Academic literature on the topic 'Therophilus'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Therophilus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Therophilus"

1

STEVENS, NICHOLAS B., ANDREW D. AUSTIN, and JOHN T. JENNINGS. "Diversity, distribution and taxonomy of the Australian agathidine genera Camptothlipsis Enderlein, Lytopylus Foerster and Therophilus Wesmael (Hymenoptera: Braconidae: Agathidinae)." Zootaxa 2887, no. 1 (May 23, 2011): 1. http://dx.doi.org/10.11646/zootaxa.2887.1.1.

Full text
Abstract:
The braconid subfamily Agathidinae is a large group of koinobiont endoparasitic wasps of lepidopteran larvae. Until recently, three of the 10 agathidine genera that occur in Australia, Camptothlipsis Enderlein, Lytopylus Foerster and Therophilus Wesmael, were treated as synonyms of Bassus F. s.l. Of these three genera, Therophilus is the most speciose and widely distributed in Australia, and is one of only two agathidine genera whose members are associated with a putative mimicry complex of braconid wasps and other insects comprising species that have a distinctive black, red-orange and white colour pattern. Australian species, previously considered under Bassus s.l., have received little attention since their original description nearly 90 years ago and, not surprisingly, this earlier work is insufficient for reliable species identification. The present study updates the taxonomy of the described species, presents a more thorough assessment of intraspecific variation, and provides a key for species of Therophilus. Four new species are described that support morphological and molecular phylogenetic studies on the Australian fauna: Camptothlipsis oliveri Stevens n. sp., representing the first described species for this genus in Australia, and Therophilus aalvikorum Stevens n. sp., T. mishae Stevens n. sp., and T. stephensae Stevens n. sp., whose descriptions also extend the morphological limits of Therophilus in Australia. In addition, the introduced Lytopylus rufipes (Nees von Esenbeck) is redescribed, this species representing the only member of the genus known from Australia. Significantly, two species of Therophilus, T. unimaculatus (Turner) and T. rugosus (Turner), are important parasitoids of the native Australian lepidopterans Etiella behrii Zeller (Pyralidae) and Epiphyas postvittana (Walker) (Tortricidae) that have become significant pests in southern and eastern Australia, as well as in several other countries.
APA, Harvard, Vancouver, ISO, and other styles
2

IZA-CAMPOS, GIULIA, and ANGÉLICA PENTEADO-DIAS. "The rare genus Therophilus Wesmael (Braconidae: Agathidinae) in Brazil with description of two new species." Zootaxa 5005, no. 4 (July 28, 2021): 596–600. http://dx.doi.org/10.11646/zootaxa.5005.4.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

STEVENS, NICHOLAS B., ANDREW D. AUSTIN, and JOHN T. JENNINGS. "Synopsis of Australian agathidine wasps (Hymenoptera: Braconidae: Agathidinae)." Zootaxa 2480, no. 1 (May 21, 2010): 1. http://dx.doi.org/10.11646/zootaxa.2480.1.1.

Full text
Abstract:
Agathidinae is a large subfamily of braconid wasps that are koinobiont endoparasitoids of lepidopteran larvae. Although the group is relatively well studied in the northern hemisphere, the Australian fauna is poorly known, with only 36 species recorded from the continent. This study presents a synopsis of the genera and species that occur in Australia, including a key to genera, information on their distribution and apparent species richness, and a list of species according to the latest generic concepts. Ten genera occur in Australia: Amputostypos Sharkey, Baeognatha Kokujev, Biroia Szépligeti, Braunsia Kriechbaumer, Coccygidium Saussure, Cremnops Foerster, Disophrys Foerster, Euagathis Szépligeti, Lytopylus Foerster and Therophilus Wesmael, with Lytopylus known only from a single introduced species. Baeognatha stat. rev. is taken out of synonymy with Therophilus and two genera are synonymised: Platyagathis Turner with Disophrys (syn. nov.) and Camptothlipsis with Baeognatha (syn. nov.). The genera Agathis Latreille and Bassus Fabricius are excluded from the Australian fauna, as the species described under these genera are here transferred to Therophilus, and no other species of either genus have been discovered from the continent. Further, the genera Baeognatha and Coccygidium are recorded from Australia for the first time, although not represented by any described species. The following new combinations are proposed: Amputostypos dilutum (Turner), comb. nov. (from Hypsostypos), A. exornatum (Turner), comb. nov. (from Hypsostypos), Disophrys leaena (Turner), comb. nov. (from Platyagathis), Lytopylus rufipes (Nees von Esenbeck) comb. nov. (from Bassus), Therophilus antipodus (Ashmead) comb. nov. (from Orgiloneura), T. festinatus (Turner), comb. nov. (from Bassus), T. latibalteatus (Cameron) comb. nov. (from Agathis), T. leucogaster (Holmgren) comb. nov. (from Agathis), T. malignus (Turner). comb. nov. (from Bassus), T. martialis (Turner) comb. nov. (from Agathis), T. meridionalis (Turner comb. nov. (from Bassus), T. minimus (Turner) comb. nov. (from Bassus), T. minor (Szépligeti) comb. nov. (from Bassus), T. pedunculatus (Szépligeti) comb. nov. (from Bassus), T. ruficeps (Szépligeti). comb. nov. (from Bassus), T. rufithorax (Turner) comb. nov. (from Agathis), T. rufobrunneus (Turner) comb. nov. (from Agathis), T. rugosus (Turner) comb. nov. (from Bassus), T. tricolor (Szépligeti) comb nov. (from Bassus), and T. xanthopsis (Turner) comb. nov. (from Agathis). In addition, Bassus tenuissimus (Turner) is synonomised with T. ruficeps (Szépligeti) syn. nov., and Agathis dimidiata (Brullé) is designated a nomen dubium.
APA, Harvard, Vancouver, ISO, and other styles
4

Gupta, Ankita, and Umeshkumar Sanjeev. "First Report of Larval Parasitism of Ethmia nigroapicella Saalmüller (lepidoptera: Gelechioidea: Ethmiidae) by Therophilus festivus (Muesebeck) (Braconidae: Agathidinae) in India." Journal of Biological Control 30, no. 2 (July 5, 2016): 106. http://dx.doi.org/10.18311/jbc/30/2/14923.

Full text
Abstract:
Larval parasitism of <em>Ethmia nigroapicella</em> Saalmüller (Lepidoptera: Gelechioidea: Ethmiidae) by <em>Therophilus festivus</em> (Muesebeck) is reported from Karnataka, India. This is the first illustrated record of solitary parasitism by <em>T. festivus</em> on its host <em>E. nigroapicella</em>.
APA, Harvard, Vancouver, ISO, and other styles
5

Stoelb, Stephanie, and Michael Sharkey. "Revision of Therophilus s.s. (Hymenoptera, Braconidae, Agathidinae) from Thailand." Journal of Hymenoptera Research 27 (May 31, 2012): 1–36. http://dx.doi.org/10.3897/jhr.27.2832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

TANG, PU, CORNELIS VAN ACHTERBERG, and XUE-XIN CHEN. "Review of the genus Earinus Wesmael (Hymenoptera, Braconidae, Agathidinae) from China." Zootaxa 4504, no. 3 (October 25, 2018): 345. http://dx.doi.org/10.11646/zootaxa.4504.3.2.

Full text
Abstract:
The Chinese species of Earinus Wesmael, 1837 (Braconidae, Agathidinae) are revised and eight species are recognized. Three new species, namely, E. longigena sp. nov., E. pallitarsus sp. nov. and E. protinus sp. nov., are described and illustrated, and two species are recorded from China for the first time, i.e., E. brevistigmus van Achterberg et Long, 2010 and E. elator (Fabricius, 1804). A new synonym is proposed, Earinus albopilosus Chen et Yang, 2006, with Therophilus festivus (Muesebeck, 1953). A key to the Chinese species of the genus Earinus is provided.
APA, Harvard, Vancouver, ISO, and other styles
7

Aboubakar Souna, Djibril, Aimé Bokonon-Ganta, Marc Ravallec, Antonino Cusumano, Barry Robert Pittendrigh, Anne-Nathalie Volkoff, and Manuele Tamò. "An Insight in the Reproductive Biology of Therophilus javanus (Hymenoptera, Braconidae, and Agathidinae), a Potential Biological Control Agent against the Legume Pod Borer (Lepidoptera, Crambidae)." Psyche: A Journal of Entomology 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/3156534.

Full text
Abstract:
Therophilus javanus is a koinobiont, solitary larval endoparasitoid currently being considered as a biological control agent against the pod borer Maruca vitrata, a devastating cowpea pest causing 20–80% crop losses in West Africa. We investigated ovary morphology and anatomy, oogenesis, potential fecundity, and egg load in T. javanus, as well as the effect of factors such as age of the female and parasitoid/host size at oviposition on egg load. The number of ovarioles was found to be variable and significantly influenced by the age/size of the M. vitrata caterpillar when parasitized. Egg load also was strongly influenced by both the instar of M. vitrata caterpillar at the moment of parasitism and wasp age. The practical implications of these findings for improving mass rearing of the parasitoid toward successful biological control of M. vitrata are discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Aboubakar Souna, Djibril, Aimé Hippolyte Bokonon-Ganta, Elie Ayitondji Dannon, Nazyhatou Imorou, Benjamin Agui, Antonino Cusumano, Ramasamy Srinivasan, Barry Robert Pittendrigh, Anne-Nathalie Volkoff, and Manuele Tamò. "Volatiles from Maruca vitrata (Lepidoptera, Crambidae) host plants influence olfactory responses of the parasitoid Therophilus javanus (Hymenoptera, Braconidae, Agathidinae)." Biological Control 130 (March 2019): 104–9. http://dx.doi.org/10.1016/j.biocontrol.2018.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gupta, Ankita, and Umeshkumar Sanjeev. "First Report of Larval Parasitism of Ethmia nigroapicella Saalmüller (lepidoptera: Gelechioidea: Ethmiidae) by Therophilus festivus (Muesebeck) (Braconidae: Agathidinae) in India." Journal of Biological Control 30, no. 2 (July 5, 2016): 106. http://dx.doi.org/10.18641/jbc/30/2/85326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sharkey, Michael J., Daniel H. Janzen, Winnie Hallwachs, Eric G. Chapman, M. Alex Smith, Tanya Dapkey, Allison Brown, et al. "Minimalist revision and description of 403 new species in 11 subfamilies of Costa Rican braconid parasitoid wasps, including host records for 219 species." ZooKeys 1013 (February 2, 2021): 1–665. http://dx.doi.org/10.3897/zookeys.1013.55600.

Full text
Abstract:
Three new genera are described: Michener (Proteropinae), Bioalfa (Rogadinae), and Hermosomastax (Rogadinae). Keys are given for the New World genera of the following braconid subfamilies: Agathidinae, Braconinae, Cheloninae, Homolobinae, Hormiinae, Ichneutinae, Macrocentrinae, Orgilinae, Proteropinae, Rhysipolinae, and Rogadinae. In these subfamilies 416 species are described or redescribed. Most of the species have been reared and all but 13 are new to science. A consensus sequence of the COI barcodes possessed by each species is employed to diagnose the species, and this approach is justified in the introduction. Most descriptions consist of a lateral or dorsal image of the holotype, a diagnostic COI consensus barcode, the Barcode Index Number (BIN) code with a link to the Barcode of Life Database (BOLD), and the holotype specimen information required by the International Code of Zoological Nomenclature. The following species are treated and those lacking authorship are newly described here with authorship attributable to Sharkey except for the new species of Macrocentrinae which are by Sharkey &amp; van Achterberg: AGATHIDINAE: Aerophilus paulmarshi, Mesocoelus davidsmithi, Neothlipsis bobkulai, Plesiocoelus vanachterbergi, Pneumagathis erythrogastra (Cameron, 1905), Therophilus bobwhartoni, T. donaldquickei, T. gracewoodae, T. maetoi, T. montywoodi, T. penteadodiasae, Zacremnops brianbrowni, Z. coatlicue Sharkey, 1990, Zacremnops cressoni (Cameron, 1887), Z. ekchuah Sharkey, 1990, Z. josefernandezi, Zelomorpha sarahmeierottoae. BRACONINAE: Bracon alejandromarini, B. alejandromasisi, B. alexamasisae, B. andresmarini, B. andrewwalshi, B. anniapicadoae, B. anniemoriceae, B. barryhammeli, B. bernardoespinozai, B. carlossanabriai, B. chanchini, B. christophervallei, B. erasmocoronadoi, B. eugeniephillipsae, B. federicomatarritai, B. frankjoycei, B. gerardovegai, B. germanvegai, B. isidrochaconi, B. jimlewisi, B. josejaramilloi, B. juanjoseoviedoi, B. juliodiazi, B. luzmariaromeroae, B. manuelzumbadoi, B. marialuisariasae, B. mariamartachavarriae, B. mariorivasi, B. melissaespinozae, B. nelsonzamorai, B. nicklaphami, B. ninamasisae, B. oliverwalshi, B. paulamarinae, B. rafamoralesi, B. robertofernandezi, B. rogerblancoi, B. ronaldzunigai, B. sigifredomarini, B. tihisiaboshartae, B. wilberthbrizuelai, Digonogastra montylloydi, D. montywoodi, D. motohasegawai, D. natwheelwrighti, D. nickgrishini. CHELONINAE: Adelius adrianguadamuzi, A. gauldi Shimbori &amp; Shaw, 2019, A. janzeni Shimbori &amp; Shaw, 2019, Ascogaster gloriasihezarae, A. grettelvegae, A. guillermopereirai, A. gustavoecheverrii, A. katyvandusenae, A. luisdiegogomezi, Chelonus alejandrozaldivari, C. gustavogutierrezi, C. gustavoinduni, C. harryramirezi, C. hartmanguidoi, C. hazelcambroneroae, C. iangauldi, C. isidrochaconi, C. janecheverriae, C. jeffmilleri, C. jennyphillipsae, C. jeremydewaardi, C. jessiehillae, C. jesusugaldei, C. jimlewisi, C. jimmilleri, C. jimwhitfieldi, C. johanvalerioi, C. johnburnsi, C. johnnoyesi, C. jorgebaltodanoi, C. jorgehernandezi, C. josealfredohernandezi, C. josefernandeztrianai, C. josehernandezcortesi, C. josemanuelperezi, C. josephinerodriguezae, C. juanmatai, C. junkoshimurae, C. kateperezae, C. luciariosae, C. luzmariaromeroae, C. manuelpereirai, C. manuelzumbadoi, C. marianopereirai, C. maribellealvarezae, C. markmetzi, C. markshawi, C. martajimenezae, C. mayrabonillae, C. meganmiltonae, C. melaniamunozae, C. michaelstroudi, C. michellevanderbankae, C. mingfangi, C. minorcarmonai, C. monikaspringerae, C. moniquegilbertae, C. motohasegawai, C. nataliaivanovae, C. nelsonzamorai, C. normwoodleyi, C. osvaldoespinozai, C. pamelacastilloae, C. paulgoldsteini, C. paulhansoni, C. paulheberti, C. petronariosae, C. ramyamanjunathae, C. randallgarciai, C. rebeccakittelae, C. robertoespinozai, C. robertofernandezi, C. rocioecheverriae, C. rodrigogamezi, C. ronaldzunigai, C. rosibelelizondoae, C. rostermoragai, C. ruthfrancoae, C. scottmilleri, C. scottshawi, C. sergioriosi, C. sigifredomarini, C. stevearonsoni, C. stevestroudi, C. sujeevanratnasinghami, C. sureshnaiki, C. torbjornekremi, C. yeimycedenoae, Leptodrepana alexisae, L. erasmocoronadoi, L. felipechavarriai, L. freddyquesadai, L. gilbertfuentesi, L. manuelriosi, Phanerotoma almasolisae, P. alvaroherrerai, P. anacordobae, P. anamariamongeae, P. andydeansi, P. angelagonzalezae, P. angelsolisi, P. barryhammeli, P. bernardoespinozai, P. calixtomoragai, P. carolinacanoae, P. christerhanssoni, P. christhompsoni, P. davesmithi, P. davidduthiei, P. dirksteinkei, P. donquickei, P. duniagarciae, P. duvalierbricenoi, P. eddysanchezi, P. eldarayae, P. eliethcantillanoae, P. jenopappi, Pseudophanerotoma alanflemingi, Ps. albanjimenezi, Ps. alejandromarini, Ps. alexsmithi, Ps. allisonbrownae, Ps. bobrobbinsi. HOMOLOBINAE: Exasticolus jennyphillipsae, E. randallgarciai, E. robertofernandezi, E. sigifredomarini, E. tomlewinsoni. HORMIINAE: Hormius anamariamongeae, H. angelsolisi, H. anniapicadoae, H. arthurchapmani, H. barryhammeli, H. carmenretanae, H. carloswalkeri, H. cesarsuarezi, H. danbrooksi, H. eddysanchezi, H. erikframstadi, H. georgedavisi, H. grettelvegae, H. gustavoinduni, H. hartmanguidoi, H. hectoraritai, H. hesiquiobenitezi, H. irenecanasae, H. isidrochaconi, H. jaygallegosi, H. jimbeachi, H. jimlewisi, H. joelcracrafti, H. johanvalerioi, H. johnburleyi, H. joncoddingtoni, H. jorgecarvajali, H. juanmatai, H. manuelzumbadoi, H. mercedesfosterae, H. modonnellyae, H. nelsonzamorai, H. pamelacastilloae, H. raycypessi, H. ritacolwellae, H. robcolwelli, H. rogerblancosegurai, H. ronaldzunigai, H. russchapmani, H. virginiaferrisae, H. warrenbrighami, H. willsflowersi. ICHNEUTINAE: Oligoneurus kriskrishtalkai, O. jorgejimenezi, Paroligoneurus elainehoaglandae, P. julianhumphriesi, P. mikeiviei. MACROCENTRINAE: Austrozele jorgecampabadali, A. jorgesoberoni, Dolichozele gravitarsis (Muesebeck, 1938), D. josefernandeztrianai, D. josephinerodriguezae, Hymenochaonia kalevikulli, H. kateperezae, H. katherinebaillieae, H. katherineellisonae, H. katyvandusenae, H. kazumifukunagae, H. keithlangdoni, H. keithwillmotti, H. kenjinishidai, H. kimberleysheldonae, H. krisnorvigae, H. lilianamadrigalae, H. lizlangleyae, Macrocentrus fredsingeri, M. geoffbarnardi, M. gregburtoni, M. gretchendailyae, M. grettelvegae, M. gustavogutierrezi, M. hannahjamesae, M. harisridhari, M. hillaryrosnerae, M. hiroshikidonoi, M. iangauldi, M. jennyphillipsae, M. jesseausubeli, M. jessemaysharkae, M. jimwhitfieldi, M. johnbrowni, M. johnburnsi, M. jonathanfranzeni, M. jonathanrosenbergi, M. jorgebaltodanoi, M. lucianocapelli. ORGILINAE: Orgilus amyrossmanae, O. carrolyoonae, O. christhompsoni, O. christinemcmahonae, O. dianalipscombae, O. ebbenielsoni, O. elizabethpennisiae, O. evertlindquisti, O. genestoermeri, O. jamesriegeri, O. jeanmillerae, O. jeffmilleri, O. jerrypowelli, O. jimtiedjei, O. johnlundbergi, O. johnpipolyi, O. jorgellorentei, O. larryspearsi, O. marlinricei, O. mellissaespinozae, O. mikesmithi, O. normplatnicki, O. peterrauchi, O. richardprimacki, O. sandraberriosae, O. sarahmirandae, O. scottmilleri, O. scottmorii, Stantonia billalleni, S. brookejarvisae, S. donwilsoni, S. erikabjorstromae, S. garywolfi, S. henrikekmani, S. luismirandai, S. miriamzunzae, S. quentinwheeleri, S. robinkazmierae, S. ruthtifferae. PROTEROPINAE: Hebichneutes tricolor Sharkey &amp; Wharton, 1994, Proterops iangauldi, P. vickifunkae, Michener charlesi. RHYSIPOLINAE: Pseudorhysipolis luisfonsecai, P. mailyngonzalezaeRhysipolis julioquirosi. ROGADINAE: Aleiodes adrianaradulovae, A. adrianforsythi, A. agnespeelleae, A. alaneaglei, A. alanflemingi, A. alanhalevii, A. alejandromasisi, A. alessandracallejae, A. alexsmithi, A. alfonsopescadori, A. alisundermieri, A. almasolisae, A. alvarougaldei, A. alvaroumanai, A. angelsolisi, A. annhowdenae, A. bobandersoni, A. carolinagodoyae, A. charlieobrieni, A. davefurthi, A. donwhiteheadi, A. doylemckeyi, A. frankhovorei, A. henryhowdeni, A. inga Shimbori &amp; Shaw, 2020, A. johnchemsaki, A. johnkingsolveri, A. gonodontovorus Shimbori &amp; Shaw, 2020, A. manuelzumbadoi, A. mayrabonillae, A. michelledsouzae, A. mikeiviei, A. normwoodleyi, A. pammitchellae, A. pauljohnsoni, A. rosewarnerae, A. steveashei, A. terryerwini, A. willsflowersi, Bioalfa pedroleoni, B. alvarougaldei, B. rodrigogamezi, Choreborogas andydeansi, C. eladiocastroi, C. felipechavarriai, C. frankjoycei, Clinocentrus andywarreni, Cl. angelsolisi, Cystomastax alexhausmanni, Cy. angelagonzalezae, Cy. ayaigarashiae, Hermosomastax clavifemorus Quicke sp. nov., Heterogamus donstonei, Pseudoyelicones bernsweeneyi, Stiropius bencrairi, S. berndkerni, S. edgargutierrezi, S. edwilsoni, S. ehakernae, Triraphis billfreelandi, T. billmclarneyi, T. billripplei, T. bobandersoni, T. bobrobbinsi, T. bradzlotnicki, T. brianbrowni, T. brianlaueri, T. briannestjacquesae, T. camilocamargoi, T. carlosherrerai, T. carolinepalmerae, T. charlesmorrisi, T. chigiybinellae, T. christerhanssoni, T. christhompsoni, T. conniebarlowae, T. craigsimonsi, T. defectus Valerio, 2015, T. danielhubi, T. davidduthiei, T. davidwahli, T. federicomatarritai, T. ferrisjabri, T. mariobozai, T. martindohrni, T. matssegnestami, T. mehrdadhajibabaei, T. ollieflinti, T. tildalauerae, Yelicones dirksteinkei, Y. markmetzi, Y. monserrathvargasae, Y. tricolor Quicke, 1996. Y. woldai Quicke, 1996. The following new combinations are proposed: Neothlipsis smithi (Ashmead), new combination for Microdus smithi Ashmead, 1894; Neothlipsis pygmaeus (Enderlein), new combination for Microdus pygmaeus Enderlein, 1920; Neothlipsis unicinctus (Ashmead), new combination for Microdus unicinctus Ashmead, 1894; Therophilus anomalus (Bortoni and Penteado-Dias) new combination for Plesiocoelus anomalus Bortoni and Penteado-Dias, 2015; Aerophilus areolatus (Bortoni and Penteado-Dias) new combination for Plesiocoelus areolatus Bortoni and Penteado-Dias, 2015; Pneumagathis erythrogastra (Cameron) new combination for Agathis erythrogastra Cameron, 1905. Dolichozele citreitarsis (Enderlein), new combination for Paniscozele citreitarsis Enderlein, 1920. Dolichozele fuscivertex (Enderlein) new combination for Paniscozele fuscivertex Enderlein, 1920. Finally, Bassus brooksi Sharkey, 1998 is synonymized with Agathis erythrogastra Cameron, 1905; Paniscozele griseipes Enderlein, 1920 is synonymized with Dolichozele koebelei Viereck, 1911; Paniscozele carinifrons Enderlein, 1920 is synonymized with Dolichozele fuscivertex (Enderlein, 1920); and Paniscozele nigricauda Enderlein,1920 is synonymized with Dolichozele quaestor (Fabricius, 1804). (originally described as Ophion quaestor Fabricius, 1804).
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Therophilus"

1

Aboubakar, Souna Djibril. "Stratégies de réussite parasitaire du parasitoïde larvaire Therophilus javanus et de ses potentialités d’utilisation en lutte biologique contre Maruca vitrata le lépidoptère foreur de gousse de niébé Vigna unguiculata en Afrique de l’Ouest." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTG057/document.

Full text
Abstract:
Maruca vitrata Fabricius (Lepidoptera: Crambidae) est un des ravageurs majeurs du niébé (Vigna unguiculata L. Walp. (Fabales: Fabaceae)). Au stade larvaire, ce ravageur peut détruire les boutons floraux, les fleurs et les gousses en développement, et causer, à lui seul, des pertes de rendement allant jusqu’à 80% dans un champ de niébé. Pour lutter contre cet insecte, une collaboration entre WorldVeg et l’IITA a permis d’identifier un agent potentiel de lutte biologique contre M. vitrata en Afrique de l’Ouest, le parasitoïde Therophilus javanus (Bhat & Gupta, 1977) (Hymenoptera: Braconidae). Mais aucune information n’était jusqu’alors disponible sur la biologie de ce parasitoïde.Mes travaux de thèse visaient donc à étudier certains des paramètres biologiques de T. javanus afin d’optimiser aussi bien sa production au laboratoire que son utilisation comme agent de lutte biologique au champ. Nous avons d’abord analysé le développement et le potentiel reproductif de T. javanus, mais aussi son comportement de localisation de l’hôte. En parallèle, nous avons étudié l’organisation de la glande à venin et recherché les gènes transcrits dans cette glande, car le venin peut jouer un rôle dans la réussite du parasitisme.Nous avons décrit le développement de T. javanus, qui comprend trois stades larvaires : les deux premiers stades se développent à l’intérieur de la chenille, mais seule une partie du troisième stade est endoparasite. Nous avons montré que l’âge de la chenille de M. vitrata lors du parasitisme influence significativement la durée de développement de T. javanus (de l’œuf à l’adulte) ainsi que le potentiel reproductif de l’adulte femelle. T. javanus est une espèce synovigénique chez qui la maturation des œufs s’effectue graduellement après l’émergence. Toutefois, ni le sex ratio de la progéniture ni la longévité des adultes ne sont influencés par l’âge de l’hôte au moment du parasitisme.Nos résultats concernant le comportement de localisation de l’hôte ont montré que la femelle de T. javanus visite les bourgeons foliaires, les boutons floraux et la gousse sur la plante de niébé. La localisation de l’hôte est influencée par l’espèce de la plante infestée par la chenille de M. vitrata.Nos travaux ont permis de décrire la glande à venin de T. javanus qui est filiforme et en forme de Y. Au niveau ultrastructural, les cellules de la glande contiennent plusieurs canaux collecteurs ainsi que de nombreuses vésicules. L’étude du transcriptome a révélé que la moitié des séquences identifiées dans la glande à venin de T. javanus présentent de similarités avec certaines enzymes et protéines observées chez d’autres hyménoptères, parmi lesquels le plus fréquemment représenté est l’endoparasitoïde Microplitis demolitor Wilkinson (Hymenoptera: Braconidae). Nous avons également identifié une famille de protéines fortement exprimées dans la glande à venin de T. javanus qui sont similaires à des protéines du venin identifiées chez un hyménoptère ectoparasitoïde, Ampulex compressa (Fabr.) (Hymenoptera: Ampulicidae). Ces séquences ont été utilisées pour dessiner des amorces de PCR (polymerase chain reaction) permettant de détecter T. javanus de façon spécifique et reproductible à partir d’ADN génomique d’adulte de T. javanus et de la chenille de M. vitrata parasitée par la femelle de T. javanus.Ces résultats ont été discutés dans la perspective d’optimiser la production en masse de T. javanus au laboratoire et la méthode de lâcher, et de mettre en place un outil moléculaire pouvant permettre la détection du parasitoïde à partir de chenilles parasitées. La présente thèse représente une première documentation consacrée à la physiologie et la bioécologie de T. javanus. Cependant de nombreuses questions restent encore à aborder afin de pouvoir optimiser l’utilisation de T. javanus comme agent de lutte biologique en Afrique
Maruca vitrata Fabricius (Lepidoptera: Crambidae) is one of the most important insect pests in West Africa causing severe damage to cowpea (Vigna unguiculata L. Walp. (Fabales: Fabaceae)). The pest alone can cause up to 80 % yield losses. Damage is done by caterpillars on flower buds, flowers and developing pods. To develop the biological control of M. vitrata in West Africa, a collaboration has been established between WorldVeg and IITA that resulted in the identification of one promising parasitoid species namely Therophilus javanus (Bhat & Gupta, 1977) (Hymenoptera: Braconidae). Because of a dearth of data concerning T. javanus biology, the present work was initiated to assess the suitability of T. javanus as a classical biological control agent against M. vitrata in West Africa.In order to help for decision making regarding the use of T. javanus as a biological control agent against the pod borer, my thesis focused on some biological parameters as egg production capacity in females, immature development, the impact of host stage on the adult life cycle and the ability of adult female to localize M. vitrata on infested host plant organs based on olfactory stimuli. I’ve also investigated the morphology, ultrastructural organization and the transcriptome of the venom gland in females, and designed a PCR method for detection of M. vitrata caterpillars parasitized by T. javanus.Our study has demonstrated that T. javanus is a synovigenic species that mature eggs gradually after emergence and that egg production in progeny is influenced by the size or instar of the caterpillar host at parasitism. T. javanus is a koinobiont endoparasitoid that has three larval instars: the first and the second instars are completed inside the host whereas the third instar is achieved outside the host. Development time and fecundity were influenced by the size or instar of the caterpillar at the moment of parasitism whereas mother longevity and progeny sex ratio were not influenced. The females explored different parts of the cowpea plant but invested more time for searching on the buds. Female attraction by M. vitrata-damaged host plants odors was impacted by the plants species. Odors released from M. vitrata-infested host plant parts were discriminated from non-infested parts in selected plants, cowpea and Tephrosia platycarpa Guill & Perr (Fabales: Fabaceae), respectively. Finally we have shown that the venom gland produces proteins with similarities with venom proteins from other hymenoptera, in particular with the endoparasitoid Microplitis demolitor Wilkinson (Hymenoptera: Braconidae). However, the highly transcribed sequences were related to venom proteins in the ectoparasitoid Ampulex compressa (Fabr.) (Hymenoptera: Ampulicidae). Primers designed based on the sequence of the most expressed venom protein in T. javanus allowed to discriminate adult T. javanus from other adult hymenoptera parasitoids. Similarly, parasitized M. vitrata caterpillar could be distinguished from non parasitized M. vitrata caterpillar.These findings are discussed in the frame of improving mass rearing of the parasitoid in laboratory, and optimizing release strategies, but also of developing an approach for investigation of the parasitoid establishment. This thesis represents the first documentation devoted to the physiology and bioecology of T. javanus. However, some questions still remain to be addressed in order to decide on the possibility of using T. javanus as biological control agent against M. vitrata in West Africa
APA, Harvard, Vancouver, ISO, and other styles
2

Connolly, Alexandra. "Crypsis in non-flying mammal pollinated Proteaceae: novel adaptations and evidence of nectarivorous bird avoidance." Master's thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/31394.

Full text
Abstract:
A defining feature of the non-flying mammal pollinated (NMP) syndrome is inflorescence crypsis whereby flowers are close to the ground and somewhat hidden within the canopy. A number of species in the Cape Proteaceae are NMP, two of which were chosen as focal species for this study: Protea amplexicaulis and Protea humiflora. This study investigated the two previously suggested hypotheses for crypsis: hidden flowers are more difficult for nectarivorous birds to access, or hidden flowers provide greater cover for small mammal pollinators from aerial predators. Using remote triggered cameras, P. amplexicaulis and P. humiflora inflorescences were observed over the 2017 flowering period, noting visitation by birds and small mammals and assessing the legitimacy of birds as pollinators. In the literature, bird visitation to exposed inflorescences is suggested to be rare, but this study showed that it is considerable. Observations of camera footage suggest that birds are in fact illegitimate pollinators and thus nectar rob. Bird visitation to exposed inflorescences was more than tenfold that of hidden inflorescences, suggesting that crypsis is likely a strategy to avoid nectar robbing by birds. Both P. amplexicaulis and P. humiflora have been observed to retain dead leaves, which may contribute to their cryptic nature. Alternative hypotheses for dead leaf retention in Proteaceae – that it may increase flammability or result in a below canopy spike in nutrients post fire (selfish fertilization) – were assessed and rejected. Sampling of eight local Protea species showed that dead leaf retention is not a consequence of prolonged live leaf retention, with P. amplexicaulis retaining dead leaves for up to 6 years. The removal of dead leaves in 30 P. amplexicaulis individuals resulted in a significant decrease in the number of inflorescences hidden from aerial view, thus suggesting that dead leaf retention may be a strategy to enhance crypsis and thus forms part of the NMP syndrome. This research expands on the knowledge of the NMP syndrome; providing evidence in support of an anti- nectar robbing crypsis function, discovering a novel crypsis adaptation regarding dead leaf retention, and casting doubt on the Restricted Distributions hypothesis for the evolution of the syndrome.
APA, Harvard, Vancouver, ISO, and other styles
3

Feng, Yi. "Why are some parasitoids of light brown apple moth so uncommon in vineyards?" Thesis, 2015. http://hdl.handle.net/2440/93522.

Full text
Abstract:
The light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), is a key insect pest that belongs to one of the largest families of Lepidoptera, the Tortricidae, which has over 10,000 described species. This family includes numerous major pests of crops, forests, and ornamental plants. Hence an understanding of factors that affect parasitism of E. postvittana is potentially relevant to many other pest species and agroecosystems. Although a number of species are known to parasitise E. postvittana, only few of them were recorded attack E. postvittana in vineyards. Moreover, little is known about the interactions between E. postvittana and the parasitoids that are associated with it in crop and non-crop habitats. Therefore,this study addressed the question, “why are some parasitoids that attack light brown apple moth so uncommon in vineyards?” My thesis presents an investigation of the activities of parasitoids in vineyards and adjacent native vegetation in the Adelaide Hills wine region, and provides insights into the contribution they make towards natural biological control of the light brown apple moth. This project aimed to investigate: (1) parasitism rates of E. postvittana in vineyards and adjacent native vegetation; (2) competitive interactions between parasitoids that attack E. postvittana; (3) the influence of host plants on foraging behavior and parasitism by parasitoids that attack E. postvittana; and (4) temperature dependent development of Therophilus unimaculatus (Turner) (Hymenoptera: Braconidae), a common parasitoid species that attacks E. postvittana. Field experiments showed that T. unimaculatus was most active in non-crop native vegetation, whereas Dolichogenidea tasmanica (Cameron) (Hymenoptera: Braconidae) was the most common parasitoid of larval E. postvittana in vineyards. Molecular identification of larval tortricids that were parasitised by either of the two parasitoids species indicated these two parasitoids share a range of tortricid hosts in both vineyards and natural habitats. These results indicated that the two key parasitoids have different patterns of habitat use between vineyard and adjacent fields. In order to investigate why parasitoids are not equally distributed between vineyards and native vegetation, two further series of studies were conducted. The first investigated the extent of interspecific differences in host discrimination and the outcome of interspecific competition between D. tasmanica and T. unimaculatus. Both wasp species did not show differential behavioural responses to un-parasitised hosts or those that were parasitised by the other species. But immature D. tasmanica out-competed immature T. unimaculatus, irrespective of the order or interval between attacks by the two species. The second series of experiments examined the effects of host plants on the behaviour of D. tasmanica and T. unimaculatus. The effects of selected native and non-native host plants on the foraging preferences and efficiency of the two parasitoids were investigated through behavioural observations in a wind tunnel, and an experiment in the field. The results indicated that plants play a role that affects the habitat preferences of the two parasitoid species by influencing their foraging behaviour, and contribute to their distributions among habitats. By studying the temperature dependent development of T. unimaculatus under constant temperatures, its mean developmental time from egg to adult emergence was found to be shortest at 24.4 days at 28.9 ℃. The data were fitted to a non-linear model, which showed that the number of generations of T. unimaculatus is equal or greater than E. postvittana in three out of four locations in Australia, and the development of T. unimaculatus is faster when the temperature is above 16.0 ℃. Thus temperature affects the extent of synchronization between populations of T. unimaculatus and E. postvittana. Overall, this research contributes to understand the contributions that parasitoids make to natural biological control of E. postvittana. I concluded that native vegetation adjacent to vineyards is not always a reliable source of natural enemies for control of E. postvittana in vineyards and, more generally, that native vegetation is not always a reliable source of natural enemies in crops. Based on the results, the different habitat preference of the two parasitoid species is likely to be influenced by different degrees of host-species and habitat preferences, including responses to plants, and possibly specific life history differences between the two parasitoid species. The results of this research are also expected to be useful for understanding natural biological control of many other pest species.
Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2015
APA, Harvard, Vancouver, ISO, and other styles
4

Stevens, Nicholas Benjamin. "The systematics of Australian Agathidinae (Hymenoptera: Braconidae), including the evolution of Therophilus and its colour mimicry pattern." Thesis, 2016. http://hdl.handle.net/2440/112853.

Full text
Abstract:
This study investigated the diversity and evolution of the Agathidinae in Australia. The Agathidinae are a large subfamily of braconid wasps with nearly 1,200 described species in over 50 genera worldwide. The subfamily has been relatively well-studied in the northern hemisphere but the Australian fauna is poorly known. This study presents a synopsis of the genera and species in Australia, including information on distributions, apparent species richness, species list, and keys to all genera present and to Camptothlipsis Enderlein, Lytopylus Foerster, and Therophilus Wesmael species. The phylogeny of the Agathidinae is also analysed using morphological and molecular data, with particular focus on the dominant genus in Australia, Therophilus, and its associated colour mimicry pattern. The Australian Agathidinae has received little taxonomic attention since the last of the 36 recognised species were described nearly 100 years ago. Not surprisingly, this earlier work is insufficient for reliable identification of the genera and species present. This study, employing modern taxonomic concepts, found more than 200 undescribed species representing 10 genera occurring in Australia. The fauna is dominated by tropical genera with the northern tropical to sub-tropical regions of the continent hosting the greatest generic diversity. Only one genus, Therophilus, is widespread throughout Australia. The cosmopolitan Therophilus is the most speciose agathidine genus in Australia with approximately 150 species recognised, 20 of which are described. The present study updates the taxonomy of the previously described Therophilus species, providing a more thorough assessment of intra-specific variation, and a key to species. In addition, four new species are described that support the morphological and molecular phylogenetic studies undertaken. A conspicuous component of Australian Therophilus are the members associated with a putative mimicry complex of braconid wasps and other insects comprising species that display a distinctive black, red-orange and white colour pattern (referred to in this study as the BROW colour pattern). Previous phylogenetic analysis using both 28S and morphological data from mostly non-Australian taxa revealed Therophilus to be polyphyletic. There are currently no distinguishing morphological attributes to enable each of the divergent Therophilus lineages to be reliably identified, thereby making it difficult taxonomically to designate each linage as a separate genus. Only one Australian Therophilus species was represented in the previous phylogenetic studies so the evolutionary affinities of the genus in Australia, including members that display the BROW colour pattern, remained unknown. To investigate the evolution of Australian Therophilus and its putative mimicry colour pattern, previously published agathidine phylogenetic studies were expanded with the addition of predominantly Australian Therophilus species, many having the BROW colour pattern. The phylogenetic results further demonstrated the polyphyly of Therophilus and that the Australian fauna and the BROW mimicry pattern are not monophyletic. This study represents an important contribution to the systematics of the Australian Agathidinae and provides a firm basis for identifying and describing the many undescribed Australian Therophilus species. The phylogenetic analyses further highlighted the importance of using multiple genetic markers, in conjunction with a broader taxonomic and geographical representation, to more robustly define the evolutionary relationships present.
Thesis (Ph.D.) (Research by Publication) -- University of Adelaide, School of Biological Sciences, 2016.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography