Academic literature on the topic 'Thermoluminescence dosimetry'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermoluminescence dosimetry.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermoluminescence dosimetry"
Bhatt, B. C., and M. S. Kulkarni. "Thermoluminescent Phosphors for Radiation Dosimetry." Defect and Diffusion Forum 347 (December 2013): 179–227. http://dx.doi.org/10.4028/www.scientific.net/ddf.347.179.
Full textGasiorowski, Andrzej, Piotr Szajerski, and Jose Francisco Benavente Cuevas. "Use of Terbium Doped Phosphate Glasses for High Dose Radiation Dosimetry—Thermoluminescence Characteristics, Dose Response and Optimization of Readout Method." Applied Sciences 11, no. 16 (August 5, 2021): 7221. http://dx.doi.org/10.3390/app11167221.
Full textWang, Xiao Ning, Jing Ning, Xiao Wei Fan, Chen Zhang, Xiao Sheng Huang, and Ying Huang. "Development of the Thermoluminescence Dosimetry Measure and Control System." Advanced Materials Research 663 (February 2013): 1023–28. http://dx.doi.org/10.4028/www.scientific.net/amr.663.1023.
Full textOliveira Junot, Danilo, Marcos A. P. Chagas, and Divanízia Do Nascimento Souza. "ANÁLISE TERMOLUMINESCENTE DE COMPÓSITOS DE CaSO4 ATIVADO COM TERRAS RARAS." Eclética Química Journal 38, no. 1 (October 25, 2017): 90. http://dx.doi.org/10.26850/1678-4618eqj.v38.1.2013.p90-94.
Full textOmanwar, S. K., K. A. Koparkar, and Hardev Singh Virk. "Recent Advances and Opportunities in TLD Materials: A Review." Defect and Diffusion Forum 347 (December 2013): 75–110. http://dx.doi.org/10.4028/www.scientific.net/ddf.347.75.
Full textMurthy, K. V. R. "Thermoluminescence and its Applications: A Review." Defect and Diffusion Forum 347 (December 2013): 35–73. http://dx.doi.org/10.4028/www.scientific.net/ddf.347.35.
Full textAmer, Hany, Mostafa Elashmawy, Huda Alazab, and El-Din Ezz. "Suitability of pure nano crystalline LiF as a TLD dosimeter for high dose gamma radiation." Nuclear Technology and Radiation Protection 33, no. 1 (2018): 93–99. http://dx.doi.org/10.2298/ntrp1801093a.
Full textHamilton, Ian. "OPERATIONAL THERMOLUMINESCENCE DOSIMETRY." Health Physics 78, no. 5 (May 2000): 569. http://dx.doi.org/10.1097/00004032-200005000-00020.
Full textAbraheem, Abeer Z., F. Khamis, and Y. A. Abdulla. "TL Characteristics and Dosimetric Aspects of Mg-Doped ZnO." European Journal of Applied Physics 3, no. 1 (January 29, 2021): 43–47. http://dx.doi.org/10.24018/ejphysics.2021.3.1.37.
Full textPaprocki, K., J. Winiecki, R. Kabacińska, K. Przegietka, M. Szybowicz, and K. Fabisiak. "Thermoluminescence properties of undoped diamond films deposited using HF CVD technique." Materials Science-Poland 35, no. 4 (March 21, 2018): 785–90. http://dx.doi.org/10.1515/msp-2017-0103.
Full textDissertations / Theses on the topic "Thermoluminescence dosimetry"
Samei, Ehsan. "Theoretical study of various thermoluminescent dosimeters heating schemes." Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/16481.
Full textIssa, Fatma Mabruk. "Doped optical fibres thermoluminescence dosimetry for brachytherapy." Thesis, University of Surrey, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.580336.
Full textLontsi, Sob Aaron Joel. "Thermoluminescence of natural quartz." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1013358.
Full textCAMPOS, VICENTE de P. de. "Desenvolvimento e avaliação de um novo porta detector/filtro para monitoramento termoluminescente com CaSOsub(4):Dy/PTFE." reponame:Repositório Institucional do IPEN, 2005. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11370.
Full textMade available in DSpace on 2014-10-09T13:57:30Z (GMT). No. of bitstreams: 1 11253.pdf: 7162286 bytes, checksum: 8c317086ceb03e1882b7946a3ddefe94 (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Batista, Bernardo José Braga. "Avaliação de dosímetros termoluminescentes para uso em radioterapia com fótons de alta energia." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-26042012-152350/.
Full textCurrently the majority of radiotherapy treatments are done by irradiation with high energy photon beams. These beams are emitted by radioactive sources (of nuclides such as cobalt 60) or generated in electron linear accelerators. For dosimetric measurements on these beams, one of the most used techniques is the thermoluminescence (TL). For the correct use of the thermoluminescent dosimeters (TLDs), it is necessary to know their dosimetric properties like, for example, the variation of their response with the energy of the radiation beam. The purpose of this study was to assess the energy response of various TL materials when irradiated with high energy photon beams. So, curves relating the TL response and absorbed dose to water were obtained for LiF:Mg, Ti (TLD-100), Brazilian natural fluorite, CaSO4:Dy, g2SiO4:Tb and Al2O3:C TLDs irradiated with gamma rays from a 60Co source and linear accelerator X ray beams with nominal accelerating potential of 6, 10, 15 and 18 MV. The study was done in a dose range similar to that used in standard fractionated radiotherapy treatments and the results show that under these conditions, there is no variation larger than 3% in the TL response as a function of photon energy. The relationship between the dose deposition in the TLD and the dose deposition in water in function of the photon energy was studied by Monte Carlo method (MC), using the PENELOPE code system, and the results were consistent with the experimental outcomes. The TLDs were also irradiated with thermal and epithermal neutrons and proved to be sensitive to them. However, the consistency of the experimental and MC results (which did not take into account the presence of neutrons), the study of the variation in TL relative sensitivity with the beam energy, and the TLD glow curve shape analysis lead to the conclusion that the influence on TL response due to neutron contamination in the therapeutic photon beams is negligible for all materials. The results indicate that for the range of doses and energies used routinely in radiotherapy, the LiF:Mg, Ti (TLD-100), Brazilian natural fluorite, CaSO4:Dy, Mg2SiO4:Tb and Al2O3:C TLDs can be used without applying any correction factors for the beam energy.
Seneza, Cleophace. "Thermoluminescence of secondary glow peaks in carbon-doped aluminium oxide." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1013053.
Full textWoodman, Robert Harvey. "Development of magnesium tetraborate as a material for thermoluminescence dosimetry." Thesis, Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/50096.
Full textMaster of Science
incomplete_metadata
França, Leonardo Vinícius da Silva. "Development of a Thermoluminescence - Radioluminescence Spectrometer." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-29052018-162229/.
Full textNesse trabalho, inicialmente as técnicas de radioluminescência (RL) e termolumi- nescência (TL) são apresentadas. A radioluminescência é a luminescência imediata emitida por um material quando exposto à radiaçao ionizante. A termoluminescência é a luminescência emitida por um material previamente exposto à radiação quando este é aquecido. Conceitos de bandas de energia, defeitos em cristais e os diferentes processos de ionização que ocorrem na matéria quando exposta à radiação ionizante são brevemente discutidos a fim de apresentar os mecanismos envolvidos na RL e TL. A utilização das técnicas na caracterização de materiais e na dosimetria é reportada, justificando a importância do instrumento desenvolvido. As partes mecânicas/estruturais e uma descrição de cada componente do instrumento são descritos. O algoritmo implementado para controle do instrumento e aquisição de dados é também descrito. O desenvolvimento do instrumento possibilitou a geração de rampas de temperatura com uma boa performance, atingindo até 500 °C com variações de até 2 °C ao utilizar taxas de aquecimento entre 0.5 °C/s e 5 °C/s. Calibrações do espectrômetro óptico utilizado na aquisição da luminescência e do sistema de irradiação foram executadas. Por fim, testes de aquisição de espectros de RL e TL foram realizados. Os testes de RL foram realizados utilizando vários materiais cujos espectros de emissão são bem conhecidos pela literatura, a saber, óxido de alumínio dopado com carbono Al2O3:C , oxisulfeto de gadolínio dopado com térbio Gd2O2S:Tb , óxido de ítrio dopado com európio Y2O3:Eu e borato de cálcio dopado com disprósio CaB6O10:Dy. Para o teste dos espectros de TL, o Al2O3:C foi utilizado. Os resultados dos espectros de RL e TL mostraram concordância com a literatura, indicando que o instrumento desenvolvido é comparável a outros instrumentos em operação de outros grupos, tornando os nossos resultados confiáveis.
Chen, Geng, and 陳耿. "Studies of quartz luminescence sensitivity relevant to dating and dosimetry." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B42576143.
Full textChen, Geng. "Studies of quartz luminescence sensitivity relevant to dating and dosimetry." Click to view the E-thesis via HKUTO, 2000. http://sunzi.lib.hku.hk/hkuto/record/B42576143.
Full textBooks on the topic "Thermoluminescence dosimetry"
McKeever, S. W. S. Thermoluminescence dosimetry materials: Properties and uses. Ashford: Nuclear Technology Publishing, 1993.
Find full textHorowitz, Y. S. Computerised glow curve deconvolution: Application to thermoluminescence dosimetry. Ashford: Nuclear Technology Publishing, 1995.
Find full textQuestions and answers on thermoluminescence and optically stimulated luminescence. Hackensack, N.J: World Scientific, 2008.
Find full textChen, R. Thermally and optically stimulated luminescence: A simulation approach. Chichester, West Sussex, UK: Wiley, 2011.
Find full textKharita, Mohammad Hassan. Thermoluminescence and phototransfer thermoluminescence: Dosimetric characteristics and applications using natural and man-made materials. Birmingham: University of Birmingham, 1996.
Find full textMishev, Ilii͡a T. Fluoritŭt kato fosfor v radiotermoluminest͡sentnata dozimetrii͡a. Sofii͡a: Izd-vo na Bŭlgarskata akademii͡a na naukite, 1991.
Find full textFathony, Muhammad. Dosimetric characteristic studies of phototransfer thermoluminescence in natural quartz. Birmingham: University of Birmingham, 1992.
Find full textRanjbar, Abbas Hosseini. Dosimetric properties of clear fused quartz and CR-39 using electron spin resonance and thermoluminescence techniques. Birmingham: University of Birmingham, 1996.
Find full textChougaonkar, M. P. External gamma radiation monitoring in the environs of kaps region using thermoluminescent dosimeters, during the years 1986-2003. Mumbai: Bhabha Atomic Research Centre, 2004.
Find full textBasu, A. S. External gamma radiation monitoring in the environs of Kaiga Generating Station (KGS), using thermoluminescent dosimeters, during the period 1989-2003. Mumbai: Bhabha Atomic Research Centre, 2005.
Find full textBook chapters on the topic "Thermoluminescence dosimetry"
Kron, Tomas, and Peta Lonski. "Thermoluminescence Dosimetry." In Radiation Therapy Dosimetry: A Practical Handbook, 75–96. Names: Darafsheh, Arash, editor. Title: Radiation therapy dosimetry : a practical handbook / edited by Arash Darafsheh. Description: First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781351005388-6.
Full textHeffer, P. J. H., and T. A. Lewis. "The Use of Beryllium Oxide Thermoluminescence Dosemeters for Measuring Gamma Exposure Rates." In Reactor Dosimetry, 373–79. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5378-9_36.
Full textKron, T., M. Schneider, and C. Amies. "Correlation Between the Dose Calculated from Plan and the Dose Measured with Thermoluminescence Dosimetry in Radiotherapy." In Tumor Response Monitoring and Treatment Planning, 543–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-48681-4_89.
Full textKessler, C., F. Stecher-Rasmussen, J. Rassow, S. Garbe, and W. Sauerwein. "Application of Thermoluminescent Dosimeters to Mixed Neutron- Gamma Dosimetry for BNCT." In Frontiers in Neutron Capture Therapy, 1165–73. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1285-1_178.
Full textDanilkin, M. I., N. Yu Vereschagina, A. S. Selyukov, and D. I. Ozol. "Li2B4O7 for Thermoluminescent Dosimetry: A New Life of an Old Material." In IFMBE Proceedings, 827–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31866-6_147.
Full textAbderrahim, H. Aït, E. D. McGarry, and V. Spiegel. "Assessment of the Fast Neutron Sensitivity of Thermoluminescent Gamma Dosimeters." In Proceedings of the Seventh ASTM-Euratom Symposium on Reactor Dosimetry, 529–36. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2781-3_61.
Full textDeme, S., and I. Apáthy. "Advanced Portable Thermoluminescent Dosimeter System for Monitoring Environmental Radiation." In The Environmental Challenges of Nuclear Disarmament, 313–21. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4104-8_36.
Full textRahimi, Seyed Ali. "Considering Dose Rate in Routine X-ray Examination by Thermoluminescent Dosimetry (TLD) in Radiology units of Mazandaran Hospitals." In IFMBE Proceedings, 582–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-69367-3_155.
Full textStock, T., M. Lüpke, and H. Seifert. "The Lower Detection Limit of GR-200A and MCP-100D Thermoluminescence Dosimeters at Different Readout and Annealing Temperatures." In IFMBE Proceedings, 315–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03902-7_89.
Full textJain, Vinod K. "Photostimulated Thermoluminescence." In Thermoluminescence and Thermoluminescent Dosimetry, 173–211. CRC Press, 2020. http://dx.doi.org/10.1201/9780429292248-4.
Full textConference papers on the topic "Thermoluminescence dosimetry"
Majchrowski, Andrzej. "Thermoluminescence in ionizing radiation dosimetry." In Solid State Crystals: Materials Science and Applications, edited by Jozef Zmija. SPIE, 1995. http://dx.doi.org/10.1117/12.224985.
Full textMoscovitch, Marko, Anatoly Rosenfeld, Tomas Kron, Francesco d’Errico, and Marko Moscovitch. "The Principles of Phototransferred Thermoluminescence." In CONCEPTS AND TRENDS IN MEDICAL RADIATION DOSIMETRY: Proceedings of SSD Summer School. AIP, 2011. http://dx.doi.org/10.1063/1.3576175.
Full textBhadane, Mahesh S., S. S. Dahiwale, V. N. Bhoraskar, and S. D. Dhole. "Hydrothermally synthesized barium fluoride nanocubes for thermoluminescence dosimetry." In DAE SOLID STATE PHYSICS SYMPOSIUM 2015. Author(s), 2016. http://dx.doi.org/10.1063/1.4947803.
Full textAzorín Nieto, Juan. "Thermoluminescence Dosimetry (TLD) and its Application in Medical Physics." In MEDICAL PHYSICS: Eighth Mexican Symposium on Medical Physics. AIP, 2004. http://dx.doi.org/10.1063/1.1811814.
Full textFuretta, C. "Fading Correction To Be Used In Clinical Thermoluminescence Dosimetry." In MEDICAL PHYSICS: Eighth Mexican Symposium on Medical Physics. AIP, 2004. http://dx.doi.org/10.1063/1.1811820.
Full textGhomeishi, Mostafa, Ghafour Amouzad Mahdiraji, Faisal Rafiq Mahamd Adikan, and Suhairul Hashim. "The thermoluminescence response of undoped silica PCF for dosimetry application." In 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 2013. http://dx.doi.org/10.1109/cleopr.2013.6600334.
Full textHorowitz, Yigal S., Hanan Datz, Anatoly Rosenfeld, Tomas Kron, Francesco d’Errico, and Marko Moscovitch. "Thermoluminescence Dose Response: Experimental Methodology, Data Analysis, Theoretical Interpretation." In CONCEPTS AND TRENDS IN MEDICAL RADIATION DOSIMETRY: Proceedings of SSD Summer School. AIP, 2011. http://dx.doi.org/10.1063/1.3576167.
Full textVehar, David W., Patrick J. Griffin, and Charles V. Holm. "THE USE OF ROBUST ESTIMATORS FOR REDUCING UNCERTAINTIES IN THERMOLUMINESCENCE DOSIMETER MEASUREMENTS." In Proceedings of the 11th International Symposium on Reactor Dosimetry. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705563_0058.
Full textObryk, Barbara. "From nGy to MGy - New dosimetry with LiF:Mg,Cu,P thermoluminescence detectors." In XXXV BRAZILIAN WORKSHOP ON NUCLEAR PHYSICS. AIP, 2013. http://dx.doi.org/10.1063/1.4804076.
Full textJyothi, K. R., K. R. Bhagya, H. Nagabhushana, A. P. Gnana Prakash, Vinayakprasanna N. Hegde, and N. M. Nagabhushana. "Green synthesis and thermoluminescence study on LiAlSiO4:Ce3+ nanophosphors for dosimetry applications." In DAE SOLID STATE PHYSICS SYMPOSIUM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017190.
Full textReports on the topic "Thermoluminescence dosimetry"
Aalbers, A. H. L., A. J. J. Bos, and B. J. Mijnheer. NCS Report 3: Proceedings of the symposium on thermoluminescence dosimetry. Delft: NCS, October 1988. http://dx.doi.org/10.25030/ncs-003.
Full textDurrer, Jr., Russell Edward. An evaluation of the Panasonic model UD513AC-1 Thermoluminescence Dosimetry system. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10188840.
Full textClark, Richard A. Intrinsic dosimetry. Properties and mechanisms of thermoluminescence in commercial borosilicate glass. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1054849.
Full textHerminghuysen, Kevin Ryan. Development and evaluation of a neutron-gamma mixed-field dosimetry system based on a single thermoluminescence dosimeter. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/10188779.
Full textNugent, K. J., A. B. Ahmed, and P. G. Groer. Evaluation of thermoluminescent dosimeters (TLDs) of two different designs for beta particle and low energy photon dosimetry. Office of Scientific and Technical Information (OSTI), November 1992. http://dx.doi.org/10.2172/6567527.
Full textKinnison, R. Evaluation of environmental monitoring thermoluminescent dosimeter locations. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/138636.
Full textShaw, K. R. Evaluation of discrepancies between thermoluminescent dosimeter and direct-reading dosimeter results. Office of Scientific and Technical Information (OSTI), July 1993. http://dx.doi.org/10.2172/10177407.
Full textSonder, E., and A. B. Ahmed. Background radiation accumulation and lower limit of detection in thermoluminescent beta-gamma dosimeters used by the centralized external dosimetry system. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10109602.
Full textSonder, E., and A. B. Ahmed. Background radiation accumulation and lower limit of detection in thermoluminescent beta-gamma dosimeters used by the centralized external dosimetry system. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/5948905.
Full textBaumgartner, W. V., A. W. Endres, and S. R. Reese. Quality control program for the Hanford External Dosimetry thermoluminescent processing system. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/7262866.
Full text