Academic literature on the topic 'Thia-Paternò-Büchi'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thia-Paternò-Büchi.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thia-Paternò-Büchi"

1

Kassir, Ahmad F., Régis Guillot, Marie-Christine Scherrmann, Thomas Boddaert, and David J. Aitken. "Formation of Tetrahydrothiophenes via a Thia-Paternò–Büchi-Initiated Domino Photochemical Reaction." Organic Letters 22, no. 21 (October 27, 2020): 8522–27. http://dx.doi.org/10.1021/acs.orglett.0c03128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

He, Jian, Zhi-Qin Bai, Pan-Feng Yuan, Li-Zhu Wu, and Qiang Liu. "Highly Efficient Iridium-Based Photosensitizers for Thia-Paternò–Büchi Reaction and Aza-Photocyclization." ACS Catalysis 11, no. 1 (December 22, 2020): 446–55. http://dx.doi.org/10.1021/acscatal.0c05005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cormier, Gabriel, Clémence Allain, and Thomas Boddaert. "In Situ Generation of 1‐Acetylpyrene as a Visible‐Light Photocatalyst for the Thia‐Paternò‐Büchi Reaction." Angewandte Chemie, September 27, 2024. http://dx.doi.org/10.1002/ange.202412602.

Full text
Abstract:
The thia‐Paternò‐Büchi reaction represents one of the straightforward approaches to build thietane cores. Unfortunately, the significant instability of thiocarbonyls, particularly thioketones and thioaldehydes, has hitherto rendered this photochemical [2+2]‐cycloaddition underexploited. To address this limitation, we report here a visible‐light photochemical domino reaction including: the in situ generation of thiocarbonyls, though a Norrish type II fragmentation of pyrenacyl sulfides, and the aforementioned thia‐Paternò‐Büchi reaction with various non‐volatile electron‐rich alkenes. The highly efficient synthesis of a wide range of unprecedented thietanes from intrinsically highly unstable thiocabonyls, such as thioaldehydes and aliphatic thioketones, was made possible by the multitasking capability of pyrenacyl sulfides, as a source of thiocarbonyl substrates and as precursors of 1‐acetylpyrene, which acts as the photocatalyst for the thia‐Paternò‐Büchi reaction. The photosensitizer properties of the latter have been experimentally established and a triplet‐triplet Dexter energy transfer‐based mechanism is proposed.
APA, Harvard, Vancouver, ISO, and other styles
4

Cormier, Gabriel, Clémence Allain, and Thomas Boddaert. "In Situ Generation of 1‐Acetylpyrene as a Visible‐Light Photocatalyst for the Thia‐Paternò‐Büchi Reaction." Angewandte Chemie International Edition, September 27, 2024. http://dx.doi.org/10.1002/anie.202412602.

Full text
Abstract:
The thia‐Paternò‐Büchi reaction represents one of the straightforward approaches to build thietane cores. Unfortunately, the significant instability of thiocarbonyls, particularly thioketones and thioaldehydes, has hitherto rendered this photochemical [2+2]‐cycloaddition underexploited. To address this limitation, we report here a visible‐light photochemical domino reaction including: the in situ generation of thiocarbonyls, though a Norrish type II fragmentation of pyrenacyl sulfides, and the aforementioned thia‐Paternò‐Büchi reaction with various non‐volatile electron‐rich alkenes. The highly efficient synthesis of a wide range of unprecedented thietanes from intrinsically highly unstable thiocabonyls, such as thioaldehydes and aliphatic thioketones, was made possible by the multitasking capability of pyrenacyl sulfides, as a source of thiocarbonyl substrates and as precursors of 1‐acetylpyrene, which acts as the photocatalyst for the thia‐Paternò‐Büchi reaction. The photosensitizer properties of the latter have been experimentally established and a triplet‐triplet Dexter energy transfer‐based mechanism is proposed.
APA, Harvard, Vancouver, ISO, and other styles
5

Lapuh, Maria I., Gabriel Cormier, Slimane Chergui, David J. Aitken, and Thomas Boddaert. "Preparation of Thietane Derivatives through Domino Photochemical Norrish Type II/Thia-Paternò–Büchi Reactions." Organic Letters, November 8, 2022. http://dx.doi.org/10.1021/acs.orglett.2c03428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Q. ‐B, Y. Yang, S. Zhang, and Q. Liu. "Navigating Visible‐Light‐Triggered (aza and thia) Paternò‐Büchi Reactions for the Synthesis of Heterocycles." Advanced Synthesis & Catalysis, August 31, 2023. http://dx.doi.org/10.1002/adsc.202300915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Qing-Bao, Yongqi Yang, Shanshan Zhang, and Qiang Liu. "Navigating Visible‐Light‐Triggered (aza and thia) Paternò‐Büchi Reactions for the Synthesis of Heterocycles." Advanced Synthesis & Catalysis, August 2023. http://dx.doi.org/10.1002/adsc.202300702.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thia-Paternò-Büchi"

1

Cormier, Gabriel. "Réaction domino photochimique pour la synthèse d'hétérocycles soufrés." Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASF003.

Full text
Abstract:
Les réactions photochimiques constituent un outil puissant pour créer de la diversité moléculaire en chimie organique. A partir de substrats simples et d'un photon, elles permettent de donner accès à des structures moléculaires complexes qu'il serait difficile d'obtenir avec des méthodologies plus classiques. Ces transformations induites par l'absorption de la lumière sont particulièrement intéressantes dans le contexte du développement durable et peuvent participer à relever ce défi plus efficacement lorsqu'elles sont incorporées dans des processus domino. En effet, combinée avec des réactions thermiques ou mieux encore avec d'autres transformations photochimiques, cette stratégie est économe en temps, en énergie et en déchets et peut éviter d'isoler des intermédiaires intrinsèquement instables. Ces cascades photochimiques permettent en outre d'accroitre de façon notable la complexité moléculaire des composés obtenus.Parmi les chromophores possédant un état excité hautement réactif, générés par l'absorption d'un seul photon, les composés thiocarbonylés précurseurs des thiétanes via la réaction de thia-Paternò_Büchi avec un partenaire alcène ont été sous-exploités et la plupart des études impliquant ces dérivés datent de plusieurs décennies. La raison majeure de ce faible développement réside dans la grande instabilité des thiocétones et des thioaldéhydes. Durant cette thèse, il a été décidé de réinvestir la photochimie des thiocarbonyles stables et instables, dans le cadre de réactions domino pour la synthèse de nouveaux squelettes thiétaniques ainsi que pour leurs post-fonctionnalisations photochimiques. Afin de contrer l'instabilité intrinsèque des thiocarbonyles et de permettre leur utilisation dans leurs états excités, singulet ou triplet, nous avons tiré profit de la réaction de fragmentation de Norrish-II de sulfures de phénacyles et de pyrénacyles pour les générer in-situ et ainsi les engager dans d'autres transformations induites par la lumière au sein de cascades photochimiques.Dans ce cadre, nous avons tout d'abord combiné la fragmentation de Norrish-II des sulfures de phénacyles et la réaction de thia-Paternò_Büchi en présence de partenaires alcènes appauvris en électrons et ainsi obtenu une grande bibliothèque de thiétanes (37 exemples) sous irradiation UV. Puis, grâce aux nouvelles propriétés photosensibilisatrices du 1-acétylpyrène, un sous-produit formé par la fragmentation des sulfures de pyrènacyles sous lumière visible, cette même cascade photochimique a pu être développée en présence d'alcènes enrichis en électrons et a permis d'accroitre la liste de nouveaux thiétanes (26 exemples). Un troisième projet décrit la post-fonctionnalisation photochimique des thiétanes dans une réaction inédite d'agrandissement de cycle et la synthèse régiosélective de motifs dithianes par l'incorporation d'un motif thiocarbonyle généré in-situ (17 exemples). Enfin, une quatrième cascade photochimique a été mise en place impliquant une fragmentation de Norrish-II, une réaction de thia-Paternò_Büchi, un agrandissement de cycles thiétanes par un intermédiaire thiocarbonyle, puis enfin une contraction du dithiane pour conduire à la synthèse de tétrahydrothiophènes (7 exemples). Dans ce dernier cas, la réaction domino met en jeu quatre transformations photochimiques successives.Ces cascades photochimiques impliquant les motifs thiocarbonyles ont ainsi permis, à partir de sulfures de phénacyles ou de pyrénacyles et par irradiation à la lumière UV ou visible, de synthétiser les hétérocycles soufrés à quatre, cinq et six chaînons que sont les thiétanes, les tétrahydrothiophènes et les dithianes
Photochemical reactions constitute a powerful tool for the creation of molecular diversity in organic chemistry. From a simple starting material and a photon, they provide access to complex molecular structures that would be difficult to obtain with classical methodologies. These transformations induced by light absorption are particularly attractive in the context of sustainable development and they can address this challenge more effectively when they are incorporated into domino processes. Indeed, combined with thermal reactions or even better with other photochemical transformations, this strategy is economical in terms of time, energy, waste and can avoid the isolation of intrinsically unstable intermediates. These photochemical cascades also allow to significantly increase the molecular complexity of the obtained compounds.Among the chromophores possessing a highly reactive excited state generated by the absorption of a single photon, thiocarbonyl compounds, precursors of thietanes via the thia-Paternò_Büchi reaction with an alkene partner, have been underexploited and most studies involving these derivatives date from several decades ago. The main reason for this weak development is due to the huge instability of thioketones and thioaldehydes. During this PhD thesis, it has been decided to reinvest the photochemistry of stable and unstable thiocabonyls in the frame of domino sequences for the synthesis of new thietane scaffolds and their photochemical post-functionalization. To tackle the intrinsic instability of thiocarbonyls and to allow their use in excited state, singlet or triplet, we took advantage of the Norrish-II fragmentation of phenacyl or pyrenacyl sulfides to generate them in-situ and to engage then into other light-induced transformations within photochemical cascades.In this purpose, we first combined the Norrish-II fragmentation of phenacyl sulfides and the thia-Paternò_Büchi reaction in the presence of electron-withdrawing alkene partners to obtain a large library of thietanes (37 examples) under UV irradiation. Then, thanks to the new photosensitizing properties of the 1-acetylpyrene, a by-product formed during the fragmentation of pyrenacyl sulfides under visible light, the same photochemical cascade has been developed in the presence of electron-realizing alkene partners to enlarge the collection of unprecedented thietanes (26 examples). A third project describes the photochemical post-functionalization of thietanes in a new regioselective ring enlargement for the synthesis of dithiane scaffolds by the incorporation of in-situ generated thiocarbonyls (17 examples). Finally, a fourth photochemical cascade procedure has been described involving a Norrish-II fragmentation, a thia-Paternò_Büchi reaction, a ring enlargement of the thietane core by a thiocarbonyl intermediate and then a contraction of dithiane to allow the synthesis of tetrahydrothiophenes (7 examples). In the latter case, the domino reaction involves four successive photochemical transformations.From phenacyl or pyrenacyl sulfides and by UV or visible light irradiation, these photochemical cascades involving thiocarbonyl units provided access to four, five and six-membered ring sulfur heterocycles: thietanes, tetrahydrothiophene and dithianes, respectively
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography