ Electrolyte Film Depositions on Dense and Porous Substrates." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43330.
Full textGiambra, Dominic J., and Wyatt E. Tenhaeff. "Kinetic Study of Polystyrene Thin Film Depositions by Cationic Chemical Vapor Deposition." In Optical Interference Coatings. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/oic.2019.md.8.
Full textJones, J. G., R. R. Biggers, J. D. Busbee, D. V. Dempsey, and G. Kozlowski. "Image processing plume fluence for superconducting thin-film depositions." In Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296). IEEE, 1999. http://dx.doi.org/10.1109/ipmm.1999.791562.
Full textJones, J. G., and P. D. Jero. "Modeling gas by-products from MO-CVD thin-film depositions." In Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296). IEEE, 1999. http://dx.doi.org/10.1109/ipmm.1999.791552.
Full textUchiyama, K., D. Fukunaga, T. Fujii, and T. Shiosaki. "High quality oxide thin film depositions using a sol-gel method." In 2008 17th IEEE International Symposium on the Applications of Ferroelectrics (ISAF). IEEE, 2008. http://dx.doi.org/10.1109/isaf.2008.4693864.
Full textHeuer, J. P., J. P. Eblen, R. L. Hall, and W. J. Gunning. "Scale-up Considerations for Codeposited Gradient Index Optical Thin Film Filters." In Optical Interference Coatings. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oic.1992.otub4.
Full textTakeda, Yasuhiko, Tadashi Ichikawa, Tomoyoshi Motohiro, and Hiroshi Ito. "Thin film retardation plates fabricated by oblique depositions and their applications to LiNbO3-based sensors." In Optical Engineering for Sensing and Nanotechnology (ICOSN '99), edited by Ichirou Yamaguchi. SPIE, 1999. http://dx.doi.org/10.1117/12.347709.
Full textSuzuki, Yoshiyuki, Hayato Kazama, Nobuhiro Terasawa, Yoshimi Naito, Tetsuzo Yoshimura, Yukihiko Arai, and Kunihiko Asama. "Selective growth of conjugated polymer thin film with nanoscale controlling by chemical vapor depositions (CVD) toward 'Nanonics'." In Optics & Photonics 2005, edited by Elizabeth A. Dobisz and Louay A. Eldada. SPIE, 2005. http://dx.doi.org/10.1117/12.614795.
Full textReports on the topic "Thin film depositions"
Shanks, H. R. DoD-URIP Thin Film Deposition Equipment. Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada223421.
Full textWu, Genfa. Energetic Deposition of Niobium Thin Film in Vacuum. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/915443.
Full textCollins, W. E., and B. Rambabu. Experimental thin film deposition and surface analysis techniques. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/5705694.
Full textBREILAND, WILLIAM G. Reflectance-Correcting Pyrometry in Thin Film Deposition Applications. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/820889.
Full textBenziger, Jay B. Surface Intermediates in Thin Film Deposition on Silicon. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada216662.
Full textLush, Gregory D. Equipment for a Thin-Film Deposition and Characterization Laboratory. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada377263.
Full textGenin, F., B. Stuart, W. McLean, and L. Chase. Sub-picosecond laser deposition of thin films. Office of Scientific and Technical Information (OSTI), November 2000. http://dx.doi.org/10.2172/15005121.
Full textHeadrick, Randall. Fundamental Mechanisms of Roughening and Smoothing During Thin Film Deposition. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1242492.
Full textTrolier-McKinstry, Susan, and Thomas R. Shrout. Crystal Growth and Thin Film Deposition of High Performance Piezoelectrics. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada428818.
Full textFernandez, Felix E. Pulsed Laser Deposition of Thin Film Material for Nonlinear Waveguides. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada290789.
Full text