Dissertations / Theses on the topic 'Thermogravimetric analysis'

To see the other types of publications on this topic, follow the link: Thermogravimetric analysis.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Thermogravimetric analysis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Pascoa, Dos Santos Magaia. "Pyrolysis and thermogravimetric analysis of wood and its components." Thesis, KTH, Skolan för kemivetenskap (CHE), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-158618.

Full text
Abstract:
The present study investigates the thermochemical conversion of spruce wood and its extracted components by thermogravimetric analysis. The extracted components are two pulps, three xylan-lignin samples and one lignin sample; they were produced by the kraft cooking method with different cooking times. The study involves characterization of the biomass through proximate analysis and pyrolysis. A qualitative comparison between the thermal behaviours of the extracted components and wood is also performed. The study showed that the thermal behaviour of the biomass was highly influenced by the content of cellulose and lignin in the samples. Compounds rich in cellulose produced large quantities of volatiles and had a higher rate of pyrolysis compared to compounds rich in lignin, which produced more char and had a slower rate of pyrolysis. It was also shown that, the amount of char is not solely depending on the amount of the lignin; the structure of the compound also plays a role. On the other hand, the original wood sample showed some deviations regarding the trends in volatile and char production and these deviations were attributed to component interactions. Both cellulose and lignin rich compounds had an increase in thermal stability with increasing cooking time. For the pulps the increase in thermal stability is believed to be caused by increase in crystallinity, while for the lignin rich samples is believed to be caused by the increase in lignin content and structural changes in the compounds. The results also show that although changes are introduced in the cooking process, the extracted component still retain properties exhibited by the source biomass.
APA, Harvard, Vancouver, ISO, and other styles
2

Lindsey, Benjamin Keith. "Thermogravimetric analysis of biomass-lignite blends for co-combustion." Thesis, University of Bath, 2006. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

PERSNIA, YOSRA. "Thermogravimetric analysis and modeling of pyrolysis of macroscopic wood particles." Thesis, KTH, Skolan för kemivetenskap (CHE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-190841.

Full text
Abstract:
The knowledge of kinetics of pyrolysis is important. It is also challenging to find parameters for kinetic which can be applied at different sizes of biomass. Many researchers have been investigating the pyrolysis behavior of wood powders due to heat and mass transfer limitations. They have also been focusing on determining the effects of feedstock characterization, residence time, gas environment, heating rate and the final temperature as well as the arrangement of the pyrolysis reactor and modeling of the kinetics. This project presents a qualitative understanding of the pyrolysis process based on data from slow heating rates. Samples of spruce chips at different masses, namely 4 mg, 200 mg, 500 mg and 800 mg and also 4 mg powder have been used in experiments with thermogravimetric analysis to understand the mass loss behavior. Furthermore, kinetic parameters for biomass are taken from literature and have been used in modeling to understand to which extent these parameters are different for different particle sizes. The kinetic model that is chosen to investigate in this project is where each component of biomass shows different characteristics during the thermal decomposition. The experimental results on wood chips at different sample masses show same behavior for all of them and there is no heat and mass transfer limitations. The results from experiments on powders shows different behavior than for chips at the end of the mass loss curve only. This means less char is produced for powders than it is for the chips. The results from modeling show that kinetic parameters such as activation energy and the prefactor are the same for both powders and chips. The only parameter that is different is the pre-determined char yield for hemicellulose second reaction. The kinetic model and the kinetic parameters used in this report are in good agreement to the experimental results. The model used, where each component show different behavior during its thermal decomposition and the final products are volatiles and char is a reliable model to describe the mass loss behavior of biomass. The difference in the experimental results between powders and chips can be explained by the modeling. It can be stated that the difference is in the char yield from thermal decomposition of hemicellulose.
Kunskap om kinetiken för pyrolysprocessen är viktig. Det är även en utmaning att finna parametrar för kinetiken som kan tillämpas till olika massor och storlekar av biomassa. Många forskare har undersökt pyrolys beteenden på bara träpulver på grund av värme- och massöverföring begränsningar. De har också fokuserat på att undersöka effekterna av råvara karakterisering, uppehållstid, gasmiljö, uppvärmningshastighet och den slutliga temperaturen samt arrangemanget av pyrolysreaktorn och modellering av kinetiken. I detta projekt presenteras en kvalitativ förståelse av pyrolysprocessen baserad på data från långsamma uppvärmningshastigheter. Prover av granflis vid olika massor; 4 mg, 200 mg, 500 mg och 800 mg och även 4 mg pulver har använts i experimenten med thermogravimetric analys för att förstå massförlust uppträdandet. Dessutom har kinetiska parametrar för biomassa tagits från litteratur och har använts i modelleringen för att förstå i vilken utsträckning dessa parametrar skiljer sig åt för pulver och flis. Den kinetiska modellen som har valts att undersökas i detta projekt är den där varje komponent av biomassa visar separata och olika egenskaper under termisk nedbrytning. De experimentella resultat på flis vid olika provmassorna uppvisar samma beteende för dem alla och det finns ingen värme- och massöverföringsbegränsningar. Resultaten från experiment på pulver visar annorluna beteende än för träflis endast i slutet av massförlust kurvan. Detta innebär att mindre kol produceras för pulver än vad det gör för flis. Resultaten från modelleringen visar att kinetiska parametrar såsom aktiveringsenergin och prefactor är densamma för båda pulver och flis. Den enda parameter som skiljer sig är den förutbestämda utbytet av kol för hemicellulosa’s andra reaktion. Den kinetiska modellen och kinetiska parametrar som används i denna rapport är i god överensstämmelse med de experimentella resultaten. Denna modell som används, där varje komponent visar enskilt beteende under dess termisk nedbrytning och slutprodukterna är bara gaser och kol, är en pålitlig modell för att beskriva beteendet för massförlust av biomassa. Skillnaden i de experimentella resultaten mellan pulver och flis kan förklaras av modelleringen. Det kan konstateras att skillnaden är i kol utbytet från sönderdelningen av hemicellulosa.
APA, Harvard, Vancouver, ISO, and other styles
4

Gan, Yaodong. "Thermogravimetric Analysis of Coal Blends Under Conditions of Pyrolysis & Combustion." TopSCHOLAR®, 1989. https://digitalcommons.wku.edu/theses/2370.

Full text
Abstract:
In recent years, the growing attention to coal quality by coal-burning utilities has led to an increase in coal blending. Coal blending is done with both economics and the quality of coal in mind. To assess the quality of coal, pyrolysis and combustion influencing thermal parameters, as measured in thermogravimetric analysis (TGA) experiments can be applied. The coal industry needs a study to determine relationships that may exist between the measured values of TGA thermal parameters in individual coals and those in the blends. The TGA thermal parameters are the weight loss, Tmax, Ti, T1/2, tmax, tbreak point, tcombustion end point, Rmax and residue. With these relationships, there exists the possibility of accurate prediction of values of these parameters in the coal blends. In this study, a series of coal blends were prepared and thermal parameters for the blends were measured to examine the additive or nonadditive nature of results obtained under both pyrolysis and combustion conditions using thermogravimetric analysis.
APA, Harvard, Vancouver, ISO, and other styles
5

Lowton, Rebecca L. "Structural and thermogravimetric studies of alkali metal amides and imides." Thesis, University of Oxford, 1999. http://ora.ox.ac.uk/objects/uuid:df7b324d-c33d-4265-91cb-0555c3a10bec.

Full text
Abstract:
This work presents an in-depth study of the crystal structures and hydrogen sorption potential of the Li - N - H and Li - Na - N - H systems. The structures of the materials have been studied using X-ray and neutron diffraction, Raman spectroscopy and inelastic neutron scattering. The behavior of the materials during heating was studied using variable temperature X-ray diffraction, intelligent gravimetric analysis in conjunction with neutron diffraction, intelligent gravimetric analysis combined with mass spectrometry and differential scanning calorimetry. The role of cation disorder in the Li - N - H (D) system has been explored, indicating that crystallographic ordering of the Li+ ions within lithium amide and lithium imide significantly affects the hydrogen sorption properties of the materials. Order-disorder transitions were observed both during hydrogen desorption from ordered LiNH2 and during deuterium adsorption on ordered Li2ND. Such transitions were not observed in disordered samples of the materials. The intrinsic disorder and the stoichiometry of Li - N - H(D) materials was shown to depend strongly on the techniques used during their synthesis. Studies regarding the synthesis, crystal chemistry and decomposition properties of the mixed Li / Na amides are presented. Two distinct mixed Li / Na amides of formulae Li3Na(NH2)4 and LiNa2(NH2)3 were observed in the LiNH2 / NaNH2 phase space. Na was also seen to be soluble in LiNH2, forming sodium-doped LiNH2 . Li3Na(NH2)4 and Na-doped LiNH2 were found to exhibit significant cation non-stoichiometry, whereas LiNa2(NH2)4 was shown to exist as a line phase material. Thermogravimetric and calorimetric studies of the mixed Li / Na amides suggested that these materials decompose primarily with loss of H2.
APA, Harvard, Vancouver, ISO, and other styles
6

Zuru, Abdullahi Abdu. "Evaluation of kinetic parameters and investigation of reaction mechanisms using rising temperature thermogravimetric technique." Thesis, University of Salford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scaggs, Meredith Lynne. "Development and Implementation of a Standard Methodology for Respirable Coal Mine Dust Characterization with Thermogravimetric Analysis." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/71817.

Full text
Abstract:
The purpose of this thesis is to examine the potential of a novel method for analysis and characterization of coal mine dust. Respirable dust has long been an industry concern due to the association of overexposure leading to the development occupational lung disease. Recent trends of increased incidence of occupational lung disease in miners, such as silicosis and Coal Workers Pneumoconiosis, has shown there is a need for a greater understanding of the respirable fraction of dust in underground coal mines. This study will examine the development of a comprehensive standard methodology for characterization of respirable dust via thermogravimetric analysis (TGA). This method was verified with laboratory-generated respirable dust samples analogous to those commonly observed in underground coal mines. Results of this study demonstrate the ability of the novel TGA method to characterize dust efficiently and effectively. Analysis of the dust includes the determination of mass fractions of coal and non-coal, as well as mass fractions of coal, carbonate, and non-carbonate minerals for larger respirable dust samples. Characterization occurs through the removal of dust particulates from the filter and analysis with TGA, which continuously measures change in mass with specific temperature regions associated with chemical changes for specific types of dust particulates. Results obtained from the verification samples reveal that this method can provide powerful information that may help to increase the current understanding of the health risks linked with exposure to certain types of dust, specifically those found in underground coal mines.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
8

Nara, Kameswara R. "Analysis of non load bearing two component (2K) adhesives; under the automotive hemming process variations; thermogravimetric, calorimetric and composition analyses." Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1219861632/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Muralidas, Pooja. "Thermo-gravimetric Analysis of Corrosion Kinetics of Ti and Zr Coated P91 Steel." OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/2057.

Full text
Abstract:
In recent decade growing concerns of CO2 emissions from power plants have increased, which led to development of technologies like oxy-fuel combustion process. P91 steel is profoundly used in power plants, but oxy fuel combustion exacerbates corrosion due to recycling of flue gas. This paper studied the kinetics of the corrosion rate on the boiler tubes and furnace and help achieve a corrosion resistant coating over it. Refractory metal diffusion coating is created and tested at high temperature in corrosive atmosphere. This was done by forming Ti and Zr diffusion coating on P91 steel using pack cementation. Coating thickness of 12 and 20 µm were obtained for Ti and Zr respectively. These samples were tested in thermo-gravimetric system by heating at 950˚C for 24 hours in 5% oxygen in Helium gas. Heating in an oxidizing environment lead to exfoliation corrosion on uncoated P91 steel. TGA procedure confirmed less mass change of Ti and Zr coated samples, than that of uncoated P91 steel sample. SEM and depth profiling confirms oxygen penetration is 2.7mm in uncoated P91 steel sample, whereas the Ti and Zr Coated samples oxygen penetration is just 16 and 56 µm respectively.
APA, Harvard, Vancouver, ISO, and other styles
10

Agioutanti, Eleftheria. "An Improved Thermogravimetric Analysis Method for Respirable Coal Mine Dust and Comparison to Results by SEM-EDX." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/91984.

Full text
Abstract:
It has long been known that chronic exposures to high concentrations of respirable coal mine dust can lead to the development of lung diseases such as Coal Worker's Pneumoconiosis, commonly referred to as "black lung", and silicosis. Since the mid-1990s, an alarming resurgence of diseases has been documented in central Appalachia, where underground mining often necessitates significant extraction of rock strata along with the thin seams of coal. These circumstances have prompted concern over if or how changing dust composition might be a factor in contemporary disease prevalence. Until now, the total mass concentration and quartz mass fraction of respirable dust have been regulated and monitored in US coal mines. Unfortunately, however, these two metrics alone do not paint a full picture of dust composition. Earlier work in the author's research group established a preliminary thermogravimetric analysis (TGA) method for coal mine dust. The method is intended to allow estimation of three key mass fractions of the dust from separate sources: coal from the coal strata being mined; non-carbonate minerals from the rock strata being mined or drilled; and carbonates that are primarly sourced from application of rock dust products to the mine floor or ribs. However, accuracy of the preliminary method was substantially limited by poor dust recovery from the fibrous filter media used for sample collection. This thesis includes two studies: The first study aims to establish an improved TGA method. It uses smooth polycarbonate (PC) filters for dust sampling and a modified thermal ramping routine. The method is verified using laboratory-generated respirable dust samples. In the second study, the improved TGA method is used to analyze 75 respirable mine dust samples, collected in 15 US mines. Replicate samples are also analyzed by scanning electron microscopy using energy dispersive X-ray (SEM-EDX). TGA and SEM-EDX results are compared to gain insights regarding the analytical methods and general trends in dust composition within and between mines.
Master of Science
It has long been known that chronic exposures to excessive respirable coal mine dust can lead to the development of lung diseases such as Coal Worker’s Pneumoconiosis (“Black Lung”) and silicosis. Disease rates in central Appalachia have shown an alarming and unexpected increase since the mid-1990s, despite declining dust concentrations evident from regulatory compliance monitoring data. Clearly, there is a need to better understand coal mine dust composition, which will require additional analytical methods. Thermogravimetric analysis (TGA) has been proposed as one possible method, because it should allow estimation of three key dust components from separate sources: coal from the coal strata being mined; non-carbonate minerals from the rock strata being mined or drilled; and carbonates from application of rock dust products to the mine floor and ribs. However, preliminary work with TGA showed limited accuracy, mostly due to sampling materials. In this thesis, two studies were performed. The first study aims to establish an improved TGA method using smooth, polycarbonate (PC) filters. The second study demonstrates the method on a large number of mine dust samples, and compares the results to those gained by an alternative method that uses electron microscopy.
APA, Harvard, Vancouver, ISO, and other styles
11

Vamvuka, Despina. "Thermogravimetric analysis studies of low rank coals and modelling of combustion and gasification processes in entrained systems." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363216.

Full text
Abstract:
Thermogravimetric analysis studies were performed on three low rank coals and a lignite (average size 41um), as well as the dense media separated fractions of these in nitrogen and air. All experiments were carried out at 20°C/min and over the temperature range of 25 to 850°C. Such studies have been used to examine the effect of the different minerology of the coals upon the devolatilization and combustion processes, to investigate the effect of mineral matter on coal reactivity, and to provide data for mathematical models of pulverized coal combustion and gasification in entrained systems. The first-order kinetic model, used to characterise the devolatilization and combustion processes, seemed to correlate the experimental data reasonably well. The activation energy values corresponding to devolatilization, and ranging from 22 to 38 KJ/mole, were similar for all coals, while those corresponding to combustion of the devolatilized coal varied between 41 and 96 KJ/mole and were significantly higher. The presence of the mineral matter slightly increased the reactivity of the coals in nitrogen, whereas it affected greatly the temperature sensitivity of the reaction in air, A mathematical model, incorporating thermogravimetric analysis data of Whitwick coal, was developed in order to predict the burning history of a single entrained coal particle, and to study the effect of ambient gas temperature and boundarylayer thickness on the final conversion, This model included a set of ordinary differential equations, describing the reaction rates and the mass and heat transport processes, as well as a partial differential equation, for computing the temperature profile within the particle. The system of equations was solved numerically, The location of the reaction zone on the solid surface, where gas-phase and heterogeneous combustion could occur simultaneously, appeared to describe successfully the combustion mechanism of the particle. The combustion process was chemical reaction rate controlled. The particle behaved essentially isothermally and its lifetime was estimated to be approximately 1.23s. A higher ambient gas temperature or boundary-layer thickness resulted in shorter burn-out times. Finally, a one-dimensional, steady-state model, for an entrained flow coal gasifier, was developed, by using combustion data from thermogravimetric analysis of Whitwick coal. The model was based on mass and energy balances, heterogeneous reaction rates and homogeneous gas-phase equilibrium. The resulting set of nonlinear mixed ordinary differential-implicit algebraic equations was solved numerically, by using modified Euler's method in conjunction with a nonlinear algebraic equation solver. Parametric studies were made, in order to provide a better understanding of the reactor performance, in terms of coal conversion, product gas composition and temperature profiles along the reactor, under various operating conditions, such as feed flow rates and gasifier pressure. High conversion of carbon could be predicted only if the devolatilization reaction proceeded in parallel with the heterogeneous reaction at the coal surface, with oxygen and steam. The model suggested that a two-stage gasification with precombustion, followed by reaction with steam would be possible. The critical parameters in gasification were the steam-to-coal and oxygen-to-coal feed ratios. Data is presented showing their effect on total conversion, synthesis gas composition and calorific value, as a function of reactor pressure. No experimental data for the verification of the simulation was performed, but comparison of the results with those of previous investigations showed consistency.
APA, Harvard, Vancouver, ISO, and other styles
12

Carvalho, Cláudio Teodoro de [UNESP]. "Síntese, caracterização e estudo do comportamento térmico dos 2-metoxicinamalpiruvatos de lantanídeos (III), exceto promécio, e ítrio (III) no estado sólido." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/105707.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:35:06Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-22Bitstream added on 2014-06-13T19:24:24Z : No. of bitstreams: 1 carvalho_ct_dr_araiq.pdf: 783523 bytes, checksum: 845f90e2b52f8926bba04e0f2219f870 (MD5)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Sintetizou-se o ácido 2-metoxicinamalpirúvico (2-MeO-HCP), através da reação de condensação aldólica do 2-metoxicinamaldeído (CH3O-C6H4-(CH)2-CHO), 96 % de pureza com o piruvato de sódio, (Na-2-MeO-CP), 99% puro, ambos da Aldrich. A pureza do ácido 2-metoxicinamalpirúvico sintetizado foi determinada por DSC através do pico de fusão em 125 ºC. O ácido 2-metoxicinamalpirúvico foi convertido a uma solução de aproximadamente 0,15 mol L-1 de 2-metoxicinamalpiruvato de sódio (pH~7,5). Com esse sal foram sintetizados os compostos no estado sólido (Ln-2-MeO-CP.nH2O), sendo que Ln representa os lantanídeos trivalentes e Y(III), 2-MeO-CP o ligante 2-metoxicinamalpiruvato e n o número de moléculas de água com n = 1,5 para o composto de túlio e itérbio e para os demais compostos n = 1. Os Ln-2-MeO-CP.nH2O foram obtidos no estado sólido por adição lenta do ligante aos respectivos cloretos metálicos ou nitratos sob agitação contínua até a total precipitação dos íons metálicos. Os precipitados foram filtrados em papel de filtro Whatman n 42 lavando-se os mesmos com água destilada até a obtenção de teste negativo para cloretos com AgNO3 em meio nítrico e difenilamina para nitratos. Posteriormente os precipitados foram secos em temperatura ambiente e armazenados em dessecador contendo cloreto de cálcio. Técnicas instrumentais utilizadas no estudo dos compostos: Termogravimetria e Análise Térmica Diferencial Simultânea (TG-DTA) e Calorimetria Exploratória Diferencial (DSC) e Complexometria com EDTA (padrão de 1,000 x 10-2 mol L-1 ) forneceu informações sobre grau de hidratação, comportamento térmico e estequiometria; Difratometria de Raios X pelo método do pó, informações da cristalinidade e Espectroscopia de Absorção na Região do Infravermelho sugeriu a forma de coordenação dos compostos sintetizados. Na caracterização do ácido...
The 2-methoxycinnamylidenepyruvic acid (2-MeO-HCP) was synthesized through the reaction of aldolic condensation of 2-methoxycinnamaldehyde (CH3O-C6H4-(CH) 2-CHO), 96% purity, with sodium pyruvate, (Na-2 - MeO-CP) 99% pure, both from Aldrich. The purity of 2-methoxycinnamylidenepyruvic synthesized was determined by DSC through the melting peak at 125 ºC. The 2-methoxycinnamylidenepyruvic acid was converted to a solution of about 0.15 mol L-1 of the sodium 2-methoxycinnamylidenepyruvate (pH ~ 7.5). With this salt were synthesized the solid compounds (Ln-2-MeO-CP.nH2O), where Ln represents trivalent lanthanides and Y (III), 2-MeO-CP is the methoxycinnamylidenepyruvate ligand and n the number of water molecules with n = 1.5 for the compound thulium, ytterbium and for the other compounds, n = 1. The Ln-2-MeO-CP.nH2O were obtained in the solid state by slow addition of the ligand to the respective metal chlorides or nitrates on continuous stirring until total precipitation of metal ions. The precipitates were filtered through filter paper Whatman number 42, washing them with distilled water to obtain a negative test for chloride with AgNO3 in nitric acid and diphenylamine to nitrates. Subsequently the precipitates were dried at room temperature and stored in a desiccator containing calcium chloride. Instrumental techniques used in the study of compounds: Thermogravimetry and differential thermal analysis (TG-DTA), Differential Scanning Calorimetry (DSC) and Complexometry with EDTA (standard padrão de 1,000 x 10-2 mol L-1 ) provided information on degree of hydration, thermal behavior and stoichiometry; X-ray Diffractometry by the method of powder provided information about crystallinity, and Absorption Spectroscopy in the Infrared Region suggested the form of coordination of the compounds synthesized. In the characterization of 2-methoxycinnamylidenepyruvic, apart from the DSC... (Complete abstract click electronic access below)
APA, Harvard, Vancouver, ISO, and other styles
13

Zivkovic, DaVena. "Enzymatic Characterization of Aldose Reductase and Its Inhibitors." Youngstown State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1472069987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kumar, Prateek. "Heat Capacity and Oxidation Kinetic Studies of Fe-Ti Composite Metal Oxide (ITCMO) using Simultaneous Differential Scanning Calorimetry and Thermogravimetric Analysis." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1502723527531035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Renneckar, Scott Harold. "Modification of Wood Fiber with Thermoplastics by Reactive Steam-Explosion." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/11239.

Full text
Abstract:
For the first time, a novel processing method of co-refining wood and polyolefin (PO) by steam-explosion was scientifically explored for wood-thermoplastic composites without a coupling agent. Traditional studies have addressed the improvement of adhesion between components of wood thermoplastic composites through the use of coupling agents such as maleated PO. The objective of this study was to increase adhesion between wood and PO through reactive processing conditions of steam-explosion. PO characteristics, such as type (polyethylene or polypropylene), form (pellet, fiber, or powder) and melt viscosity were studied along with oxygen gas content of the steam-explosion reactor vessel. Modification of co-processed wood fiber was characterized in four studies: microscopy analysis of dispersion of PO with wood fiber, sorption properties of co-processed material, chemical analysis of fractionated components, and morphological investigation of co-processed material. Two additional studies are listed in the appendices that relate to adsorption of amphiphilic polymers to the cellulose fiber surface, which is one hypothesis of fiber surface modification by co-steam-explosion. Microscopy studies revealed that PO melt viscosity was found to influence the degree of dispersion and uniformity of the steam-exploded material. The hygroscopic nature of the co-processed fiber declined as shown by sorption isotherm data. Furthermore, a water vapor kinetics study found that all co-refined material had increased initial diffusion coefficients compared to the control fiber. Chemical changes in fractionated components were PO-type dependent. Lignin extracted from co-processed wood and polyethylene showed PO enrichment determined from an increase of methylene stretching in the Fourier Transform infrared subtraction spectra, while lignin from co-processed wood and polypropylene did not. Additionally, extracted PO showed indirect signs of oxidation as reflected by fluorescence studies. Solid state nuclear magnetic resonance spectroscopy revealed a number of differences in the co-processed materials such as increased cellulose crystallinity, new covalent linkages and an alternative distribution of components on the nanoscale reflected in the T1Ï relaxation parameter. Steam-explosion was shown to modify wood fiber through the addition of "non-reactive" polyolefins without the need for coupling agents. In light of these findings, co-refining by steam-explosion should be viewed as a new reactive processing method for wood thermoplastic composites.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
16

Carvalho, Cláudio Teodoro de. "Síntese, caracterização e estudo do comportamento térmico dos 2-metoxicinamalpiruvatos de lantanídeos (III), exceto promécio, e ítrio (III) no estado sólido /." Araraquara : [s.n.], 2010. http://hdl.handle.net/11449/105707.

Full text
Abstract:
Orientador: Massao Hionashiro
Banca: Lazaro Moscardini D'Assunção
Banca: Nedja Suely Fernandes
Banca: José Marques Luiz
Banca: Salvador Claro Neto
Resumo: Sintetizou-se o ácido 2-metoxicinamalpirúvico (2-MeO-HCP), através da reação de condensação aldólica do 2-metoxicinamaldeído (CH3O-C6H4-(CH)2-CHO), 96 % de pureza com o piruvato de sódio, (Na-2-MeO-CP), 99% puro, ambos da Aldrich. A pureza do ácido 2-metoxicinamalpirúvico sintetizado foi determinada por DSC através do pico de fusão em 125 ºC. O ácido 2-metoxicinamalpirúvico foi convertido a uma solução de aproximadamente 0,15 mol L-1 de 2-metoxicinamalpiruvato de sódio (pH~7,5). Com esse sal foram sintetizados os compostos no estado sólido (Ln-2-MeO-CP.nH2O), sendo que Ln representa os lantanídeos trivalentes e Y(III), 2-MeO-CP o ligante 2-metoxicinamalpiruvato e n o número de moléculas de água com n = 1,5 para o composto de túlio e itérbio e para os demais compostos n = 1. Os Ln-2-MeO-CP.nH2O foram obtidos no estado sólido por adição lenta do ligante aos respectivos cloretos metálicos ou nitratos sob agitação contínua até a total precipitação dos íons metálicos. Os precipitados foram filtrados em papel de filtro Whatman n 42 lavando-se os mesmos com água destilada até a obtenção de teste negativo para cloretos com AgNO3 em meio nítrico e difenilamina para nitratos. Posteriormente os precipitados foram secos em temperatura ambiente e armazenados em dessecador contendo cloreto de cálcio. Técnicas instrumentais utilizadas no estudo dos compostos: Termogravimetria e Análise Térmica Diferencial Simultânea (TG-DTA) e Calorimetria Exploratória Diferencial (DSC) e Complexometria com EDTA (padrão de 1,000 x 10-2 mol L-1 ) forneceu informações sobre grau de hidratação, comportamento térmico e estequiometria; Difratometria de Raios X pelo método do pó, informações da cristalinidade e Espectroscopia de Absorção na Região do Infravermelho sugeriu a forma de coordenação dos compostos sintetizados. Na caracterização do ácido... (resumo completo, clicar acesso eletrônico abaixo)
Abstract: The 2-methoxycinnamylidenepyruvic acid (2-MeO-HCP) was synthesized through the reaction of aldolic condensation of 2-methoxycinnamaldehyde (CH3O-C6H4-(CH) 2-CHO), 96% purity, with sodium pyruvate, (Na-2 - MeO-CP) 99% pure, both from Aldrich. The purity of 2-methoxycinnamylidenepyruvic synthesized was determined by DSC through the melting peak at 125 ºC. The 2-methoxycinnamylidenepyruvic acid was converted to a solution of about 0.15 mol L-1 of the sodium 2-methoxycinnamylidenepyruvate (pH ~ 7.5). With this salt were synthesized the solid compounds (Ln-2-MeO-CP.nH2O), where Ln represents trivalent lanthanides and Y (III), 2-MeO-CP is the methoxycinnamylidenepyruvate ligand and n the number of water molecules with n = 1.5 for the compound thulium, ytterbium and for the other compounds, n = 1. The Ln-2-MeO-CP.nH2O were obtained in the solid state by slow addition of the ligand to the respective metal chlorides or nitrates on continuous stirring until total precipitation of metal ions. The precipitates were filtered through filter paper Whatman number 42, washing them with distilled water to obtain a negative test for chloride with AgNO3 in nitric acid and diphenylamine to nitrates. Subsequently the precipitates were dried at room temperature and stored in a desiccator containing calcium chloride. Instrumental techniques used in the study of compounds: Thermogravimetry and differential thermal analysis (TG-DTA), Differential Scanning Calorimetry (DSC) and Complexometry with EDTA (standard padrão de 1,000 x 10-2 mol L-1 ) provided information on degree of hydration, thermal behavior and stoichiometry; X-ray Diffractometry by the method of powder provided information about crystallinity, and Absorption Spectroscopy in the Infrared Region suggested the form of coordination of the compounds synthesized. In the characterization of 2-methoxycinnamylidenepyruvic, apart from the DSC... (Complete abstract click electronic access below)
Doutor
APA, Harvard, Vancouver, ISO, and other styles
17

Krapukaitytė, Aušra. "Šiuolaikinės ir archeologinės keramikos tyrimas ir apibūdinimas." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2009. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2009~D_20090707_154423-80221.

Full text
Abstract:
Šioje daktaro disertacijoje pirmoje dalyje nustatyta šiuolaikinės, o antroje dalyje – archeologinės keramikos gaminių elementinė ir fazinė sudėtis, bei ištirta morfologija. Šiuolaikinės ir archeologinės keramikos pavyzdžių elementinė sudėtis nustatyta Rentgeno spindulių dispersinės analizės (EDX), liepsnos atominės absorbcinės spektrometrijos (LAAS), titrimetrinės ir spektrofotometrinės analizės metodais. Parodyta, kad visų keraminių pavyzdžių kokybinė bei kiekybinė sudėtis yra skirtinga Nustatyta, kad visuose keramikos mėginiuose pagrindiniai elementai yra silicis ir aliuminis. SiO2 sudaro 46 – 60% keramikos sudėties, Al2O3 – apie 17 – 33%. Fe, Na, Mg, K, Ca ir Ti mėginiuose rasta kelis kartus mažiau. EDX analizė gali būti sėkmingai naudojama nustatant pagrindinius elementus, kurių kiekiai viršija 0,5 % bendros elementinės sudėties. Norint nustatyti tikslią keramikos sudėtį ir pėdsakinius elementus reikia naudoti LAAS analizės metodą. Aliuminio kiekį keramikoje patikimai galima nustatyti titrimetriniu, o silicio ir titano kiekį – spektrofotometriniais metodais. Ištyrus šiuolaikę ir archeologinę keramiką Rentgeno spindulių difrakcine analize (XRD), nustatyta, kad visų keramikų pagrindinė fazė yra vienoda – silicio dioksidas SiO2, tačiau jų bendra fazinė sudėtis skiriasi. Skirtinguose kermikos pavyzdžiuose buvo aptikos šios fazės: kvarcas, dolomitas, kaolinas, albitas, mikroklinas, muskovitas, mulitas, hematitas, rutilas, diopsidas, korundas, titanitas, natrio anortitas... [toliau žr. visą tekstą]
The elemental composition of the samples of modern and archaeological ceramics was determined using the energy dispersive X-ray analysis, flame atomic absorption spectrometry, titrimetric and spectrophotometric analysis methods. It has been shown that the qualitative and quantitative composition of all the samples is different. It has been established that silicon and aluminium are the main elements in all the samples. SiO2 accounts for 46–60 % of the composition of the ceramics, Al2O3 – for some 17–33%. The amounts of Fe, Na, Mg, K, Ca and Ti discovered in the samples are several times lesser. EDX analysis can successfully be used in determining the main elements whose amounts exceed 0.5% of the overall elemental composition. In order to determine the exact composition of ceramics one has to employ the FAAS analysis method. To determine in a credible manner the amount of aluminium in ceramics, one can use the titrimetric method, and the amount of silicon and titanium – spectrophotometric methods. Upon examination of the modern and archaeological ceramics by diffraction analysis it has been established that the main phase of all the samples is the same – quartz SiO2, however their phase composition varies. In different samples the following phases have been discovered: calcite, dolomite, kaolinite, albite, microcline, muscovite, mullite, hematite, rutile, diopside, corundum, titanite, and sodium anorthite. Being aware of the phase composition, it has been established that the... [to full text]
APA, Harvard, Vancouver, ISO, and other styles
18

Alvarenga, Larissa Machado. "Pirólise de resíduos de embalagens cartonadas e seus componentes puros : uma avaliação cinética." Universidade Federal do Espírito Santo, 2013. http://repositorio.ufes.br/handle/10/6126.

Full text
Abstract:
Made available in DSpace on 2016-12-23T14:02:51Z (GMT). No. of bitstreams: 1 Larissa Machado Alvarenga.pdf: 5166821 bytes, checksum: 9a52b626a19ffe6c666fd34df1f01780 (MD5) Previous issue date: 2013-09-06
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Muitos processos têm sido utilizados para a reciclagem dos resíduos de embalagens cartonadas. A pirólise se destaca como uma tecnologia promissora capaz de separar o alumínio do polietileno e gerar produtos com maior poder calorífico. Neste trabalho, realizou-se um estudo das reações de pirólise dos resíduos cartonados e de seus componentes puros, a fim de estimar os parâmetros cinéticos destas reações. Para isto, análises termogravimétricas isotérmicas e dinâmicas foram realizadas e dois diferentes tipos de modelos cinéticos foram utilizados: os isoconversionais e o das reações paralelas independentes (RPI). Os modelos isoconversionais permitiram calcular a energia de ativação global da reação de pirólise dos materiais, de acordo com as suas conversões. Os valores de energia de ativação obtidos com os modelos de Ozawa, K-A-S e Starink para a pirólise das embalagens cartonadas foram semelhantes (168,30; 166,54 e 166,78 kJ.mol-1), assim como aqueles encontrados para o polietileno (137,41; 132,49; 132,98 kJ.mol-1) e para o papel cartão (155,66; 153,46; 153,69 kJ.mol-1). Entretanto, o método de Kissinger estimou menores valores de energia de ativação para as embalagens cartonadas (121,42 kJ.mol-1) e para o papel cartão (144,89 kJ.mol-1), e um maior valor para a energia de ativação do polietileno (155,15 kJ.mol-1). O modelo RPI, por sua vez, permitiu calcular os parâmetros cinéticos de cada um dos subcomponentes da embalagem cartonada e do papel cartão. Os valores estimados para os parâmetros cinéticos dos subcomponentes dos materiais permaneceram dentro da faixa de valores encontrada na literatura. A perda de massa dos materiais simulada com o modelo RPI apresentou um bom ajuste aos dados experimentais obtidos por termogravimetria, com valores de desvios na mesma ordem de grandeza daqueles encontrados em outros trabalhos na literatura. Foi realizada ainda, uma análise de sensibilidade paramétrica do modelo RPI, através da qual se pode verificar que a energia de ativação afetou a conversão total dos materiais de forma mais acentuada do que o fator pré-exponencial. Em geral, este trabalho contribuiu na avaliação da qualidade dos ajustes dos modelos cinéticos utilizados e para o cálculo dos parâmetros cinéticos da pirólise dos materiais
Many processes have been used for recycling of carton packaging wastes. The pyrolysis highlights as a promising technology to be used for recovering the aluminum from polyethylene and generating products with high heating value. In this research, a study on pyrolysis reactions of carton packaging wastes and its pure components was performed in order to estimate the kinetic parameters of these reactions. For this, dynamic and isothermal thermogravimetric analyses were carried out and two different kinds of kinetic models were used: the isoconversional and Independent Parallel Reactions (IPR). Isoconversional models allowed to calculate the overall activation energy of the material pyrolysis reaction, in according to their conversions. The activation energy values obtained with Ozawa, KAS and Starink models for carton packaging pyrolysis were similar (168.30, 166.54 and 166.78 kJ.mol-1), as well as the results found for polyethylene (137.41, 132.49, 132.98 kJ.mol-1) and cardboard (155.66, 153.46, 153.69 kJ.mol-1). Nevertheless, the Kissinger method the method of Kissinger estimated lower values of activation energy for carton packaging (121.42 kJ.mol-1) and cardboard (144.89 kJ.mol-1), and a higher value for polyethylene activation energy (155.15 kJ.mol-1). The IPR model, in turn, allowed the calculation of kinetic parameters of each one of the carton packaging and paperboard subcomponents. The estimated values for the kinetic parameters of the material subcomponents were within the range of values found in the literature. The mass loss of materials simulated with the RPI model showed a good fit to the experimental data obtained by thermogravimetry, presenting deviation values in the same order of magnitude as those found in other literature studies. It was also performed a parametric sensitivity analysis of IPR model, that shown that the activation energy affected the total conversion of the material more strongly than the pre-exponential factor. In general, this work contributed to the quality evaluation of the kinetic models adjustment and for the calculation of the kinetic parameters of material pyrolysis
APA, Harvard, Vancouver, ISO, and other styles
19

Bandarupalli, Praveen Kumar. "Thermal Analysis of Decomposition Reactions of Aspartic and Glutamic Acids in Potassium Chloride Matrix." Youngstown State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1391391780.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pillar, Rachel Joanne, and rachel pillar@flinders edu au. "The Influence of Rolling Oil Decomposition Deposits on the Quality of 55Al-43.4Zn-1.6Si Alloy Coatings." Flinders University. School of Chemistry, Physics and Earth Sciences, 2007. http://catalogue.flinders.edu.au./local/adt/public/adt-SFU20080108.132120.

Full text
Abstract:
Uncoated defects in hot dip metal-coated steel products result from non-wetting of the steel surface by the molten alloy. The occurrence of uncoated defects is highly detrimental to product quality and production efficiency; uncoated defects compromise the appearance and anti-corrosion performance of hot dip metal-coated steel products and causes time delays in the application of subsequent surface treatments. Although many studies have been directed towards evaluating the effect of steel pre-heat temperature and oxidation on the formation of uncoated defects, fewer investigations have analysed how oil-derived residues remaining on steel surface following the cold rolling and furnace cleaning processes impact upon hot dip metallic coating quality. Furthermore, although a considerable amount of research has focussed on the process of deposit formation in lubricants used in other applications, the composition of oily residues remaining after the continuous annealing process, and the origins of these residues in the original rolling oil formulation, are poorly understood. The primary focus of the present work has been to gain an improved understanding of relationships between cold rolling oil composition, oil residue-formation characteristics and the occurrence of uncoated defects in 55Al-43.4Zn-1.6Si hot dip metallic coatings. Several key classes of rolling oil ingredients which decompose to leave high levels of thermally-stable residue have been identified. The thermal decomposition processes undergone by a variety ingredients within these classes have been studied under both oxidising and reducing conditions using Thermogravimetric Analysis (TGA) and Pressure Differential Scanning Calorimetry (PDSC) techniques, with chemical characterisation of the decomposition process and the resultant thermally-stable residue by infrared spectroscopy. Model blends of each ingredient in a typical cold rolling oil base ester have also been evaluated by TGA and PDSC to identify the impact of ingredient concentration and chemical structure on the amount of oily residue formed. The results of these investigations have been related to the impact of the ingredients on 55Al-43.4Zn-1.6Si hot dip metallic coating quality through the performance of industrial-scale hot dipping trials and hot dip simulation studies. In order to translate these results into a context more closely aligned with industrial conditions, the effect of processing variables, including furnace atmosphere and the availability/concentration of iron in contact with the rolling oil at the steel surface, on the decomposition process of a fully-formulated commercial cold rolling oil has also been investigated. The information gained can potentially be used to tailor operating conditions within the cold rolling/continuous hot dip metallic coating processes to enhance steel surface cleanliness. Finally, the deposit-forming tendencies of an array of different commercial cold rolling oils have been evaluated, leading to the development of a thermal analysis-based test for screening cold rolling oils with respect to their likely impact upon 55Al-43.4Zn-1.6Si hot dip metallic coating quality. This test, together with the understanding obtained on the effect of different rolling oil ingredients on hot dip metallic coating quality, can be used within the industry to formulate improved cold rolling oils.
APA, Harvard, Vancouver, ISO, and other styles
21

Rodrigues, Tâmira Tácita Maia. "Estudo da pirólise da microalga Chlorrella Vulgaris: determinação das classes de produtos e dos parâmetros cinéticos." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/3/3137/tde-20072017-150210/.

Full text
Abstract:
A crescente necessidade de se obter fontes de energia e materiais mais sustentáveis tem aumentado o interesse em processos baseados na conversão de biomassa. Microalgas são particularmente interessantes por não competirem com alimentos e serem facilmente adaptáveis ao meio de crescimento. Além disso, microalgas podem ser processadas termicamente para geração tanto de biocombustíveis quanto de produtos químicos úteis. Estudos de conversão térmica de microalgas tem aparecido apenas em anos recentes, endereçando principalmente temperaturas entre 350 e 500 ºC. Neste estudo, a pirólise em temperaturas entre 500 e 900 ºC foi avaliada pelo interesse em se obter biocombustíveis e produtos químicos úteis. As classes de compostos obtidos a partir da pirólise isotérmica da microalga da espécie Chlorella vulgaris foram investigadas através de um sistema composto por um pirolisador conectado a um CG/MS. Dentre as classes identificadas, houve uma predominância de compostos aromáticos e nitrogenados, principalmente derivados de proteínas. Além disso, a maioria dos compostos identificados na corrente de produtos voláteis está presente em todas as temperaturas de reação estudadas. Os parâmetros cinéticos de energia de ativação aparente, constante de reação e ordem de reação foram determinados através de três modelos cinéticos conhecidos como K-A-S, Osawa e Freeman-Carroll, a partir de dados termogravimétricos. A energia de ativação determinada para Chlorella apresentou valores entre 60 e 206 kJ/mol, enquanto a ordem de reação teve como resultado valores entre segunda e décima ordem, de acordo com o modelo cinético.
The increasing need to obtain more sustainable sources of energy and raw materials has attracted attention to processes based on biomass conversion. Microalgae are particularly interesting because they do not compete with human food and they are easily adaptable to the growth medium. Besides, microalgae can be thermally processed to produce both biofuels and useful chemicals. Studies on thermal conversion of microalgae have appeared only in recent years, addressing mainly reaction temperatures between 350 and 500 °C. In this study, pyrolysis in temperatures ranging from 500 to 900 ºC have been investigated considering the interest in producing biofuels and useful chemical compounds. The classes of products obtained by isothermal pyrolysis of the Chlorella vulgaris microalgae have been investigated using a pyrolyzer directly connected to a GC/MS system. Among the classes identified, there was a predominance of aromatic and nitrogenous compounds, mainly protein derived compounds. In addition, most products identified in the volatile products stream are present in all reaction temperatures investigated. The kinetic parameters of apparent activation energy, reaction constant and order of reaction were determined through three kinetic models known as K-A-S, Osawa and Freeman-Carroll, calculated from thermogravimetric data. The activation energy for Chlorella presented values within the range of 60 and 206 kJ/mole, while the order of reaction resulted in values between second and tenth order, from the different methods.
APA, Harvard, Vancouver, ISO, and other styles
22

Aires, Jussyara Dalianne Martins. "Estudo t?rmico dos res?duos gerados da destila??o atmosf?rica das misturas diesel/biodiesel de dend?" Universidade Federal do Rio Grande do Norte, 2012. http://repositorio.ufrn.br:8080/jspui/handle/123456789/12982.

Full text
Abstract:
Made available in DSpace on 2014-12-17T14:08:53Z (GMT). No. of bitstreams: 1 JussyaraDMA_DISSERT_PARCIAL.pdf: 4692370 bytes, checksum: 475e965cf0951180f8df9ac44768b423 (MD5) Previous issue date: 2012-12-14
Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior
The growing world demand for energy supplied by fossil fuels, a major contributor to the emission of pollutants into the atmosphere and causing environmental problems, has been encouraging governments and international organizations to reflect and encourage the use of alternative renewable sources. Among these new possibilities deserves attention biodiesel, fuel cleaner and easy to reproduce. The study of new technologies involving that source is necessary. From this context, the paper aims at analyzing the thermal stability by thermogravimetric analysis, of the waste generated from atmospheric distillation of mixtures with ratios of 5, 10, 15 and 20% palm biodiesel in diesel with and without addition of BHT antioxidant. It was synthesized biodiesel through palm oil, via homogeneous catalysis in the presence of KOH, with and without the use of BHT and subsequently added to the diesel common indoor type (S1800) from a gas station BR. The diesel was already added with 5% biodiesel, and thus the proportions used for these blends were subtracted from the existing ratio in diesel fuel, resulting in the following proportions palm oil biodiesel: 0% (B5), 5% (B10), 10 % (B15) and 15% (B20). From atmospheric distillation analysis, performed in mixtures with and without BHT were collected residue generated by each sample and performed a thermal study from the thermogravimetric analysis at a heating rate of 10 ?C.min-1, nitrogen atmosphere and heating to 600 ? C. According to the specifications of Resolution No. 7/2008 for biodiesel, it was found that the material was synthesized in accordance with the specifications. For mixtures, it was noted that the samples were in accordance with the ANP Resolution No. 42/2009. Given the TG / DTG curves of the samples of waste mixtures with and without BHT antioxidant was able to observe that they showed a single stage of thermal decomposition attributed to decomposition of heavy hydrocarbons and esters and other heavier constituents of the waste sample weighed. The thermal behavior of residues from atmospheric distillation of mixtures of diesel / biodiesel is very important to understand how this affects the proper functioning of the engine. A large amount of waste can generate a high content of particulate material, coke formation and carbonaceous deposits in engine valves, compromising their performance
A crescente demanda mundial por energia fornecida pelos combust?veis f?sseis, um dos principais respons?veis pela emiss?o de poluentes ? atmosfera e causadores de problemas ambientais, vem estimulando governos e Organismos internacionais a refletir e incentivar o uso de fontes alternativas renov?veis. Dentre essas novas possibilidades merece destaque o biodiesel, combust?vel menos poluente e de f?cil reprodutibilidade. O estudo de novas tecnologias envolvendo essa fonte faz-se necess?rio. Partindo desse contexto, o trabalho tem como objetivo principal analisar a estabilidade t?rmica, por meio da An?lise Termogravim?trica, dos res?duos gerados da destila??o atmosf?rica das misturas com propor??es de 5, 10, 15 e 20 % de biodiesel de dend? no diesel com e sem a adi??o de antioxidante BHT. Sintetizou-se o biodiesel atrav?s do ?leo de dend?, via cat?lise homog?nea na presen?a de KOH, com e sem o uso de BHT, e posteriormente, adicionou-se ao diesel comum do tipo interior (S1800) proveniente de um posto de gasolina BR. Este diesel j? estava aditivado com 5 % de biodiesel, sendo assim, as propor??es utilizadas para estas misturas foram subtra?das da propor??o existente no diesel, resultando nas seguintes propor??es de biodiesel de dend?: 0% (B5), 5% (B10), 10% (B15) e 15% (B20). Da an?lise de Destila??o Atmosf?rica, realizada nas misturas com e sem BHT, foram coletados o res?duo gerado por cada amostra e efetuado um estudo t?rmico, a partir da An?lise Termogravim?trica, na raz?o de aquecimento de 10 ?C.min-1, atmosfera de nitrog?nio e aquecimento at? 600 ?C. De acordo com as especifica??es da Resolu??o N? 7/2008 para o biodiesel, foi constatado que o material sintetizado estava em conformidade com as especifica??es. No tocante ?s misturas, notou-se que as amostras estavam de acordo com a Resolu??o da ANP N? 42/2009. Diante das curvas TG/DTG das amostras de res?duos das misturas com e sem antioxidante BHT, p?de observar que estas apresentaram uma ?nica etapa de decomposi??o t?rmica atribu?da ? decomposi??o dos hidrocarbonetos pesados e dos ?steres met?licos pesados e outros constituintes pesados da amostra de res?duo. O estudo do comportamento t?rmico do res?duo gerado da destila??o atmosf?rica das misturas de ?leo diesel/biodiesel ? de grande relev?ncia para entendermos o qu?o este interfere no bom funcionamento do motor. Uma grande quantidade de res?duos pode gerar um alto teor de material particulado, forma??o de coque e dep?sitos carbon?ceos nas v?lvulas do motor, comprometendo seu desempenho
APA, Harvard, Vancouver, ISO, and other styles
23

Sultan, Abdelrahman Saleh. "High Temperature Corrosion Of Steels Used In Petroleum Refinery Heaters." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606204/index.pdf.

Full text
Abstract:
The oxidation of three different steels used in the construction of petroleum refineryheaters was investigated by using thermogravimetric analysis technique (TGA). C-5,P-11, and P-22 steel samples were tested in two different oxidizing environments
air and CO2+N2+H2O (that simulates the combustion products of natural gas) at two different temperatures
450oC and 500oC. In air oxidation P-22 had the best oxidation resistance among the three steels at two temperatures. In CO2+N2+H2O environment,C-5 possessed better oxidation resistance than P-22 and P-11. Analyses of oxidation products by using optical microscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out to correlate TGA results to oxide composition and morphology. Lower oxidation rate of P-22 in air was explained with reference to the formation of Cr-O phase. Analytical rate equations showed that all the steels obeyed parabolic rate equation during oxidation and no transition was observed
APA, Harvard, Vancouver, ISO, and other styles
24

Silva, Giovanilton Ferreira da. "Estudo da pirolise de composito de poliester insaturado com fibra de vidro em balança termogravimetrica e leito fluidizado." [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264097.

Full text
Abstract:
Orientador: Caio Glauco Sanchez
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-10T13:46:01Z (GMT). No. of bitstreams: 1 Silva_GiovaniltonFerreirada_D.pdf: 2151460 bytes, checksum: b4f7aed8eddbf42f0d871e6e526ef9b0 (MD5) Previous issue date: 2006
Resumo: Objetivo deste trabalho foi obter os parâmetros cinéticos do poliéster insaturado com fibra de vidro em balança termogravimétrica e a aplicação do leito fluidizado como reator de pirólise. Primeiramente foi feito um estudo para escolher o modelo cinético a partir dos dados obtidos na balança termogravimétrica. O resultado apontou o modelo de primeira ordem como o mais adequado. Foi feito um planejamento fatorial 22 a fim de avaliar a influência que as variáveis, taxa de aquecimento e diâmetro da partícula, tiveram nos parâmetros cinéticos. Os resultados do planejamento fatorial mostraram que a taxa de aquecimento foi o fator mais importante seguido do diâmetro da partícula, e não houve interação entre os fatores. A energia de ativação foi inversamente proporcional com a taxa de aquecimento e diretamente proporcional com o diâmetro da partícula. A taxa de 10°C/min foi a taxa que forneceu os melhores parâmetros cinéticos. Para leito fluidizado foi proposto um planejamento fatorial 23 para avaliar a influência das variáveis, temperatura, velocidade de fluidização e altura do leito fluidizado, tiveram no rendimento da fração liquida, gasosa e sólida. Os resultados mostraram que a temperatura foi a variável que mais influenciou o processo de pirólise em leito
Abstract: The aim of this work was to find out the kinetic parameters of unsatured polyester with fiberglass using thermogravimetric analysis, and to apply a fluidized bed like pyrolysis reactor. Firstly, it was selected a kinetic model most suitable to use with obtained data from thermogravimetric analysis. The results pointed the first order model like most suitable. It was performed a factorial analysis 22 in order to analyze the system. The experimental variables have varied simultaneously and systematically (heating rate and particle diameter). The responsevariables were used to evaluate the kinetic parameters. The experimental results of the factorial design showed that heating rate was the effect more significant and there were not interactions between the studied variables. The results showed that activity energy decreased when the heating rate increased and, it increased with increasing particle diameter. The heating rate of 10°C/min achieved the best kinetic parameters. Statistical method was applied to fluidized bed followed a 23 factorial design to evaluate the influence of variables: temperature, fluidized rate and height of fluidized bed. Response variables were yield of oil, yield of gas and, yield of solid. The results showed that temperature was the variable most significant for the pirolysis process at fluidized bed.
Doutorado
Termica e Fluidos
Doutor em Engenharia Mecânica
APA, Harvard, Vancouver, ISO, and other styles
25

Lans, Alexa Michelle. "Evaluation of Water Sorption and Thermal Properties of Galacto-oligosaccharides, and Application in Glassy Confections." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1460764786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ramos, Ingrid Graça. "Zeólitos como dispositivo de liberação prolongada de rincoforol." reponame:Repositório Institucional da UFBA, 2012. http://www.repositorio.ufba.br/ri/handle/ri/12650.

Full text
Abstract:
174 f.
Submitted by Ana Hilda Fonseca (anahilda@ufba.br) on 2013-08-20T15:49:02Z No. of bitstreams: 1 Tese de doutorado - Ingrid - VERSÃO FINAL - UFBA.pdf: 5563445 bytes, checksum: 8345d9745885c1103c219247c69338fc (MD5)
Approved for entry into archive by Ana Hilda Fonseca(anahilda@ufba.br) on 2013-08-20T15:51:20Z (GMT) No. of bitstreams: 1 Tese de doutorado - Ingrid - VERSÃO FINAL - UFBA.pdf: 5563445 bytes, checksum: 8345d9745885c1103c219247c69338fc (MD5)
Made available in DSpace on 2013-08-20T15:51:20Z (GMT). No. of bitstreams: 1 Tese de doutorado - Ingrid - VERSÃO FINAL - UFBA.pdf: 5563445 bytes, checksum: 8345d9745885c1103c219247c69338fc (MD5) Previous issue date: 2012
O rincoforol (2-metil-5(E)hepteno-4-ol) é o maior constituinte do feromônio de agregação do macho do Rhynchophorus palmarum L. (Coleoptera: Curculionidade), um besouro que ataca diversas espécies de palmeiras e é o principal vetor do nematódeo Bursaphelenchus cocophylus, agente causador da doença do anel vermelho.No Brasil, esse besouro ataca principalmente o coqueiro e o dendezeiro, culturas de grande relevância econômica para o país. Esse feromônio vem sendo utilizado em iscas do tipo eppendorf com um orifício na tampa para controlar a população do besouro. Esse dispositivo facilita a liberação lenta quando comparada à evaporação direta do estado líquido. No entanto, a validade dessas iscas depende da velocidade de evaporação do rincoforol através do dispositivo, que libera quantidade excessiva do feromônio. Com o objetivo de prolongar o tempo de liberação do rincoforol, diferentes zeólitos foram sintetizados, caracterizados e avaliados em relação à sua utilização como adsorvente para o rincoforol. Para isso, a influência de variáveis como: estrutura do zeólito, razão Si/Al, natureza do cátion de compensação, dimensão de poros e acidez foi verificada para o processo de adsorção. Devido à falta de informações referente à estabilidade do rincoforol, foi realizado um estudo termogravimétrico sobre seu comportamento térmico. Estudos de recuperação demonstraram que houve interação entre o rincoforol e os zeólitos ZSM-5 e MCM-22 nas diferentes razões Si/Al, resultando na degradação do feromônio, inviabilizando seu uso como suporte para liberação prolongada. Os materiais silicalita-1, zeólito Y e zeólito L apresentaram bons resultados de recuperação e a liberação do rincoforol a partir desses materiais foi medida em uma termobalança em condição isotérmica. Resultados promissores foram observados quando a velocidade de liberação obtida a partir dos zeólitos foi comparada com o rincoforol comercial. Assim, os estudos realizados nesse trabalho permitiu selecionar zeólitos com grande potencial comercial como dispositivo liberador do rincoforol por um período prolongado.
Salvador
APA, Harvard, Vancouver, ISO, and other styles
27

Smith, Beverly. "Investigating Thermal Transformations of Ligand-Stabilized Gold Nanoparticles: Influence of the Structural Attributes of the Nanoparticle and Its Environment on Thermal Stability." Thesis, University of Oregon, 2015. http://hdl.handle.net/1794/19259.

Full text
Abstract:
Ligand-stabilized metal nanoparticles (LSNPs) have garnered significant attention for use in applications including sensing, catalysis, and thin film fabrication. Many uses rely on the size-dependent properties of the metal nanoparticle core. Therefore, preservation of nanoparticle core size is of paramount importance. In other uses, the low processing temperatures afforded by metal LSNPs make them attractive as precursors for conductive thin films. In these distinctly different applications, understanding nanoparticle thermal stability is crucial. A key finding of this research is that nanoparticle sintering is dependent upon both core size and ligand functionality. Multi-technique analysis of four types of gold nanoparticles (AuNPs) with different ligand compositions and core sizes illustrates that more volatile ligands reduce the onset temperature for sintering. Also, AuNPs of larger core size with the same ligand composition exhibit lower sintering onset temperatures. Correlation between measurements reveals that only a small amount of ligand loss is necessary to trigger rapid sintering and that ligands are excluded to the surface of the porous gold films. AuNPs with ligand shells composed of two alkanethiols of different chain length and volatility indicate that the onset temperature of sintering can be tuned further through incorporation of a small amount of more volatile alkanethiol into a ligand shell of lower volatility. Mixed LSNPs further reveal that AuNP thermal stability depends upon the ligand shell composition and its intermolecular interactions, which can result in markedly different sintering behavior for different ligand compositions. Long-chain alkanethiol AuNPs sinter after only a small amount of ligand loss, whereas short-chain alkanethiol AuNPs sinter following complete ligand loss and the formation of metastable bare AuNPs. Heated AuNP films prepared with mixed-ligand AuNPs exhibit ligand-dependent differences in film morphology. To probe AuNP thermal stability in 2D-assemblies, self-assembly using larger ‘marker’ nanoparticles enables the study of small 1.5 nm AuNP arrays with successive TEM monitoring throughout ex situ heating. Monitoring images of the same area shows short-range (1-2 nm) nanoparticle migration/coalescence. In contrast to 3D assemblies, AuNP growth occurs at temperatures as low as 60 °C. This dissertation includes previously published and unpublished co-authored material.
10000-01-01
APA, Harvard, Vancouver, ISO, and other styles
28

Wei, Bo. "A novel solar-driven system for two-step conversion of CO2 with ceria-based catalysts." Doctoral thesis, KTH, Kraft- och värmeteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152899.

Full text
Abstract:
Global warming is an unequivocal fact proved by the persistent rise of the average temperature of the earth. IPCC reported that scientists were more than 90 % certain that most of the global warming was caused by increasing concentrations of greenhouse gases (GHG) produced by human activities. One alternative to combat the GHG is to explore technologies for utilizing CO2 already generated by current energy systems and develop methods to convert CO2 into useful combustible gases. Two-step conversion of CO2 with catalysts is one of the most promising methods. Ceria (CeO2) is chosen as the main catalyst for this conversion in the thesis. It releases O2 when it is reduced in a heating process, and then absorbs O2 from CO2 to produce CO when it is re-oxidized in a cooling process. To make the conversion economic, solar power is employed to drive the conversion system. In this thesis, a flexible system with fluidized bed reactors (FBRs) is introduced. The thermogravimetric analysis (TGA) was carried out to examine the performance of ceria during its reduction and oxidation. Subsequently, the exergy analysis was used to evaluate the system’s capability on exporting work. The theoretical fuel to chemical efficiency varied from 4.85 % to 43.2 % for CO2 conversions. To investigate the operation mechanism of the system, a mathematical model was built up for the dynamic simulation of the system. Variables such as temperatures and efficiencies were calculated and recorded for different cases. The optimum working condition was found out to be at 1300 ⁰C for the commercial type of ceria. Finally, an experimental system was set up. The hydrodynamics and heat transfer in the fluidized bed reactor were studied. A CFD model was built up and validated with the experimental trials around 120 ⁰C. The model was then used as a reliable tool for the optimization of the reactor. The entire work in the thesis follows the procedure of developing an engineering system. It forms a solid basis for further improvements of the system to recycle CO2.

QC 20141006

APA, Harvard, Vancouver, ISO, and other styles
29

Samuels, Gregory James. "Measurement of gas evolution from PUNB bonded sand as a function of temperature." Thesis, University of Iowa, 2011. https://ir.uiowa.edu/etd/1260.

Full text
Abstract:
The chemical binders used to make sand molds and cores thermally decompose and release gas when subjected to the high temperature conditions in sand casting processes. Computational models that predict the evolution of the binder gas are being introduced into casting simulations in order to better predict and eliminate gas defects in metal castings. These models require knowledge of the evolved binder gas mass and molecular weight as a function of temperature, but available gas evolution data are limited. In the present study, the mass and molecular weight of gas evolved from PUNB bonded sand are measured as a function of temperature for use with binder gas models. Thermogravimetric analysis of bonded sand is employed to measure the binder gas mass evolution as a function of temperature for heating rates experienced in molds and cores during casting. The volume and pressure of gas evolved from bonded sand are measured as a function of temperature in a specially designed quartz manometer during heating and cooling in a furnace. The results from these experiments are combined with the ideal gas law to determine the binder gas molecular weight as a function of temperature. Thermogravimetric analysis reveals that the PUNB binder significantly decomposes when heated to elevated temperatures, and the PUNB binder gas mass evolution is not strongly influenced by heating rate. During heating of PUNB bonded sand at a rate of 2°C/min, the binder gas molecular weight rapidly decreases from 375 g/mol at 115°C to 99.8 g/mol at 200°C. The molecular weight is relatively constant until 270°C, after which it decreases to 47.7 g/mol at 550°C. The molecular weight then steeply decreases to 30.3 g/mol at 585°C and then steeply increases to 47.2 g/mol at 630°C, where it remains constant until 750°C. Above 750°C, the binder gas molecular weight gradually decreases to 33.3 g/mol at 898°C. The present measurements are consistent with the molecular weights calculated using the binder gas composition data from previous studies. The binder gas is composed of incondensable gases above 709°C, and the binder gas partially condenses during cooling at 165°C if the bonded sand is previously heated below 507°C.
APA, Harvard, Vancouver, ISO, and other styles
30

Bhagavatula, Abhijit. "THERMO-CHEMICAL CONVERSION OF COAL-BIOMASS BLENDS: KINETICS MODELING OF PYROLYSIS, MOVING BED GASIFICATION AND STABLE CARBON ISOTOPE ANALYSIS." UKnowledge, 2014. http://uknowledge.uky.edu/cme_etds/43.

Full text
Abstract:
The past few years have seen an upsurge in the use of renewable biomass as a source of energy due to growing concerns over greenhouse gas emissions caused by the combustion of fossil fuels and the need for energy independence due to depleting fossil fuel resources. Although coal will continue to be a major source of energy for many years, there is still great interest in replacing part of the coal used in energy generation with renewable biomass. Combustion converts inherent chemical energy of carbonaceous feedstock to only thermal energy. On the other hand, partial oxidation processes like gasification convert chemical energy into thermal energy as well as synthesis gas which can be easily stored or transported using existing infrastructure for downstream chemical conversion to higher value specialty chemicals as well as production of heat, hydrogen, and power. Devolatilization or pyrolysis plays an important role during gasification and is considered to be the starting point for all heterogeneous gasification reactions. Pyrolysis kinetic modeling is, therefore, an important step in analyzing interactions between blended feedstocks. The thermal evolution profiles of different coal-biomass blends were investigated at various heating rates using thermogravimetric analysis. Using MATLAB, complex models for devolatilization of the blends were solved for obtaining and predicting the global kinetic parameters. Parallel first order reactions model, distributed activation energy model and matrix inversion algorithm were utilized and compared for this purpose. Using these global kinetic parameters, devolatilization rates of unknown fuel blends gasified at unknown heating rates can be accurately predicted using the matrix inversion method. A unique laboratory scale auto-thermal moving bed gasifier was also designed and constructed for studying the thermochemical conversion of coal-biomass blends. The effect of varying operating parameters was analyzed for optimizing syngas production. In addition, stable carbon isotope analysis using Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS) was used for qualitatively and quantitatively measuring individual contributions of coal and biomass feedstocks for generation of carbonaceous gases during gasification. The predictive models utilized and experimental data obtained via these methods can provide valuable information for analyzing synergistic interactions between feedstocks and also for process modeling and optimization.
APA, Harvard, Vancouver, ISO, and other styles
31

Das, Sudipto. "Wood/Polymeric Isocyanate Resin Interactions: Species dependence." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/28745.

Full text
Abstract:
The performance of polymeric diphenylmethane diisocyanate (PMDI) resin is known to be highly dependent on the wood species. This species dependence may be due to differences in: cure chemistry, interphase morphology, or both of these factors. This study addresses aspects of the cure chemistry and interphase morphology of wood/PMDI bondlines; specifically these effects are compared using two woods: yellow-poplar and southern pine. In this study, the cure chemistry of wood-PMDI system was analyzed with solid state NMR (SSNMR) using wood samples cured with doubly labeled (15N,13C) PMDI resin. The kinetics of PMDI cure in the presence of wood was analyzed with differential scanning calorimetry. Thermogravimetric analysis was used to analyze the effect of resin impregnation on the degradation patterns of wood. The wood-PMDI bond morphology was probed with dynamic and static (creep) mechanical analyses in both dry and plasticized conditions. The effect of resin on wood polymer relaxations was quantitatively analyzed by both the time-temperature superposition principle and the Kohlrausch-Williams-Watts equation. The presence of a small but statistically significant species effect was observed on both the cure chemistry and bond morphology of wood-PMDI system at low cure temperatures. The cure of PMDI resin was found to be significantly faster in pine relative to corresponding poplar samples. Resin impregnation showed a significant species dependent effect on the wood mechanical properties; the resinated pine samples showed increase in compliance while the corresponding poplar samples became stiffer. The in situ lignin relaxation was studied with both dynamic and static modes, using plasticized wood samples. Results showed that the lignin relaxation was slightly affected by resin impregnation in both woods, but the effect was relatively larger in pine. Static experiments of dry wood samples showed a significant reduction in the interchain interactions of wood polymers in pine samples, exclusively. Investigation of plasticized pine samples, which focuses on the in situ lignin relaxations, showed only minor changes with resin impregnation. This led us to hypothesize that the large changes observed in dry samples, were due to the in situ amorphous polysaccharides. The wood-PMDI interactions were significantly reduced upon acetylation of wood. This study also discusses three new and highly sensitive methods for the analysis of wood-resin interactions.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
32

Caple, Kacie Danielle. "A pilot study on the effects of temperature on the material properties of prestressed concrete and the use of thermogravimetric analysis in the assessment of heat-affected concrete." Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1202499264/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chadima, Jan. "Úskalí zastavování hydratace alkalicky aktivované strusky organickými látkami." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-449705.

Full text
Abstract:
This thesis deals with the stopping of hydration of alkali activated slag by organic solvents and investigates to what extent the selected organic solvent affects the results of the analyses. The solvents used were acetone, diethyl ether, ethanol, isopropanol and methanol, and this is because these are the most commonly used organic solvents in practice. Thermogravimetric analysis along with differential thermal analysis was used to assess the degree of influence of organic solvents on the alkali activated slag and Portland cement samples. Methanol and acetone affected the samples the most and the longer the sample was stored in the solvent, the more it reacted with the organic solvent. The adverse interaction of organic solvent was greatest for the Portland cement samples. Samples that were rinsed with diethyl ether prior to analysis had lower mass losses than samples that were not rinsed. In the case of alkali activated slag, it was found that the way in which the thermogravimetric results were affected by organic solvents was highly dependent on the activator used, with the smallest effect observed for Na2CO3 activation, while the largest effect was observed for NaOH activation at temperatures below 600 °C, and for higher temperatures for water glass activation.
APA, Harvard, Vancouver, ISO, and other styles
34

Phillips, Kent Thomas. "Applications of Thermal and Laser-Based Methods for Monitoring Airborne Particulates in Coal Mines." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/79386.

Full text
Abstract:
The purpose of this thesis is to examine applications of thermal and laser-based methods to monitor airborne particulates in underground coal mines. Specifically, coal and mixed mineral mine dust, as well as, diesel particulate matter (DPM). These particulates have historically, and continue to have, significant health impacts on underground miners. Chapters 1 and 2 of this thesis concentrate on using a novel method of thermogravimetric analysis (TGA) to characterize respirable coal and mixed mineral mine dust and presents the results of this method being applied to samples collected in Appalachia coal mines. Appalachia has been a geographic "hotspot" for the rise in occupational lung disease amongst underground coal miners, which began in 1990's after decades of steady decline. This has led researchers to propose there could be something unique about the respirable dust composition in Appalachia coal mines, which resulted in the surge of lung disease cases; however, the knowledge base regarding the actual composition of respirable coal mine dust is limited. The results of this thesis show that most of the mass fraction of respirable Appalachia coal mine dust is not coal, but rather carbonates and non-carbonate minerals (i.e. silica and silicates). These findings are significant as many researchers now suspect silica and silicates to be the true culprit in the occupational lung disease of coal miners. DPM presents an additional occupational health hazard to underground coal miners where diesel equipment is used and is difficult to monitor due to its complex nature. In underground metal/non-metal mines, airborne DPM is regulated and monitored using carbon surrogates. However, due to the potential interference from coal-sourced carbon, DPM in coal mines is monitored only by taking samples at the tailpipe of each piece of equipment. This thesis aims to investigate the potential for a laser-based instrument, the FLIR Airtec, to be used in underground coal mines. In particular, what effect the coal dust will have on the instrument, as it measures DPM by way of elemental carbon (EC). The results of this study show that while the Airtec will not over-estimate coal-sourced EC, there could be some sampling artifacts associated with its operation in coal mines, which may inhibit its effectiveness.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
35

Galdo, Antonella. "Kinetic study of the thermal and thermo-oxidative decomposition of spent coffee grounds under inert and oxidative atmospheres." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23617/.

Full text
Abstract:
The growing request of energy by the global population, related to the improvement of life quality, has generated an increase of environmental pollution due to the massive use of fossil fuels. In this context, the development of new technologies may implement the use of biomass as a renewable source of energy and to generate value-added products. Particular interest has been dedicated to the lignocellulosic biomass. Coffee is one of the most popular beverages in the world and the second commodity traded after petroleum. One of his most abundant by-products is the spent coffee grounds (SCG), which contain a huge number of organic compounds that could be used for energy production and added-value product generation. In this study, SCGs were examined in terms of proximate analysis, ultimate analysis and calorific values and subsequently subjected to thermal and thermo-oxidative decomposition by means of thermogravimetric analysis (TGA). Thermogravimetric thermograms were obtained at different heating rates. Results were assessed through a deconvolution approach in order to ascertain the contribution of each component of the SCGs (hemicellulose, cellulose, lignin) to the global decomposition process. Several mathematics models were tested, and the Lorentz one was selected as it was the one better describing the experimental data. Finally, the kinetic triplet, constituted by the activation energy (Ea), the pre-exponential factor (A) and the model of reaction (f(a)), was defined through the application of iso-conversional methods, Master-Curves and Perez-Maqueda criterion. The obtained thermal and kinetic parameters related to SCG may help in the optimization of its thermo-chemical conversion, conducted through pyrolysis or combustion, in order to speed up its application in industrial processes.
APA, Harvard, Vancouver, ISO, and other styles
36

Lawrence, Robert Michael Heathcote. "A study of carbonation in non-hydraulic lime mortars." Thesis, University of Bath, 2006. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.438646.

Full text
Abstract:
Lime has been used in construction for millennia, and its value, especially in the field of conservation architecture, has only recently been rediscovered. Lime mortars harden through carbonation, and this thesis is a study of that process. The research conducted has resulted in the development of two novel techniques for the measurement and detection of carbonation. The first technique is a method of thermogravimetric analysis which allows the carbonation profile to be measured within an acceptable time-frame. The second technique is the use of drilling resistance measurement to visualise the carbonation profile. The potential of elemental analysis to measure the carbonation profile has also been identified. It has been demonstrated that the lime/water ratio has less impact on the compressive strength of air lime mortars than had previously been supposed. The change in the pore size distribution of air lime mortars caused by carbonation has been studied, and a theory has been proposed to explain this phenomenon. Five different forms of air lime binder were studied. The impact of these on the structural performance of the resultant mortars has been assessed. It was concluded that mortars made with lime putties perform better than mortars made with dry lime hydrate. Mortars made with dispersed hydrated lime appear to perform as well as mortars made with lime putties, but at a slower rate of strength growth. The use of extra mature lime putty does not appear to confer structural performance benefits when compared with ordinary lime putty. It has been shown that the use of calcitic aggregates can produce air lime mortars which perform as well as moderately hydraulic lime mortars. It is theorised that this phenomenon is not directly related to carbonation, but rather to a complex interaction of the granulometry, mineralogy, chemistry and porosity of the aggregate with the binder.
APA, Harvard, Vancouver, ISO, and other styles
37

Čechová, Eva. "Termooxidační stabilita kompozitů PMMA." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2012. http://www.nusl.cz/ntk/nusl-216841.

Full text
Abstract:
Tato práce se zabývá studiem termooxidační stability kompozitů polymethylmethakrylátu (PMMA) plněného mikro a nanočásticemi siliky. V připravených vzorcích byly použity různé objemové zlomky a různé velikosti částic siliky. Studium stability bylo prováděno pomocí termogravimetrie, která umožňuje simulovat podmínky termooxidační degradace. Indukční perioda byla stanovena za použití různých rychlostí ohřevu a aplikací izokonverzních metod. Závislosti teplot degradací na rychlostech ohřevu sloužily pro určení parametrů odvozených ze čtyř různých teplotních funkcí, které dovolují předpověď stability materiálu (indukční periody) při zvoleném rozsahu teplot. Zjištěné výsledky ukazují, že větší částice siliky snižuji stabilitu PMMA, zatímco nanočástice v nízkých koncentracích ji nijak neovlivňují.
APA, Harvard, Vancouver, ISO, and other styles
38

Batiot, Benjamin. "Etude expérimentale et numérique de la décomposition thermique du bois résineux." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2014. http://www.theses.fr/2014ESMA0009/document.

Full text
Abstract:
Les incendies sont complexes et mettent en jeu une multitude de phénomènes. Afin de les étudier, l’approche multiéchelle permet de séparer les processus.Parmi ceux-ci, la décomposition thermique des solides joue un rôle très important. Terme source, elle traduit la quantité, le débit et la nature des composés volatils émis. Sa description numérique est donc capitale. Les modèles utilisés aujourd’hui sont formés d’une loi de variation de la vitesse de forme « Arrhenius », couplée à une fonction de conversion de la masse pour chaque espèce étudiée et d’un mécanisme réactionnel organisant les réactions entre elles. Toutefois, ce modèle s’appuie sur les théories utilisées dans la phase gazeuse et de sérieux doutes peuvent être émis sur sa représentativité pour une application dans la phase condensée.Les travaux de thèse exposés dans ce rapport se focalisent sur le développement d’un modèle en partant des réactions et des processus les plus fondamentaux dans la phase condensée afin de permettre la simulation de la cinétique de décomposition des matériaux solides. Le second aspect concerne l’étude de ce modèle pour déterminer la méthode de résolution et d’optimisation la plus adéquate, le rôle de chacun des paramètres, les éventuels mécanismes de compensation et l’unicité de la solution.Finalement, l’ensemble de la démarche est appliquée à un matériau complexe, le bois. Les résultats obtenus, à partir d’une nouvelle démarche développée lors de ces travaux de thèse, montrent une amélioration significative du modèle aux aspects physiques et chimiques de la dégradation thermique des matériaux solides
Fires are complex and a variety of phenomena are involved. In order to study them, the up-scaling approach separates all the processes.Among them, the solid thermal decomposition has an important role to play. Source term, it reflects the amount, rate and nature of volatile compounds emitted and its numerical description is essential. The models used currently are formed by a law of variable speed (the Arrhenius law) coupled with a conversion function of mass for each species and a kinetic mechanism organizing all reactions between them. However, this model is based on the theories used in the gas phase and serious doubts might be raised with regard to the representativeness for application in the condensed phase.The thesis works exposed in this report are focused on the model development departing from the reactions and the processes the more fundamental in the condensed phase in order to permit the simulation of the solid kinetic decomposition. The second aspect concerns the study of this model to determine the resolution and the optimization method the most appropriate, the role of each parameter, the possible compensation mechanisms and the uniqueness of the solution.Finally, the entire process is applied to a complex material, the wood. The results obtained from a new approach developed in this work, show a significant improvement of the model to the physical and chemical aspects of the thermal degradation of solid materials
APA, Harvard, Vancouver, ISO, and other styles
39

Okhrimenko, Larysa Mikolaivna. "Stockage d'énergie thermique par un composite zéolite/MgSO4-H2O : étude thermocinétique du système MgSO4 – H2O et étude expérimentale des composites." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEM001/document.

Full text
Abstract:
L’épuisement des combustibles fossiles et l’augmentation de la demande d’énergie, entrainent l’intérêt croissant du développement des énergies renouvelables et des systèmes efficaces énergétiquement. Néanmoins, le décalage entre le besoin en énergie et la fourniture de celle-ci par les énergies renouvelables rend nécessaire l’utilisation d’un système de stockage. Parmi les différentes technologies de stockage d’énergie thermique, les composites formés d’une matrice poreuse et d’un sel hygroscopique, permettent de profiter à la fois des capacités d’adsorption/désorption de la matrice et des réactions chimiques du sel. La difficulté principale du développement d’un tel système est la compréhension incomplète des phénomènes physico-chimiques mis en jeu.Le premier objectif de cette thèse est d’étudier les réactions d’hydratation et de déshydratation du sel MgSO4. La caractérisation physico-chimique des solides ainsi que des expériences de thermogravimétrie isotherme et isobare ont été réalisées. Il a été montré que le système est divariant et que les hydrates obtenus sont non-stœchiométriques. Un modèle thermodynamique a été développé et appliqué aux données expérimentales. Les études cinétiques des réactions de déshydratation et d’hydratation ont été réalisées ce qui a permis de définir les étapes limitantes ainsi que d’écrire deux modèles et d’appliquer aux résultats expérimentaux. Enfin différents matériaux composites zéolite/ MgSO4 ont été synthétisés. Ces matériaux ont été caractérisés et leur capacité de sorption a été mesurée. Les résultats mettent en évidence une augmentation de la capacité de sorption, mais uniquement pour des pressions de vapeur d’eau importantes
Exhaustion of fossil fuels and increase of energy demand, lead to growing interest in the development of renewable energies and energy efficient systems. Nevertheless, the gap between the supply and the demand of energy by renewable energies makes necessary the using a storage system. Among various thermals energy storage technologies, the composites formed by a porous matrix and a hygroscopic salt, allow to benefit advantage of both the adsorption/desorption capacities of the matrix and the chemical reactions of salt. The main difficulty to develop of such a system is the incomplete understanding of the involved physicochemical phenomena.The first objective of this thesis is to study the hydration and dehydration reactions of MgSO4 salt in presence of water vapor. Firstly, the physicochemical characterization of solids and isothermal and isobaric thermogravimetry experiments were carried out. It has been shown that the system is divariant and that the hydrates obtained are non-stoichiometric with localized water molecules. A thermodynamic model was developed and applied to the experimental data. In a second step, the kinetic studies of both the dehydration and hydration reactions were carried out. The rate limiting steps were defined, two kinetic models have been written and applied to the experimental results. Finally, various zeolite/MgSO4 composite materials have been synthesized. These materials have been characterized and their sorption capacity has been measured. The results show an increased sorption capacity, but only for water vapor pressures different from those used for thermal energy storage
APA, Harvard, Vancouver, ISO, and other styles
40

Galitz, Christopher Lee. "The Effects of Early-Age Stress on the Elastic and Viscoelastic Behavior of Cement Paste." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/56988.

Full text
Abstract:
The viscoelastic behavior of concrete, nearly completely attributable to changes in properties in the cement paste, is an ongoing area of research with the objective of avoiding unpredictable response and potentially failure of concrete structures. This research explores the elastic and viscoelastic response in cement paste beams using relaxation testing, with and without strain reversals in the load history. It was seen that strain reversal imparts significant changes in mechanical response, retarding load relaxation. Companion beams were tested for chemical composition at varying depths in the beam section and the results were compared to those of control specimens not subject to stress. Results indicate significant variations in composition implying that stress accelerates the hydration process. The reasons behind the acceleration are discussed and incorporated into a preliminary solidification-dissolution model for beam relaxation. The model, though in need of improvement through further research, shows promise in potentially predicting relaxation in cement paste and by extension, in concrete structures.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
41

Jančaříková, Marie. "Testování pryžových těsnících prvků podrobených různým vnějším vlivům." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2016. http://www.nusl.cz/ntk/nusl-240540.

Full text
Abstract:
Diploma thesis studies the effect of temperature (75 and 105 °C) and the effect of 3 kinds of liquids (silicone and hydraulic oil and coolant) at room temperature and at 105 °C on change of the structure of 3 species butadiene-acrylonitrile (NBR) seals (o-ring and two types of bolts). The seals are inspected by the thermogravimetric analysis, differential scanning calorimetry and infrared spectroscopy, the influence of 105 °C on the o-rings is also evaluated in terms of changes in tensile properties. The greatest changes in the composition and structure are observed on o-rings particularly due to temperature of 105 °C, there was a significant reduction in dilatability and an increase in stiffness and glass transition temperature. The root cause is the surface and centre additive decomposition and oxidation. The bolts have suffered from decomposition of the protective surface layer and the additives in the centre, structural change was minor. Exposure to 75 °C has resulted in a gradual loss of low molecular weight substances. Liquids at room temperature didn‘t affect the structure of the seals, at 105 °C it caused a loss of weight due to decomposition of the protective surface layer and release of additives and the products of their decomposition. Results showed that the common use of the NBR seals at 105 °C is unsuitable, at 75 °C it leads to gradual changes, loss in mechanical and sealing properties.
APA, Harvard, Vancouver, ISO, and other styles
42

Xi, Yunfei. "Synthesis, characterisation and application of organoclays." Thesis, Queensland University of Technology, 2006. https://eprints.qut.edu.au/16483/1/Yunfei_Xi_Thesis.pdf.

Full text
Abstract:
This thesis focuses on the synthesis and characterisation of organoclays. X-ray diffraction has been used to study the changes in the basal spacings of montmorillonite clay and surfactant-intercalated organoclays. Variation in the d-spacing was found to be a step function of the surfactant concentration. Three different molecular environments for surfactant octadecyltrimethylammonium bromide (ODTMA) within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. High-resolution thermogravimetric analysis (HRTG) shows that the thermal decomposition of montmorillonite modified with ODTMA takes place in four steps attributing to dehydration of adsorbed water, dehydration of water hydrating metal cations, loss of surfactant and the loss of OH units respectively. In addition, it has shown that the decomposition procedure of DODMA and TOMA modified clays are very different from that of ODTMA modified ones. The surfactant decomposition takes place in several steps in the DODMA and TOMA modified clays while for ODTMA modified clays, it shows only one step for the decomposition of surfactant. Also TG was proved to be a useful tool to estimate the amount of surfactant within the organoclays. A model is proposed in which, up to 0.4 CEC, a surfactant monolayer is formed between the montmorillonite clay layers; up to 0.8 CEC, a lateral-bilayer arrangement is formed; and above 1.5 CEC, a pseudotrimolecular layer is formed, with excess surfactant adsorbed on the clay surface. While for dimethyldioctadecylammonium bromide (DODMA) and trioctadecylmethylammonium bromide (TOMA) modified clays, since the larger sizes of the surfactants, some layers of montmorillonite are kept unaltered because of steric effects. The configurations of surfactant within these organoclays usually take paraffin type layers. Thermal analysis also provides an indication of the thermal stability of the organoclay as shown by different starting decomposition temperatures. FTIR was used as a guide to determine the phase state of the organoclay interlayers as determined from the CH asymmetric stretching vibration of the surfactants to provide more information on surfactant configurations. It was used to study the changes in the spectra of the surfactant ODTMA upon intercalation into a sodium montmorillonite. Surfaces of montmorillonites were modified using ultrasonic and hydrothermal methods through the intercalation and adsorption of the cationic surfactant ODTMA. Changes in the surfaces and structure were characterized using electron microscopy. The ultrasonic preparation method results in a higher surfactant concentration within the montmorillonite interlayer when compared with that from the hydrothermal method. Both XRD patterns and TEM images demonstrate that SWy-2-Namontmorillonite contains superlayers. TEM images of organoclays prepared at high surfactant concentrations show alternate basal spacings between neighboring layers. SEM images show that modification with surfactant will reduce the clay particle aggregation. Organoclays prepared at low surfactant concentration display curved flakes, whereas they become flat with increasing intercalated surfactant. Fundamentally this thesis has increased the knowledge base of the structural and morphological properties of organo-montmorillonite clays. The configurations of surfactant in the organoclays have been further investigated and three different molecular environments for surfactant ODTMA within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. Changes in the spectra of the surfactant upon intercalation into clay have been investigated in details. Novel surfactant-modified montmorillonite results in the formation of new nanophases with the potential for the removal of organic contaminants from aqueous media and for the removal of hydrocarbon spills on roads.
APA, Harvard, Vancouver, ISO, and other styles
43

Xi, Yunfei. "Synthesis, characterisation and application of organoclays." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16483/.

Full text
Abstract:
This thesis focuses on the synthesis and characterisation of organoclays. X-ray diffraction has been used to study the changes in the basal spacings of montmorillonite clay and surfactant-intercalated organoclays. Variation in the d-spacing was found to be a step function of the surfactant concentration. Three different molecular environments for surfactant octadecyltrimethylammonium bromide (ODTMA) within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. High-resolution thermogravimetric analysis (HRTG) shows that the thermal decomposition of montmorillonite modified with ODTMA takes place in four steps attributing to dehydration of adsorbed water, dehydration of water hydrating metal cations, loss of surfactant and the loss of OH units respectively. In addition, it has shown that the decomposition procedure of DODMA and TOMA modified clays are very different from that of ODTMA modified ones. The surfactant decomposition takes place in several steps in the DODMA and TOMA modified clays while for ODTMA modified clays, it shows only one step for the decomposition of surfactant. Also TG was proved to be a useful tool to estimate the amount of surfactant within the organoclays. A model is proposed in which, up to 0.4 CEC, a surfactant monolayer is formed between the montmorillonite clay layers; up to 0.8 CEC, a lateral-bilayer arrangement is formed; and above 1.5 CEC, a pseudotrimolecular layer is formed, with excess surfactant adsorbed on the clay surface. While for dimethyldioctadecylammonium bromide (DODMA) and trioctadecylmethylammonium bromide (TOMA) modified clays, since the larger sizes of the surfactants, some layers of montmorillonite are kept unaltered because of steric effects. The configurations of surfactant within these organoclays usually take paraffin type layers. Thermal analysis also provides an indication of the thermal stability of the organoclay as shown by different starting decomposition temperatures. FTIR was used as a guide to determine the phase state of the organoclay interlayers as determined from the CH asymmetric stretching vibration of the surfactants to provide more information on surfactant configurations. It was used to study the changes in the spectra of the surfactant ODTMA upon intercalation into a sodium montmorillonite. Surfaces of montmorillonites were modified using ultrasonic and hydrothermal methods through the intercalation and adsorption of the cationic surfactant ODTMA. Changes in the surfaces and structure were characterized using electron microscopy. The ultrasonic preparation method results in a higher surfactant concentration within the montmorillonite interlayer when compared with that from the hydrothermal method. Both XRD patterns and TEM images demonstrate that SWy-2-Namontmorillonite contains superlayers. TEM images of organoclays prepared at high surfactant concentrations show alternate basal spacings between neighboring layers. SEM images show that modification with surfactant will reduce the clay particle aggregation. Organoclays prepared at low surfactant concentration display curved flakes, whereas they become flat with increasing intercalated surfactant. Fundamentally this thesis has increased the knowledge base of the structural and morphological properties of organo-montmorillonite clays. The configurations of surfactant in the organoclays have been further investigated and three different molecular environments for surfactant ODTMA within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. Changes in the spectra of the surfactant upon intercalation into clay have been investigated in details. Novel surfactant-modified montmorillonite results in the formation of new nanophases with the potential for the removal of organic contaminants from aqueous media and for the removal of hydrocarbon spills on roads.
APA, Harvard, Vancouver, ISO, and other styles
44

Benevides, Lorena Coelho. "Pirólise do bagaço de laranja : análise cinética dos estágios de secagem e devolatização." Mestrado em Energia, 2015. http://repositorio.ufes.br/handle/10/1864.

Full text
Abstract:
Submitted by Morgana Andrade (morgana.andrade@ufes.br) on 2016-04-08T19:43:32Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) tese_8940_Lorena Coelho Benevides verso final.pdf: 1351644 bytes, checksum: 36811571a6fc31c4766e3cc2e0db0ce7 (MD5)
Approved for entry into archive by Patricia Barros (patricia.barros@ufes.br) on 2016-05-13T13:34:04Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) tese_8940_Lorena Coelho Benevides verso final.pdf: 1351644 bytes, checksum: 36811571a6fc31c4766e3cc2e0db0ce7 (MD5)
Made available in DSpace on 2016-05-13T13:34:04Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) tese_8940_Lorena Coelho Benevides verso final.pdf: 1351644 bytes, checksum: 36811571a6fc31c4766e3cc2e0db0ce7 (MD5)
CAPES
O Brasil produz 1,4 milhões de toneladas de suco de laranja, sendo responsável por 50% da produção mundial. Estima-se que 40-60% do volume processado seja considerado rejeito. Uma alternativa de aproveitamento da biomassa residual é a sua utilização para a obtenção de energia a partir do processo de pirólise. A compreensão desse processo envolve o estudo da cinética de degradação da biomassa residual, dos fenômenos de transporte, bem como do tipo, configuração e condições ótimas de operação do reator. O objetivo principal deste trabalho é o estudo cinético da pirólise de bagaço de laranja. Com relação à análise termogravimétrica, esta foi avaliada em dois estágios: o primeiro referente à perda de água livre até 373 K (secagem) e o segundo referente às reações de pirólise (devolatilização). Para a fase de secagem, modelos semi-empíricos de secagem foram usados em suas formas não isotérmicas. Já para a fase de devolatilização, utilizaram-se os modelos isoconversionais e o das reações paralelas independentes (RPI) reparametrizado. Para o primeiro estágio, o modelo que melhor descreveu a etapa de secagem dinâmica foi o de Overhutz, obtendo-se energia de ativação média de 11,24 kJ/mol. Já para o segundo estágio, os modelos isoconversionais apresentaram energia de ativação entre 104,94 e 417,27 kJ/mol. O modelo de Reações Paralelas Independentes Reparametrizado apresentou energia de ativação entre 130,32 e 153,62 kJ/mol, 144,00 e 194,65 kJ/mol, 59,23 e 85,41 kJ/mol, 74,16 e 148,89 kJ/mol, e 163,95 e 184,23 k/mol para hemicelulose, celulose, lignina, pectina e componente não conhecido, respectivamente. As frações dos subcomponentes do bagaço de laranja também foram estimados e obtiveram-se valores aproximados de 21, 31, 17, 25 e 6% de hemicelulose, celulose, lignina, pectina e componente x, respectivamente. Além disso, avaliou-se a cinética de secagem convectiva do bagaço, visto que o mesmo possui uma alta umidade inicial, empregando-se as equações semi-empíricas de cinética de secagem. A energia de ativação para a cinética convectiva do bagaço de laranja foi de 20,99 kJ/mol e o modelo de Overhultz foi o que melhor se adequou aos dados experimentais.
Brazil produces 1.4 million tons of orange juice, accounting for 50% of world production. It is estimated that 40-60% of the volume processed is considered tailings. An alternative use of residual biomass is their use for obtaining energy from the pyrolysis process. Understanding this process involves the study of the residual biomass degradation kinetics, transport phenomena, and the type, configuration, and optimal conditions of reactor operation. The aim of this work is the kinetic study of orange bagasse pyrolysis. With respect to thermogravimetric analysis, this was assessed in two stages: the first refers to the free water loss to 373 K (drying) and the second referring to the pyrolysis reactions (devolatilization). For the drying step, the semi-empirical models of drying were used in their non-isothermal forms. As for the devolatilization phase, they used the isoconversionais models and independent parallel reactions (RPI) reparametrized. For the first stage, the model that best describes the dynamic drying step was to Overhutz, obtaining average activation energy of 11,24 kJ/mol. As for the second stage, isoconversionais models showed activation energy between 104,94 and 417,27 kJ/mol. The reparametrized Independent Parallel Reactions model presented activation energy between 130,32 and 153,62 kJ/mol, 144,00 and 194,65 kJ/mol, 59,23 and 85,41 kJ/mol, 74,16 and 148,89 kJ/mol, and 163,95 and 184,23 kJ/mol for hemicellulose, cellulose, lignin, pectin, and component not known respectively. Fractions of subcomponents of orange bagasse were also estimated and is obtained approximate values of 21, 31, 17, 25 and 6% hemicellulose, cellulose, lignin, pectin and component x, respectively. In addition, it evaluated the convective drying kinetics bagasse, since it has a high initial moisture content, using the semi-empirical equations drying kinetics. The activation energy for convective kinetics of orange bagasse was 20,99 kJ/mol and the Overhultz model was the one best suited to the experimental data.
APA, Harvard, Vancouver, ISO, and other styles
45

Petr, Jakub. "Nové materiály pro Li-iontové baterie pracující na principu konverze." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-220927.

Full text
Abstract:
This thesis is interested in new materials for lithium – ion batteries. Two different samples were investigated, one intercalation and one conversion cathode material. The theoretical part is focused to the structure of cells, their advantages and disadvantages compared to other secondary batteries. Also other materials used in batteries are described. The practical part describes the preparation of cathode materials for subsequent testing by scanning elektron microscopy and thermogravimetric analysis. In conclusions two different materials were evaluated and compared with each other.
APA, Harvard, Vancouver, ISO, and other styles
46

Kramer, Ricardo Klaus. "Estudo da interação da água com a celulose e o amido por meio da técnica de termogravimetria." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18158/tde-16032015-154829/.

Full text
Abstract:
A interação da água com a celulose e com o amido é de grande importância para a compreensão das propriedades de ambos polissacarídeos e fundamental para o desenvolvimento de novas aplicações tecnológicas. Entre as novas aplicações estão em destaque a nanocelulose, como os nanocristais e microfibrilas. A preparação desses materiais é fortemente influenciada pela interação das ligações de hidrogênio presente nas fibras de celulose, tanto de caráter intra como intermolecular. Essas interações são responsáveis pelas propriedades mecânicas desses materiais uma vez que as moléculas estão ligadas umas às outras por meio de ligações de hidrogênio onde a água pode participar como elemento de ligação. Para o amido, dependendo da concentração da água, pode modifica-lo em termos da solubilidade e em propriedades pelo processo de gelatinização ou atuar como plastificantes como parcial despolimerização em amido termoplástico. Neste trabalho é descrito o estudo da interação do sistema água com a celulose e com o sistema água com amido por meio da análise termogravimétrica para a identificação de diferentes espécies de água: i) água livre, ii) água ligada congelável iii) água ligada não congelável. Para a realização deste estudo foi utilizado o método auto stepwise, método que permite uma maior resolução dos diversos fenômenos separadamente que ocorrem durante a dessorção da água. A dessorção da água no amido se demostrou mais complexa que a celulose devido à alternância da parte amorfa e cristalina em sua estrutura. Para o cálculo da energia de ativação da dessorção da água ligada e da degradação do polissacarídeo foi utilizado o método cinético de Osawa-Flynn-Wall, sendo possível estimar a energia de ativação dos fenômenos. Variando de 35-65 kJ/mol para dessorção da água ligada e 144,6-184 kJ/mol para degradação dos materiais.
The interaction of water with cellulose and starch are of great importance for understanding the properties of both polysaccharides and fundamental to the development of new technological applications. Among the new applications are highlighted to nanocellulose such as nanocrystals and microfibrils. The preparation of these materials is strongly influenced by the interaction of hydrogen bonds present in the cellulose fibers, both intra as intermolecular. These interactions are responsible for the mechanical properties of these materials since the molecules are linked to each other through hydrogen bonds where water can participate as a connecting element. For starch, depending on the concentration of the water, can modify it in terms of solubility and properties by gelatinization process or act as plasticizers as partial depolymerization of thermoplastic starch. This paper describes the study of the interaction of the water/cellulose system and the starch/water system by means of thermogravimetric analysis for the identification of different species of water: i) the free water or freezing water, ii) the freezing bound water and iii) the non-freezing bound water. For this study we used the auto stepwise method, that allows greater resolution of the various phenomena separately that occur during the water desorption. The water desorption in the starch is more complex that cellulose, due to alternating crystalline and amorphous parts of the structure. To calculate the bound water desorption activation energy and polysaccharide degradation energy was used kinetic method of Osawa-Flynn-Wall, that possible to estimate the phenomena of the activation energy, ranging from 35-65 kJ / mol for bound water desorption and from 144.6 to 184 kJ / mol for material degradation.
APA, Harvard, Vancouver, ISO, and other styles
47

Jarrett, Colby Lewis. "Quantifying the impact of pump performance, chemical conversion, and material properties on solar hydrogen production." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54297.

Full text
Abstract:
As renewable energy production becomes more prevalent, the challenge of producing renewable dispatchable fuel for the transportation sector remains unresolved. One promising approach is to produce hydrogen from solar energy with a two step thermochemical cycle which utilizes an oxygen storage material (OSM) to split water through two reversible reactions. Due to the strong coupling between reactor design, operational parameters, and OSM properties, the direct comparison of two OSMs is not straightforward. In order to guide the designs of OSMs for two-step thermochemical hydrogen production, a methodology is developed to model the max performance possible for a two-step thermochemical cycle. The novel contribution of this model considers the strong coupling between reactor operation, OSM properties, and reactor performance. Next, a method for screening and evaluating new OSMs which utilizes thermogravimetric analysis (TGA) is proposed. With this data, the modeling method previously developed is applied to determine maximum reactor efficiency possible with new materials. This allows many materials to be evaluated quickly, and facilitates further characterization new OSMs. Additionally, by comparing the predicted maximum efficiency of a new material with the efficiency of current ones, this method facilitates the comparison of two different OSMs on equal footing.
APA, Harvard, Vancouver, ISO, and other styles
48

Silva, Géssica Teixeira da. "Blendas poliméricas de poli (álcool vinílico) e carboximetilcelulose com aplicação em sistemas de liberação controlada de fármacos." Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/9230.

Full text
Abstract:
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-08T13:12:39Z No. of bitstreams: 1 arquivototal.pdf: 2266227 bytes, checksum: d3171f9e7352fd7ad3ac2fd448b412dc (MD5)
Made available in DSpace on 2017-08-08T13:12:39Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2266227 bytes, checksum: d3171f9e7352fd7ad3ac2fd448b412dc (MD5) Previous issue date: 2016-08-25
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this investigation we studied the polymer films formed of poly (vinyl alcohol) (PVA) and carboxymethylcellulose (CMC), both polymers readily available, and the synthetic first and second semi-synthetic. The films were prepared by evaporation of the solvent method and crosslinked with citric acid (CA) in order to improve their hydrophobicity characteristics. The crosslinked films and uncrosslinked were characterized via swelling measurements, the solubility and permeability to water vapors for testing the barrier properties of the films. In addition to these, antimicrobial activity assays were performed, scanning electron microscopy (SEM), thermal gravimetric analysis and spectroscopy in the infrared region. Infrared spectra suggested the formation of the blend by displacement of bands and showed that the crosslinking process occurred. Crosslinked films showed better results in relation to the water barrier properties (solubility, swelling and permeability) compared to films not lattices, results as they were, in fact, expected some time crosslinking rearranges the polymer chains in order to hinder the passage of water molecules and control the passage of smaller molecules. Thermal degradation analysis showed that the stability of the films was affected by the presence of citric acid crosslinking agent so that crosslinked films with higher concentrations of BC had greater stability of the thermal point of view. The SEM of the films showed a smooth and homogeneous surface without phase separation of blends and no porosities. The antimicrobial activity performed with strains of S. aureus, S. epidermidis, Pseudomonas aeruginosa, Candida albicans and C. topicalis showed that no film inhibition activity on the growth of microorganisms. Besides characterization was carried out applying the transdermal films for controlled drug release, which we evaluated the release kinetics of acetaminophen and drugs fluconazole crosslinked films 20 and 30% citric acid. The results of controlled drug release showed that the film exhibited different behaviors across the control release so that the blends presented model release of zero order, carboxymethylcellulose films to uncontrolled release and PVA films were able to maintain a concentration drug constant in the receiving environment after 12 hours of testing.
Nesse trabalho foram estudados os filmes poliméricos formados por poli (álcool vinílico) (PVA) e carboximetilcelulose (CMC), dois polímeros de fácil obtenção, sendo o primeiro sintético e o segundo semissintético. Os filmes foram preparados pelo método da evaporação do solvente e reticulados com ácido cítrico (AC), a fim de melhorar suas características de hidrofobicidade. Os filmes reticulados e não reticulados foram caracterizados via ensaios de intumescimento, solubilidade e permeabilidade aos vapores de água para testar as propriedades de barreira dos filmes. Além desses, foram realizados ensaios de atividade antimicrobiana, microscopia eletrônica de varredura (MEV), análise termogravimétrica e espectroscopia na região do infravermelho. Os espectros de infravermelho sugeriram formaçãoda blenda através de deslocamento de bandas e mostrou que o processo de reticulação ocorreu. Os filmes reticulados apresentaram melhores resultados em relação às propriedades de barreira à água (solubilidade, intumescimento e permeabilidade) quando comparados aos filmes não reticulados, resultados como eram, de fato, esperados, umas vez que a reticulação reorganiza as cadeias poliméricas de forma a dificultar a passagem de moléculas de água e controlar a passagem de moléculas menores. A análise de degradação térmica mostrou que a estabilidade dos filmes foi afetada pela presença do agente reticulante ácido cítrico, de forma que os filmes reticulados com maior concentração de AC apresentaram a maior estabilidade do ponto de vista térmico. O MEV dos filmes mostrou uma superfície lisa e homogênea, sem separação de fases das blendas e ausência de porosidades. A atividade antimicrobiana realizada com cepas de S. aureus, S. epidermides, Pseudomonas aeruginosa, Candida albicans e C. topicalis, mostrou que nenhum filme apresentou atividade de inibição sobre o crescimento dos microorganismos. Além da caracterização, foi realizada a aplicação dos filmes para sistemas transdérmicos de liberação controlada de fármacos, onde foi avaliada a cinética de liberação dos fármacos paracetamol e fluconazol em filmes reticulados com 20 e 30% de ácido cítrico. Os resultados da liberação controlada de fármacos mostraram que os filmes apresentaram diferentes comportamentos frente ao controle da liberação, de forma que as blendas apresentaram modelo de liberação de ordem zero, os filmes de carboximetilcelulose não controlaram a liberação e os filmes de PVA conseguiram manter uma concentração constante de fármaco no meio receptor após as 12 horas de ensaio.
APA, Harvard, Vancouver, ISO, and other styles
49

Kleinhans, Henrik. "Evaluation of the Carbonization of Thermo-Stabilized Lignin Fibers into Carbon Fibers." Thesis, Linköpings universitet, Kemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-120519.

Full text
Abstract:
Thermo-stabilized lignin fibers from pH-fractionated softwood kraft lignin were carbonized to various temperatures during thermomechanical analysis (TMA) under static and increasing load and different rates of heating. The aim was to optimize the carbonization process to obtain suitable carbon fiber material with good mechanical strength potential (high tensile strength and high E-modulus). The carbon fibers were therefore mainly evaluated of mechanical strength in Dia-Stron uniaxial tensile testing. In addition, chemical composition, in terms of functional groups, and elemental (atomic) composition was studied in Fourier transform infrared spectroscopy (FTIR) and in energy-dispersive X-ray spectroscopy (EDS), respectively. The structure of carbon fibers was imaged in scanning electron microscope (SEM) and light microscopy. Thermogravimetrical analysis was performed on thermo-stabilized lignin fibers to evaluate the loss of mass and to calculate the stress-changes and diameter-changes that occur during carbonization. The TMA-analysis of the deformation showed, for thermo-stabilized lignin fibers, a characteristic behavior of contraction during carbonization. Carbonization temperatures above 1000°C seemed most efficient in terms of E-modulus and tensile strength whereas rate of heating did not matter considerably. The E-modulus for the fibers was improved significantly by slowly increasing the load during the carbonization. The tensile strength remained however unchanged. The FTIR-analysis indicated that many functional groups, mainly oxygen containing, dissociate from the lignin polymers during carbonization. The EDS supported this by showing that the oxygen content decreased. Accordingly, the relative carbon content increased passively to around 90% at 1000°C. Aromatic structures in the carbon fibers are thought to contribute to the mechanical strength and are likely formed during the carbonization. However, the FTIR result showed no evident signs that aromatic structures had been formed, possible due to some difficulties with the KBr-method. In the SEM and light microscopy imaging one could observe that porous formations on the surface of the fibers increased as the temperature increased in the carbonization. These formations may have affected the mechanical strength of the carbon fibers, mainly tensile strength. The carbonization process was optimized in the sense that any heating rate can be used. No restriction in production speed exists. The carbonization should be run to at least 1000°C to achieve maximum mechanical strength, both in E-modulus and tensile strength. To improve the E-modulus further, a slowly increasing load can be applied to the lignin fibers during carbonization. The earlier the force is applied, to counteract the lignin fiber contraction that occurs (namely around 300°C), the better. However, in terms of mechanical performance, the lignin carbon fibers are still far from practical use in the industry.
APA, Harvard, Vancouver, ISO, and other styles
50

Walker, Alasdair Michael. "Extrusion processing of chocolate crumb paste." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:1c54a2e6-a767-4fd3-8bf0-e2d250b7ac4a.

Full text
Abstract:
This project considers the co-rotating twin screw extrusion of a confectionery paste comprising powdered proteins, sugars, water and fats. As is the case with many food industry products, this process has been developed experimentally with little quantitative understanding of how variations in processing conditions influence the formation of the extrudate. A variety of techniques have therefore been developed to characterise and quantify the dispersive mixing, distributive mixing and rheological flow properties of this complex, multiphase, viscoelastic, unstable material. These techniques have then been utilised in a pilot plant extruder study of the mechanics of mixing and paste formation during extrusion, considering the influence of both processing conditions and screw profile. The internal evolution of paste microstructure has been successfully tracked along the length of screw profile using dead-stop extractions of the screws. A rigorous off-line assessment of shear yield strength behaviour using cone penetrometry has shown the use of conventional off-line rheometers to be unviable due to rapid post extrusion hardening. This highlighted the need for an in-line rheological measurement technique for continuous extrusion analysis where the extruded material is severely time dependent and not extractable. In pursuit of this, a novel arrangement of bender elements is proposed and trialled, to rapidly characterise material parameters of viscoelastic pastes. A second technique looking to extend the application of shear wave interface reflection to multiphase pastes is also trialled. A novel analysis of thermogravimetric data (TGA) has generated a viable index of distributive mixing, suitable for use on complex multi-component materials where thermal decomposition temperatures of the components are not well defined. Quantitative image analysis of pastes using scanning electron microscopy (SEM), optical microscopy protein staining and a novel application of multiphoton microscopy (MPM) have been used to visualise paste microstructure and quantify dispersive mixing. From the pilot plant extruder study, the application of these techniques was successful in mapping the evolution of paste mixing and the resulting microstructure, as well as identifying key differences between pastes mixed by twin screw extrusion and batch mixing.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography