Academic literature on the topic 'Thermomechanical finite element'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermomechanical finite element.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermomechanical finite element"
Beynon, John H. "Finite–element modelling of thermomechanical processing." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, no. 1756 (June 15, 1999): 1573–87. http://dx.doi.org/10.1098/rsta.1999.0390.
Full textLiu, Donghuan, and Yinghua Liu. "Applications of Discontinuous Galerkin Finite Element Method in Thermomechanical Coupling Problems with Imperfect Thermal Contact." Mathematical Problems in Engineering 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/861417.
Full textWang, Jun, Weihong Zhang, Jihong Zhu, Yingjie Xu, Xiaojun Gu, and Ziad Moumni. "Finite element simulation of thermomechanical training on functional stability of shape memory alloy wave spring actuator." Journal of Intelligent Material Systems and Structures 30, no. 8 (March 21, 2019): 1239–51. http://dx.doi.org/10.1177/1045389x19831356.
Full textMarghmaleki, Iman Soleimani, Y. Tadi Beni, Amin Reza Noghrehabadi, Asieh Sadat Kazemi, and Mohamadreza Abadyan. "Finite Element Simulation of Thermomechanical Spinning Process." Procedia Engineering 10 (2011): 3769–74. http://dx.doi.org/10.1016/j.proeng.2011.04.616.
Full textDas, S., Eric J. Palmiere, and I. C. Howard. "Modelling Recrystallisation during Thermomechanical Processing Using CAFE." Materials Science Forum 467-470 (October 2004): 623–28. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.623.
Full textNicholson, D. W., N. W. Nelson, B. Lin, and A. Farinella. "Finite Element Analysis of Hyperelastic Components." Applied Mechanics Reviews 51, no. 5 (May 1, 1998): 303–20. http://dx.doi.org/10.1115/1.3099007.
Full textEl Amri, Abdelouahid, M. El Yakhloufi Haddou, and Abdelaltif Khamlichi. "Finite Element Simulation of Complex Thermomechanical Fatigue Evolution." Materials Science Forum 883 (January 2017): 32–36. http://dx.doi.org/10.4028/www.scientific.net/msf.883.32.
Full textFleischhauer, R., R. Behnke, and M. Kaliske. "A thermomechanical interface element formulation for finite deformations." Computational Mechanics 52, no. 5 (May 3, 2013): 1039–58. http://dx.doi.org/10.1007/s00466-013-0862-7.
Full textMitrofanov, A. V., V. I. Babitsky, and V. V. Silberschmidt. "Thermomechanical finite element simulations of ultrasonically assisted turning." Computational Materials Science 32, no. 3-4 (March 2005): 463–71. http://dx.doi.org/10.1016/j.commatsci.2004.09.019.
Full textMichel, R., R. Kreißig, and H. Ansorge. "Thermomechanical finite element analysis (FEA) of spin extrusion." Forschung im Ingenieurwesen 68, no. 1 (July 2003): 19–24. http://dx.doi.org/10.1007/s10010-003-0103-x.
Full textDissertations / Theses on the topic "Thermomechanical finite element"
Kim, Chun-Sam. "Finite element method evaluation of thermomechanical responses of fluid-saturated porous media under finite deformation /." The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487687115926948.
Full textPimenta, Paulo Vicente de Cassia Lima. "Thermomechanical simulation of continuous casting process using element based finite-volume method." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13684.
Full textThe continuous casting technique in the last four decades has been large used for to production of semi-finished steel. The heat transfer is major mechanism and it occurs in various steps during the continuous casting. The quality of steel is directly related to the way the heat transfer occur because the thermal variations produce mechanical loads as well as contact forces which are generated through the rollers and shake of the mold. Such factors may cause defects such as fractures or cracks in the final product if the resulting stresses and strains exceed critical values. The technique must be improved in order to reduce the appearance of defects and the production time. For this a good understanding of physical phenomena involved during the solidification process is critical. The focus of this work is to apply the EbFVM (Element based Finite-Volume Method) approach to study the effects of linear tensions unidirectionally coupled with the temperature applied to continuous casting of the steel 1013D (0,3% of carbon) In the simulations we adopted some simplifications such as the Plane Strain and isotropic material. We also neglected the body forces contact with the rollers the liquid pressure on the walls of the steel ingot (ferrostatic pressure) and the convective effect. However despite of the simplifications adopted this work provides quantitative informations on the linear tensions accumulation that point out to areas of possible of cracks formations
A tÃcnica de lingotamento contÃnuo nas Ãltimas quatro dÃcadas à cada vez mais utilizada na produÃÃo de aÃo semiacabado. A transferÃncia de calor à o principal mecanismo dominante e ocorre em todas as etapas do processo. A qualidade do aÃo no lingotamento està diretamente relacionada à forma que ocorrem as trocas de calor pois as variaÃÃes tÃrmicas produzem carregamentos mecÃnicos assim como as forÃas de contato as quais sÃo geradas por intermÃdio dos rolos e da oscilaÃÃo do molde. Tais fatores podem causar defeitos como fraturas ou trincas no produto final caso as tensÃes e deformaÃÃes resultantes excedam valores crÃticos. O aprimoramento da tÃcnica tem a finalidade de evitar o surgimento de defeitos e reduzir o tempo de produÃÃo. Para isso à fundamental uma boa compreensÃo dos fenÃmenos fÃsicos envolvidos ao longo do processo de solidificaÃÃo. O foco deste trabalho à aplicar a abordagem do EbFVM (Element based Finite-Volume Method) no estudo dos efeitos das tensÃes lineares acopladas unidirecionalmente com a temperatura aplicado ao lingotamento contÃnuo do aÃo 1013D (0,3% de carbono) Nas simulaÃÃes adotou-se algumas simplificaÃÃes com o estado plano de tensÃes e isotropia do material. Descartando-se as forÃas de corpo o contato com os rolos a pressÃo do aÃo lÃquido nas paredes do lingote (pressÃo ferrostÃtica) e o efeito convectivo. Contudo apesar das simplificaÃÃes adotadas este trabalho traz informaÃÃes quantitativas quanto a formaÃÃo do acÃmulo das tensÃes lineares que apontam para regiÃes de possÃveis formaÃÃes de trincas
Chen, Kuo-Hsiang. "Probabilistic finite-element modeling of fluid-infiltrated porous media under thermomechanical loadings /." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487929745333332.
Full textDelhelay, Davinder Singh. "Nonlinear finite element analysis of the coupled thermomechanical behaviour of turbine disc assemblies." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0001/MQ46072.pdf.
Full textBasaran, Cemalettin. "Finite element thermomechanical analysis of electronic packaging problems using disturbed state constitutive models." Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186961.
Full textGennick, Kendall. "Finite element modeling and simulation of thermomechanical processing of particle reinforced metal matrix composites." Monterey, California. Naval Postgraduate School, 1997. http://hdl.handle.net/10945/8410.
Full textDuring the consolidation phase, reinforcement particles of Metal Matrix Composites (MMC's) tend to be non uniformly distributed. The result is that the material properties of the composite materials are not as good as those originally desired. Through large amounts of straining, homogeneity can be achieved. Finite element models of MMC's undergoing different thermomechanical processes (TMP's) to true strains of approximately 1.2 were generated. The models consist of particle clusters within the particle-depleted matrix. The particle clusters were modeled by either a smeared model in which the particles refine the grains in the cluster, or a discrete model of the particles within clusters. The smeared and discrete models qualitatively agreed with each other. The results suggest that the best TMP to reach a state of reinforcement particle homogeneity was a hot worked, low strain rate TMP
Barua, Ananda. "Mesoscale computational prediction and quantification of thermomechanical ignition behavior of polymer-bonded explosives (PBXs)." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49028.
Full textTurner, Travis Lee. "Thermomechanical Response of Shape Memory Alloy Hybrid Composites." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/29771.
Full textPh. D.
Rolseth, Anton, and Anton Gustafsson. "Implementation of thermomechanical laser welding simulation : Predicting displacements of fusing A AISI304 T-JOINT." Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-19946.
Full textIsmail, Dahman, and Alexis Andrei. "Thermomechanical stress analysis of the main insulation system of traction electrical machines." Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20305.
Full textMer effektiva tunga fordon utvecklas med högre räckvidd, uppdaterade elektroniska och mekaniska delar. Bränsleeffektiviteten och föroreningen av koldioxid måste vara lägre för att uppnå nya EU-förordningar. Antalet tunga fordon ökar i takt med att den globala befolkningen ökar, detta leder i sin tur till ökad utsläpp av bland annat koldioxid. Genom att ta de elektriska och mekaniska delarna till nästa steg kan de globala utsläppsproblemen minskas massivt. Elektriska maskiner för framdrivning är nästa steg mot en renare framtid. Studiens huvudmål för att undersöka den elektriska maskinens isoleringssystem. Termomekaniska påfrestningar på grund av termisk cykling påverkar de elektriska maskinerna och dess delkomponenter. Genom att använda en FEM-applikation med förenklade modeller av den elektriska maskinen erhålls och diskuteras resultat. Specifikt om 2D-modeller är tillräckliga för att representera en 3D-modell. Hur tillräckligt de olika 2D-modeller kan representera 3D-modellen jämförs och diskuteras i denna studie. Ett fysiskt experiment utförs för att validera och kalibrera FEA-modellerna. Vilken av de mindre frekventa cykler med högre amplitud eller mer frekventa cyckler med lägre amplitud påverkar isoleringssystemet mest har undersökts. Simuleringarna kan göras med antingen, temperatur kopplad förskjutnings analys eller sekventiellt kopplad analys. Temperatur kopplad kopplad förskjutning är den snabbaste metoden att använda i simuleringsmodellerna. En 3D-modell är det bästa sättet att beskriva ett objekt och har därför implementerats. Ytterligare två, 2Dmodeller är framtagna i FEM-miljö för snabbare beräkning och för att undersöka om 2D-modellerna kan representera den tredimensionella geometrin. Samtliga tre modeller har specifika randvillkor för att förenkla modellerna. Känslighetsstudier görs för att bestämma vilken parameter som påverkar de inducerade termomekaniska spänningarna mest. Ett fysiskt experiment har utförsts för att validera och kalibrera simuleringsmodellerna. Resultatet visar att 3D-modellen representerar ett tre dimensonellt objekt bäst. Simuleringsresultat har visat att epoxy, som är en av huvudkomponenterna i isoleringssystemet, är mest kritisk när det gäller att först nå brott- och sträckgräns, följt av pappersisolering och koppar beläggningen. Detta är ett typiskt resultat av alla tre simuleringsmodeller. Slutsatsen visar att vissa 2D-modeller kan presentera 3D-modellen, andra kan inte. Den beroende faktorn beror på ur vilket tvärsnitt man tittar på den elektriska maskinen. Det fysiska experimentet visar liknande resultat jämfört med simuleringen när det gäller belastning vid en lägre temperatur, och avvikelsen blir större när temperaturen ökar. 3D-modellen, är den modell som har den bästa representationen av en riktig elektrisk maskin eftersom den inkluderar normal- och skjuvspänningskomponenter i alla riktningar. Anledningen är att den har bättre randvillkor jämfört med 2Dmodellerna. 2D-modellen i XY-planet har visat liknande resultat som 3D-modellen. En av huvudkomponenterna i isoleringssystemet, epoxy, utsätts för de högsta spänningarna jämfört med dess sträck- och den brottgräns, följt av pappersisolering och koppar beläggning. Känslighetsstudien har kommit fram till att statorns axiella längd inte påverkar spänningsamplituderna. Den mest kritiska parametern som påverkar de termomekaniska spänningarna är temperatur amplituden, materialens CTE och tjockleken på det skarvade skiktet. Alla maximala spänningsamplituder för samtliga tre komponenter är belägna i den fria änden.
Books on the topic "Thermomechanical finite element"
Dhondt, Guido. The Finite Element Method for Three-Dimensional Thermomechanical Applications. Chichester, UK: John Wiley & Sons, Ltd, 2004. http://dx.doi.org/10.1002/0470021217.
Full textDhondt, Guido. The Finite Element Method for Three-Dimensional Thermomechanical Applications. New York: John Wiley & Sons, Ltd., 2004.
Find full textDelhelay, Davinder Singh. Nonlinear finite element analysis of the coupled thermomechanical behaviour of turbine disc assemblies. Ottawa: National Library of Canada, 1999.
Find full textGennick, Kendall. Finite element modeling and simulation of thermomechanical processing of particle reinforced metal matrix composites. Monterey, Calif: Naval Postgraduate School, 1997.
Find full textOden, J. Tinsley. [Analysis and development of finite element methods for the study of nonlinear thermomechanical behavior of structural components]. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Find full textFinite element analysis: Thermomechanics of solids. 2nd ed. Boca Raton, FL: CRC Press, 2008.
Find full textNicholson, D. W. Finite element analysis: Thermomechanics of solids. 2nd ed. Boca Raton: CRC Press, 2008.
Find full textNicholson, D. W. Finite element analysis: Thermomechanics of solids. 2nd ed. Boca Raton: CRC Press, 2008.
Find full textHsu, Tai-Ran. The Finite Element Method in Thermomechanics. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-011-5998-2.
Full textBook chapters on the topic "Thermomechanical finite element"
Feulvarch, Eric, Jean-Christophe Roux, and Jean-Michel Bergheau. "Finite Element Modeling of Friction Stir Welding." In Thermomechanical Industrial Processes, 155–86. Hoboken, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118578759.ch3.
Full textHsu, Tai-Ran. "Application of Thermomechanical analyses in Industry." In The Finite Element Method in Thermomechanics, 274–95. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-011-5998-2_10.
Full textBruchon, Julien, and Daniel Pino Muñoz. "Finite Element Approach to the Sintering Process at the Grain Scale." In Thermomechanical Industrial Processes, 247–304. Hoboken, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118578759.ch5.
Full textHe, Chunyan, Zhen Yang, Pan Zhang, Shaoguang Li, Meysam Naeimi, and Zili Li. "A Finite Element Thermomechanical Analysis of Polygonal Wear." In Lecture Notes in Mechanical Engineering, 533–41. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07305-2_53.
Full textHuang, C. J., and E. Ghassemieh. "3D Coupled Thermomechanical Finite Element Analysis of Ultrasonic Consolidation." In THERMEC 2006, 2651–56. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.2651.
Full textSchacht, Charles Arthur. "Needed Fundamental Thermomechanical Material Properties for Thermomechanical Finite Element Analysis of Refractory Structures." In Ceramic Transactions Series, 93–101. 735 Ceramic Place, Westerville, Ohio 43081: The American Ceramic Society, 2012. http://dx.doi.org/10.1002/9781118370940.ch5.
Full textBellet, M., N. Soyris, and J. L. Chenot. "3D Finite Element Analysis of Thermomechanical Processes. Application to Forging and Casting." In Finite Inelastic Deformations — Theory and Applications, 389–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84833-9_34.
Full textGopinath, N. K., V. Vignesh, Yogendra Singh, Manoj Kumar K. Devaraj, and D. Roy Mahapatra. "Thermomechanical Deformation Behavior of a Hypersonic Waverider Using Finite Element Method." In 30th International Symposium on Shock Waves 1, 251–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46213-4_41.
Full textDimitrienko, Yu I. "Finite-Element Method for Modeling of Thermomechanical Phenomena in Composite Shells Under High Temperatures." In Thermomechanics of Composite Structures under High Temperatures, 339–415. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7494-9_13.
Full textSivachev, S. M., and L. L. Myagkov. "Thermomechanical Fatigue Analysis of Diesel Engine Piston: Finite Element Simulation and Lifetime Prediction Technique." In Lecture Notes in Mechanical Engineering, 109–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22041-9_13.
Full textConference papers on the topic "Thermomechanical finite element"
Guolin Wang, Jianjun Wu, and Meilin Zhu. "Finite element analysis of tire thermomechanical coupling rolling resistance." In 2011 International Conference on Electric Information and Control Engineering (ICEICE). IEEE, 2011. http://dx.doi.org/10.1109/iceice.2011.5776947.
Full textHelm, Dirk, and Peter Haupt. "Shape memory alloys: thermomechanical modeling and finite element simulations at finite strains." In SPIE's 7th Annual International Symposium on Smart Structures and Materials, edited by Christopher S. Lynch. SPIE, 2000. http://dx.doi.org/10.1117/12.388237.
Full textHutapea, Parsaoran, Joachim L. Grenestedt, Mitul Modi, Michael Mello, and Kristopher Frutschy. "Prediction of Microelectronic Substrate Warpage Using Homogenized Thermomechanical Finite Element Models." In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73122.
Full textLin, Baojiu, and David W. Nicholson. "Finite Element Analysis of Thermomechanical Contact of an Elastomeric O-Ring Seal." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-106.
Full textWang, Shiyong, Yafeng Wang, Ying Zhang, Xin Sun, and De Zhang. "Finite Element Analysis of Thermomechanical Performance of High Voltage Cable under Bending." In 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2019. http://dx.doi.org/10.1109/iaeac47372.2019.8997857.
Full textDietrich, Sascha, Matthias Pander, Martin Sander, Stefan H. Schulze, and Matthias Ebert. "Mechanical and thermomechanical assessment of encapsulated solar cells by finite-element-simulation." In SPIE Solar Energy + Technology, edited by Neelkanth G. Dhere, John H. Wohlgemuth, and Kevin Lynn. SPIE, 2010. http://dx.doi.org/10.1117/12.860661.
Full textOzturk, B., P. Gromala, C. Silber, K. M. B. Jansen, and L. J. Ernst. "Finite strain thermomechanical material characterization of adhesives used in automotive electronics for quantitative finite element simulations." In 2014 IEEE 16th Electronics Packaging Technology Conference (EPTC). IEEE, 2014. http://dx.doi.org/10.1109/eptc.2014.7028258.
Full textSparks, Stephanie A., J. Ryan Thigpen, and Jeff Lee. "EVALUATING GNEISS DOME THERMAL EVOLUTION USING 2-D COUPLED THERMOMECHANICAL FINITE-ELEMENT MODELING." In 66th Annual GSA Southeastern Section Meeting - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017se-290026.
Full textConti, Fosca, E. Liu, Sri Krishna Bhogaraju, Bernhard Wunderle, and Gordon Elger. "Finite Element simulations and Raman measurements to investigate thermomechanical stress in GaN-LEDs." In 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC). IEEE, 2020. http://dx.doi.org/10.1109/estc48849.2020.9229843.
Full textCho, H. K. "Finite Element Analysis on the Behavior of Laminated Composite Shells With Embedded Shape Memory Alloy Wires." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-41860.
Full textReports on the topic "Thermomechanical finite element"
Radhakrishnan, B., G. Sarma, and T. Zacharia. Coupled finite element-Monte Carlo simulation of microstructure and texture evolution during thermomechanical processing. Office of Scientific and Technical Information (OSTI), November 1998. http://dx.doi.org/10.2172/676877.
Full textKennedy, J. M., P. A. Pfeiffer, and A. H. Marchertas. TEMP-STRESS---A thermomechanical finite element program for the analysis of plane and axisymmetric reinforced/prestressed concrete structures: User`s manual. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/714560.
Full text