Academic literature on the topic 'Thermoelectric System'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermoelectric System.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermoelectric System"

1

Yazawa, Kazuaki, and Ali Shakouri. "Heat Flux Based Optimization of Combined Heat and Power Thermoelectric Heat Exchanger." Energies 14, no. 22 (November 21, 2021): 7791. http://dx.doi.org/10.3390/en14227791.

Full text
Abstract:
We analyzed the potential of thermoelectrics for electricity generation in a combined heat and power (CHP) waste heat recovery system. The state-of-the-art organic Rankine cycle CHP system provides hot water and space heating while electricity is also generated with an efficiency of up to 12% at the MW scale. Thermoelectrics, in contrast, will serve smaller and distributed systems. Considering the limited heat flux from the waste heat source, we investigated a counterflow heat exchanger with an integrated thermoelectric module for maximum power, high efficiency, or low cost. Irreversible thermal resistances connected to the thermoelectric legs determine the energy conversion performance. The exit temperatures of fluids through the heat exchanger are important for the system efficiency to match the applications. Based on the analytic model for the thermoelectric integrated subsystem, the design for maximum power output with a given heat flux requires thermoelectric legs 40–70% longer than the case of fixed temperature reservoir boundary conditions. With existing thermoelectric materials, 300–400 W/m2 electrical energy can be generated at a material cost of $3–4 per watt. The prospects of improvements in thermoelectric materials were also studied. While the combined system efficiency is nearly 100%, the balance between the hot and cold flow rates needs to be adjusted for the heat recovery applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Harsito, Catur, Teguh Triyono, and Eki Roviyanto. "Analysis of Heat Potential in Solar Panels for Thermoelectric Generators using ANSYS Software." Civil Engineering Journal 8, no. 7 (July 1, 2022): 1328–38. http://dx.doi.org/10.28991/cej-2022-08-07-02.

Full text
Abstract:
The growing demand for energy has an impact on the development of environmentally friendly renewable energy. The sun is energy that has the potential to be used as electrical energy through light energy and heat energy. Recently, research interest related to photovoltaic performance has increased. Several studies have investigated the effect of panel cooling on photovoltaic performance. In this study, the use of exergy solar panels is considered to improve performance by adding a thermoelectric system. Research work related to photovoltaic testing with thermoelectrics at low temperatures has not been carried out. Therefore, experimental methods to obtain temperature profiles and simulation methods to see the power potential generated from thermoelectrics have been carried out. The experimental method is carried out using mono-crystalline panels with type K sensors to retrieve temperature data and data acquisition as deviations from the current, voltage, and temperature results of the panel. The simulation model was carried out using the ANSYS software. Tests are carried out, taking into account the effect of back panel temperature on system performance. The results showed that the photovoltaic temperature fluctuated due to the influence of cloud cover, the highest photovoltaic temperature was 57°C, and the lowest temperature was 30°C. The maximum power produced by photovoltaic is 39.8W. It is then applied to the thermoelectric simulation based on the highest temperature, and the maximum power value is 1673.4 mW. This photovoltaic-thermoelectric generator system produces a 4.2% increase in power value over conventional photovoltaic systems. The findings in this study can be used as a reference for all types of low-temperature photovoltaic-thermoelectric systems. Doi: 10.28991/CEJ-2022-08-07-02 Full Text: PDF
APA, Harvard, Vancouver, ISO, and other styles
3

Kulkarni, Vikas V., and Vandana A. Kulkarni. "Energy Efficient Photovoltaic Systems using Thermoelectric Cooling System." International Journal on Recent and Innovation Trends in Computing and Communication 11, no. 5 (May 17, 2023): 233–47. http://dx.doi.org/10.17762/ijritcc.v11i5.6610.

Full text
Abstract:
Dual thermoelectric-photovoltaic (TE-PV) systems are a type of solar energy technology that combines two different technologies to generate electricity by concentrating solar radiation. These systems use a solar concentrator to focus sunlight onto a photovoltaic cell and a thermoelectric generator. The aim of this paper is to develop a dual thermoelectric-photovoltaic system with a water-cooled heat sink to generate electricity from concentrated solar radiation through Fresnel lenses.In addition, the detailed design for the components that will be integrated into an experimental prototype of the dual system on a laboratory scale is carried out and its functionality is determined. Finally, its functionality is evaluated and achieved an estimated maximum power of 1.5 Watts.
APA, Harvard, Vancouver, ISO, and other styles
4

Baheta, Aklilu Tesfamichael, Kar Kin Looi, Ahmed Nurye Oumer, and Khairul Habib. "Thermoelectric Air-Conditioning System: Building Applications and Enhancement Techniques." International Journal of Air-Conditioning and Refrigeration 27, no. 02 (June 2019): 1930002. http://dx.doi.org/10.1142/s2010132519300027.

Full text
Abstract:
The high reliability, the absence of working fluid and auxiliary pipes in the thermoelectric cooling application have attracted the attention of researchers in the last two decades. However, the use of thermoelectric air-conditioning system for building application has not been entirely explored due to its low coefficient of performance (COP) compared to the conventional air conditioning system. To overcome this primary limitation, different COP enhancement techniques of thermoelectric for air conditioning system building application are made available. This paper provides the recent development of thermoelectric air conditioning system in building applications, such as thermoelectric radiant panel ceiling, thermoelectric air duct system and thermoelectric cooling facades. It also provides the different strategies to enhance its performance in order to fit this technology in real building applications such as the integration of water-cooling system, phase change materials, evaporator cooling system and nanofluid micro-channel heat sinks. Lastly, the challenges of thermoelectric air-conditioning systems and future research directions are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Imam, Muhammad A., and Ramana G. Reddy. "A Review of Boron-Rich Silicon Borides Basedon Thermodynamic Stability and Transport Properties of High-Temperature Thermoelectric Materials." High Temperature Materials and Processes 38, no. 2019 (February 25, 2019): 411–24. http://dx.doi.org/10.1515/htmp-2018-0077.

Full text
Abstract:
AbstractIn this study, the performance of a boron-rich Si-B system containing ~ 2–25 mol% Si is reviewed as a high-temperature thermoelectric material. In this review, both thermodynamic stability and transport properties are evaluated to understand the high-temperature thermoelectric performance of the Si-B system. The thermodynamic properties, such as Gibbs energy and activity coefficient, of the Si-B system were calculated and compared to the literature data. Thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity were reviewed for the Si-B system. It is found that the composition and processing techniques are critical for obtaining higher thermoelectrical properties and thus also true for the figure of merit ZT. The entropy (degree of randomness) of a system has a remarkable effect on ZT. The highest ZT obtained for this system is approximately 0.2 at 90% B (SiB6 + SiBn) containing SiBn phase, shows the lowest entropy (~32 J/mol*K) in this system at 1100 K.
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Ting, Zuoming Qu, Xingfei Yu, Xing Lu, and Qiuwang Wang. "A review on thermoelectric-hydraulic performance and heat transfer enhancement technologies of thermoelectric power generator system." Thermal Science 22, no. 5 (2018): 1885–903. http://dx.doi.org/10.2298/tsci180102274m.

Full text
Abstract:
The thermoelectric material is considered to a good choice to recycle the waste heat in the power and energy systems because the thermoelectric material is a solid-state energy converter which can directly convert thermal energy into electrical energy, especially suitable for high temperature power and energy systems due to the large temperature difference. However, the figure of merit of thermoelectric material is very low, and the thermoelectric power of generator system is even lower. This work reviews the recent progress on the thermoelectric power generator system from the view of heat transfer, including the theoretical analysis and numerical simulation on thermoelectric-hydraulic performance, conventional heat transfer enhancement technologies, radial and flow-directional segmented enhancement technologies for the thermoelectric power generator system. Review ends with the discussion of the future research directions of numerical simulation methods and heat transfer enhancement technologies used for the thermoelectric power generator in high temperature power and energy systems.
APA, Harvard, Vancouver, ISO, and other styles
7

Sanin-Villa, Daniel. "Recent Developments in Thermoelectric Generation: A Review." Sustainability 14, no. 24 (December 15, 2022): 16821. http://dx.doi.org/10.3390/su142416821.

Full text
Abstract:
The world’s growing energy demand poses several concerns regarding the rational and efficient use of energy resources. This is also the case for many industrial processes, where energy losses and particularly thermal losses are common. Thermoelectric generators offer an alternative to address some of these challenges by recovering wasted heat and thereby increasing the overall efficiency of these processes. However, the successful operation of the thermoelectrical modules meant to carry this process is only possible when pairing these to an external control system; such a system plays an important role in predicting and operating such modules at its maximum power point. In this review paper, recent developments in the field of thermoelectric technology are discussed along with their mathematical models, applications, materials, and auxiliary devices to harvest thermal energy. Moreover, new advancements in phenomenological models are also discussed and summarized. The compiled evidence shows that the thermal dependence properties on the thermoelectric generator material’s modules and the mismatching thermal conditions play an important role in predicting power output in those systems, which prove the importance of including those parameters to enhance the accuracy of the energy production prediction. In addition, based on the evaluation of the mathematical models, it is shown that more studies are required to fill the gap between the current state-of-the-art of the technology and adjacent modeling techniques for the design and evaluation of thermal energy harvesting systems employing thermoelectric arrays under mismatching thermal conditions.
APA, Harvard, Vancouver, ISO, and other styles
8

Putra, Nandy, H. Ardiyansya, Ridho Irwansyah, Wayan Nata Septiadi, A. Adiwinata, A. Renaldi, and K. Benediktus. "Thermoelectric Heat Pipe-Based Refrigerator: System Development and Comparison with Thermoelectric, Absorption and Vapor Compression Refrigerators." Advanced Materials Research 651 (January 2013): 736–44. http://dx.doi.org/10.4028/www.scientific.net/amr.651.736.

Full text
Abstract:
Thermoelectric coolers have been widely applied to provide cooling for refrigerators in addition to conventional absorption and vapor compression systems. To increase heat dissipation in the thermoelectric cooler’s modules, a heat pipe can be installed in the system. The aim of this study is to develop a thermoelectric heat pipe-based (THP) refrigerator, which consists of thermoelectric coolers that are connected by heat pipe modules to enhance heat transfer. A comparative analysis of the THP prototype and conventional refrigerator with vapor compression, absorption and thermoelectric systems is also presented. The prototype system has a faster cooling down time and a higher coefficient of performance than the absorption system but still lower than vapor compression system
APA, Harvard, Vancouver, ISO, and other styles
9

Lv, Song, Zuoqin Qian, Dengyun Hu, Xiaoyuan Li, and Wei He. "A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module." Energies 13, no. 12 (June 17, 2020): 3142. http://dx.doi.org/10.3390/en13123142.

Full text
Abstract:
In recent years, thermoelectric (TE) technology has been emerging as a promising alternative and environmentally friendly technology for power generators or cooling devices due to the increasingly serious energy shortage and environmental pollution problems. However, although TE technology has been found for a long time and applied in many professional fields, its low energy conversion efficiency and high cost also hinder its wide application. Thus, it is still urgent to improve the thermoelectric modules. This work comprehensively reviews the status of strategies and approaches for enhancing the performance of thermoelectrics, including material development, structure and geometry improvement, the optimization of a thermal management system, and the thermal structure design. In particular, the influence of contact thermal resistance and the improved optimization methods are discussed. This work covers many fields related to the enhancement of thermoelectrics. It is found that the main challenge of TE technology remains the improvement of materials’ properties, the decrease in costs and commercialization. Therefore, a lot of research needs to be carried out to overcome this challenge and further improve the performance of TE modules. Finally, the future research direction of TE technology is discussed. These discussions provide some practical guidance for the improvement of thermoelectric performance and the promotion of thermoelectric applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Yin Tao, Wei Liu, Ai Wu Fan, and Peng Li. "Performance Comparison between Series-Connected and Parallel-Connected Thermoelectric Generator Systems." Applied Mechanics and Materials 325-326 (June 2013): 327–31. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.327.

Full text
Abstract:
The connections between the thermoelectric modules are crucial importance for the performance of the thermoelectric power system. Many studies have been done to improve the output of thermoelectric system, but very little specific to the connections between the modules. A mathematical model of a module has been established, and based on this model, the performance of two systems composed of 6 pieces of thermoelectric modules, one in series connection and the other in parallel connection, is simulated with MATLAB software and then compared. The results can be used as reference for the design and prediction of thermoelectric system.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thermoelectric System"

1

Muto, Andrew (Andrew Jerome). "Thermoelectric device characterization and solar thermoelectric system modeling." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/71506.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 152-155).
Recent years have witnessed a trend of rising electricity costs and an emphasis on energy efficiency. Thermoelectric (TE) devices can be used either as heat pumps for localized environmental control or heat engines to convert heat into electricity. Thermoelectrics are appealing because they have no moving parts, are highly reliable, have high power densities, and are scalable in size. They can be used to improve the overall efficiency of many systems including vehicle waste heat, solar thermal, HVAC, industrial waste heat, and remote power for sensor applications. For thermoelectric generators to be successful, research progress at the device level must be made to validate materials and to guide system design. The focus of this thesis is thermoelectric device testing and system modeling. A novel device testing method is developed between room temperature range and 230°C. The experimental technique is capable of directly measuring an energy balance over a single leg, with a large temperature of 2-160°C. The technique measures all three TE properties of a single leg, in the same direction, with significantly less uncertainty than other methods. The measurements include the effects of temperature dependent properties, side wall radiation loss, and contact resistance. The power and efficiency were directly measured and are within 0.4 % and 2 % of the values calculated from the property measurements. The device property measurement was extended to higher temperatures up to 600°C. The experimental system uses an inline unicouple orientation to minimize radiation losses and thermal stress. Two major experimental challenges were the construction of a high temperature calibrated heater and a thermocouple attachment technique. We investigated skutterudite materials which are of interest to many research groups due to their high thermoelectric figure-of-merit (ZT), and good thermomechanical properties. Unlike room temperature Bi2Te 3 devices, skutterudite module construction techniques are not well established and were a major challenge in this work. Skutterudite device samples were fabricated by a direct bonding method in which a rigid electrode is sintered directly to the TE powder during press. Compatible electrode materials were identified and evaluated based on thermal stress, parasitic electrical/thermal resistance, chemical stability and ease of prototype fabrication. The final electrodes solutions were Co2 Si with the P-type and CoSi2 with the N-type. The direct hot press process was modified into what we call a hybrid hot press to produce device samples with strong bonds and no cracks. Preliminary accelerated aging tests were conducted to evaluate the long term chemical stability of the TE-electrode contacts. We demonstrated ZTff = 0.74 for the N-type between 52°C and 595°C corresponding to 11.7% conversion efficiency and Zlff = 0.51 for the P-type between 77°C and 600°C corresponding to 8.5% efficiency. The maximum efficiency of the NP unicouple was measured to be 9.1% at ~550°C. The effective ZT and efficiency measurement includes electrical contact resistance, and parasitic thermal/electrical resistance in the electrodes, and heat losses at the sides of the legs. Thus we have included all the parasitic loss effects that are present in a real unicouple. The efficiency values measured in this work are among the highest recorded for a skutterudite unicouple. The TE-electrode combinations meet all the criteria for device testing and offer a practical, manufacturable solution for module construction. Solar thermal power generation is fast becoming cost competitive for utility scale electricity with 380 MW electric currently installed. Parabolic trough concentrators have proven economical and reliable but their efficiency is limited by the maximum temperature of the heated fluid. We explored the idea of a solar thermoelectric topping cycle (STET) in which a thermoelectric generator (TEG) is added at high temperature to increase the overall efficiency of the solar Rankine cycle. In this design the perimeter of the receiver tube is covered with thermoelectrics so that the absorber temperature is raised and the energy rejected from the TEG is used to heat the fluid at its originally specified temperature. A heat transfer analysis was carried out to determine the overall system efficiency. A parametric study was performed to identity design constraints and put bounds on the total system efficiency. The system performance was simulated for all conceivable concentrations and fluid temperatures of a solar thermal trough. As the absorber temperature increases more power is generated by the TEG but is offset by a rapidly decreasing absorber efficiency which results in only a marginal increase in net power. It was concluded that for the proposed STET to increase the system efficiency of a state of the art trough system by 10% requires a ZI =3 TEG, which is well beyond the state-of-the-art thermoelectric materials.
by Andrew Muto.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
2

Al-Madhhachi, Hayder. "Solar powered thermoelectric distillation system." Thesis, Cardiff University, 2017. http://orca.cf.ac.uk/107598/.

Full text
Abstract:
An efficient thermoelectric distillation system was designed, constructed and tested. The unique aspect of this design is to use the waste heat from the hot side of thermoelectric module for heating of the feed water, to improve the evaporation while using the cold side of the module to cool the condenser and improve the condensation process. The developed thermoelectric distillation system produces 28.5 mL of distilled water (equivalent to 678 mL/m2) over a period of 1 hour. The corresponding electrical energy required for the water production is 0.0324 kWh, which gives a specific energy consumption of 0.00114 kWh/mL. The developed system in this research has significantly lower energy consumption than the existing thermoelectric distillation systems. The transient to steady state behaviour of the developed thermoelectric distillation system was investigated. It was found that the system reaches steady state after approximately three hours of the system operation. The water temperature in evaporation chamber was increased from 22.3 oC to 47.8 oC. Similarly, the vapour temperature was increased moderately from 20.3 oC to 30.4 oC. The steady state water production, humidity, energy consumption and COP of the thermoelectric distillation system were 15.3 mL/h, 81%, 0.0324 kWh and 1.04, respectively. Thermal models have been developed through water-vapour phase-change theory to interpret the evaporation and condensation processes involved in the fresh water production of the thermoelectric distillation system. The first model was related to the evaporation process to determine the vapour production in the system. A theoretical distillation ratio of 12% was obtained, with a predicted water temperature of 42.7 oC. This is in reasonable agreement with the 9.5% value experimentally obtained. The second ii model has been developed for the water condensation process. The developed model can be used for determining the key parameters that control the condensation processes and the system thermal performance. This model shows that the rate of water condensation is dependent upon the convection heat transfer coefficient of the cold-side heat exchanger. The fitted value of the convection heat transfer coefficient in the thermoelectric distillation system is 8 W/m2.K. Key factors that influence the total water production and water production rate have been investigated, including sample water temperature, vapour volume at sample water level, Peltier current and thermoelectric input power. The experimental data shows that an increase in sample water temperature from 30 oC to 60 oC gives a 47 % increase in total water production. Peltier current is demonstrated as a control factor in the design of an effective thermoelectric distillation system. The results show that the total water production increases by 61%, when the volume occupied by the vapour is reduced from 600 cm3 to 400 cm3 by increasing the sample water level from 10 mm to 30 mm in the system. The maximum water production is achieved by increasing sample water temperature and the corresponding optimised input power. Measurements of the distilled water show that it has similar quality to drinkable tap water in terms of pH, total dissolved solids and electrical conductivity values. Photovoltaic Geographical Information System was used to estimate the global irradiation per square meter and the solar electricity generation in kWh received by a solar panel in a specific region. Using the experimental prototype, the maximum monthly average water production is 4023.3 mL when using 8.52 kWh of electricity produced during March at the University of Kufa. The minimum average monthly water production is 2970.3 mL using 6.29 kWh of electricity produced during November.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Jue. "System Design, Fabrication, and Characterization of Thermoelectric and Thermal Interface Materials for Thermoelectric Devices." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/83546.

Full text
Abstract:
Thermoelectric devices are useful for a variety of applications due to their ability to either convert heat directly into electricity, or to generate a temperature gradient from an electric current. These devices offer several attractive features including compact size, no moving parts, limited maintenance requirements, and high reliability. Thus thermoelectric devices are used for temperature-control, cooling, or power generation in various industrial systems such as automobiles, avionics, refrigerators, chillers, laser diodes, dehumidifiers, and a variety of sensors. In order to improve the efficiency of thermoelectric devices, many endeavors have been made to design and fabricate materials with a higher dimensionless thermoelectric figure of merit (ZT), as well as to optimize the device structure and packaging to manage heat more effectively. When evaluating candidate thermoelectric materials, one must accurately characterize the electrical conductivity, thermal conductivity, and the Seebeck coefficient over the temperature range of potential use. However, despite considerable research on thermoelectric materials for decades, there is still significant scatter and disagreement in the literature regarding accurate characterization of these properties due to inherent difficulties in the measurements such as requirements for precise control of temperature, simultaneous evaluation of voltage and temperature, etc. Thus, a well-designed and well-calibrated thermoelectric measurement system that can meet the requirements needed for multiple kinds of thermoelectric materials is an essential tool for the development of advanced thermoelectric devices. In this dissertation, I discuss the design, fabrication, and validation of a measurement system that can rapidly and accurately evaluate the Seebeck coefficient and electrical resistivity of thermoelectric materials of various shapes and sizes from room temperature up to 600 K. The methodology for the Seebeck coefficient and electrical resistivity measurements is examined along with the optimization and application of both in the measurement system. The calibration process is completed by a standard thermoelectric material and several other materials, which demonstrates the accuracy and reliability of the system. While a great deal of prior research has focused on low temperature thermoelectric materials for cooling, such as Bi2Te3, high temperature thermoelectric materials are receiving increasing attention for power generation. With the addition of commercial systems for the Seebeck coefficient, electrical resistivity, and thermal conductivity measurements to expand the temperature range for evaluation, a wide range of materials can be studied and characterized. Chapter Two of this dissertation describes the physical properties characterization of a variety of thermoelectric materials, including room temperature materials such as Bi0.5Sb1.5Te3, medium temperature level materials such as skutterudites, and materials for high temperature applications such as half-Heusler alloys. In addition, I discuss the characterization of unique oxide thermoelectric materials, which are Al doped ZnO and Ca-Co-O systems for high temperature applications. Chapter Four of this dissertation addresses the use of GaSn alloys as a thermal interface material (TIM), to improve thermal transport between thermoelectric devices and heat sinks for power generation applications at high temperature. I discuss the mechanical and thermal behavior of GaSn as an interface material between electrically insulating AlN and Inconel heat exchangers at temperatures up to 600 °C. Additionally, a theoretical model for the experimental thermal performances of the GaSn interface layer is also examined.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
4

Thompson, Megan Elizabeth Dove. "Fabrication and Testing of a Heat Exchanger Module for Thermoelectric Power Generation in an Automobile Exhaust System." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/19233.

Full text
Abstract:
Thermoelectric generators (TEGs) are currently a topic of interest in the field of energy harvesting for automobiles. In applying TEGs to the outside of the exhaust tailpipe of a vehicle, the difference in temperature between the hot exhaust gases and the automobile coolant can be used to generate a small amount of electrical power to be used in the vehicle. The amount of power is anticipated to be a few hundred watts based on the temperatures expected and the properties of the materials for the TEG.
This study focuses on developing efficient heat exchanger modules for the cold side of the TEG through the analysis of experimental data. The experimental set up mimics conditions that were previously used in a computational fluid dynamics (CFD) model. This model tested several different geometries of cold side sections for the heat exchanger at standard coolant and exhaust temperatures for a typical car. The test section uses the same temperatures as the CFD model, but the geometry is a 1/5th scaled down model compared to an full-size engine and was fabricated using a metal-based rapid prototyping process. The temperatures from the CFD model are validated through thermocouple measurements, which provide the distribution of the temperatures across the TEG. All of these measurements are compared to the CFD model for trends and temperatures to ensure that the model is accurate. Two cold side geometries, a baseline geometry and an impingement geometry, are compared to determine which will produce the greater temperature gradient across the TEG.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
5

Christian, Corey D. (Corey Dwight). "Breaking the thermo-mechanical coupling of thermoelectric materials : determining the viability of a thermoelectric generator." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121790.

Full text
Abstract:
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, System Design and Management Program, 2019
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 69-70).
Thermoelectric power generators (TEGs) convert a temperature difference into electricity. This temperature difference can be created from waste heat. Since up to 50% [1] of US industrial energy input is lost as waste heat, an economical means of recovering waste heat and converting it into useful electricity could represent significant energy savings. Coupled with our integrative system design which involves creating application specific thermoelectric arrays, this technology can also help enable low power generation for off-grid needs in the developing world. Although conversion efficiencies as high as 20.9% [2] (heat to electrical energy) have been predicted from simulations of TEGs systems, in practice the efficiencies are typically only a few percent. Moreover, conventional systems often require expensive components to manage heat flow through the system.
As a result of the low efficiency and high system cost, electricity generated by thermoelectric energy harvesting from waste heat is currently not competitive with conventional electricity generation on a dollars-per-watt basis. This realization has led researchers to not only focus on increasing TEG device efficiency limits but to devise cheaper manufacturing processes and methods. A system design constraint that has not been fully investigated is the coupling of thermal and mechanical properties in thermoelectric materials. The extent to which this coupling affects the performance of the TEGs will be studied. This thesis develops an approach for decoupling the thermal and mechanical properties and tests it through a variety of simulations. We propose a mechanically compliant attachment strategy which could be integrated in various waste heat recovery applications.
The strategy involves breaking the thermal and mechanical bond formed by the brittle thermoelectric elements and its substrate. Copper wire, which is more pliable, is then used to connect the thermoelectric element to the substrate. A system analysis was performed for waste heat recovery from a vehicles exhaust pipe. We found that utilizing the proposed strategy should not only lead to increased mechanical compliance but can also lead to cost savings on a dollars-per-watt basis. We found that 84% power retention could be obtained when up to 16x less material is used under most apparent conditions¹.
by Corey D. Christian.
S.M. in Engineering and Management
S.M.inEngineeringandManagement Massachusetts Institute of Technology, System Design and Management Program
APA, Harvard, Vancouver, ISO, and other styles
6

Omer, Siddig Adam. "Solar thermoelectric system for small scale power generation." Thesis, Loughborough University, 1997. https://dspace.lboro.ac.uk/2134/7440.

Full text
Abstract:
This thesis is concerned with the design and evaluation of a small scale solarthermoelectric power generation system. The system is intended for electricity generation and thermal energy supply to small scale applications in developing countries of the sunny equatorial regions. Detailed design methodologies and evaluations of both the thermoelectric device and the solar energy collector, which are parts of the combined system, are presented. In addition to experimental evaluations, three theoretical models are presented which allow the design and evaluation of both the thermoelectric module and the solar energy collector. One of the models (a unified thermoelectric device model) concerns the geometrical optimization and performance prediction of a thermoelectric module in power generation mode. The model is unified in the sense that it accounts for the effect of all the parameters that contribute to the performance of the thermoelectric module, a number of which are ignored by the available design models. The unified model is used for a comparative evaluation of five thermoelectric modules. One of these is commercially available and the others are assumed to have optimum geometry but with different design parameters (thermal and electrical contact layer properties). The model has been validated using data from an experimental investigation undertaken to evaluate the commercial thermoelectric module in power generation mode. Results showed that though the commercially available thermoelectric cooling devices can be used for electricity generation, it is appropriate to have modules optimized specifically for power generation, and to improve the contact layers of thermoelement accordingly. Attempts have also been made to produce and evaluate thermoelectric materials using a simple melt-qucnching technique which produces materials with properties similar to those of the more expensive crystalline materials.
APA, Harvard, Vancouver, ISO, and other styles
7

Karim, Nejad Aliabadi Parya. "Development of thermoelectric cooling system for tissue ablation." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7536/.

Full text
Abstract:
There is growing interest in the use of cryosurgical treatment for the ablation of cancerous and diseased tissue. This thesis describes experimental and numerical investigation of the thermoelectric devices to be utilized in development of the cryosurgical probe for generating freezing and rewarming temperature required for tissue ablation. Thermoelectric cooling devices were used in this research due to being compact, noiseless with no moving parts and no circulating refrigerant. A novel three-dimensional model of human living tissue including metabolic heat, perfusion of blood and variation of tissue properties with temperature has been developed to determine thermal behaviour of tissue during cryosurgery process and predict the cooling requirement of the cryosurgical probe using COMSOL Multiphysics 5.2 software. COMSOL Multiphysics was used for the first time to develop three dimensional model of single stage and multistage thermoelectric devices and to predict the temperature difference across the thermoelectric modules at different input of electrical power. It is concluded that three stage thermoelectric module is capable of generating the temperature of the 213 K for cancer tissue ablation. The laboratory prototype of the cryosurgical probe was developed to investigate the performance of three stage thermoelectric device and the minimum temperature of the approximately 240 K were achieved in the experimental test. A circular hollow pin fin with lower thermal resistance was developed in SolidWorks flow simulation 2015 software and introduced as a suitable heat exchanger to be used in the laboratory prototype.
APA, Harvard, Vancouver, ISO, and other styles
8

Zheng, Xiaofeng. "Exploration and development of domestic thermoelectric cogeneration system." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/29922/.

Full text
Abstract:
Due to quiet operation, no moving parts, long lifespan and compact structure, the thermoelectric application has become a potential green technology which has been used in different areas in the efforts of contributing to achieve simplified and compact system structures and environmental friendliness. Its applications cover a wide range from the earliest application on kerosene lamp to aerospace applications, transportation tools, industrial utilities, medical services, electronic devices and temperature detecting & measuring facilities. Its disadvantage lies in the low conversion efficiency which only converts small amount (for Bi2Te3, up to 5%) of harvested energy to electrical power. It makes the use of the TEG system far from being economically feasible due to long cost recovery period. Consequently, its use is limited to specialised area where it is unnecessary to consider the cost of the thermal energy input and system cost recovery. This research aims to explore a way of widening the application range of thermoelectric generation based on introducing a potential direction of improving energy utilisation efficiency to a higher level by adopting thermoelectric cogeneration concept in residential house. It focuses on investigating the practicality of using thermoelectric applications in domestic sectors where the large amount of heat is exhausted to environment without being used and developing thermoelectric cogeneration system to generate electricity and produce pre-heated water for domestic use by recovering the waste heat from the domestic boiler and utilising the on-site solar energy. With the conversion efficiency given by the current commercially available thermoelectric modules, the optimised heat exchanging regimes and systems for thermoelectric applications have been comprehensively studied from the aspects of system design, integration, experimental study, numerical simulation and modification. The importance and necessity of effective heat exchanging methods have been emphasised by the experimental and numerical proofs for the development of a domestic thermoelectric cogeneration system with higher thermal efficiency. The impacts of this domestic energy solution have been evaluated from the aspects of the improvement for outdoor environment and indoor energy profile, as well as economic benefit. For the flue gas heat exchanger, the model with sudden expansion and gradual constriction has been identified gives in terms of overall performance. The model with sudden expansion, gradual constriction and staggered pipe layout and the one with sudden expansion, gradual constriction and inline pipe layout show better overall performance than other models. Among these two models, the one with staggered pipe layout shows better performance than the one with inline pipe layout in the velocity range of 3.6m/s-5m/s, whilst the one with inline pipe layout shows better performance between 0-3.6m/s. For the cold side heat exchanger, the one with four ø5mm branch channel angled at 90 against the main channel delivers the best overall performance out of 9 cooling plates built according to three variables. Experimental studies show the one-stage TCS produces more power than the two-stage TCS does when the heat input is supplied at 47W and 60W. As the heat input increases, the power output of two-stage TCS gets closer to that of one-stage TCS. In the system construction and assembly, uneven assembly can lead to a 20% drop in conversion efficiency. The pressure load at 18lpsi gives the highest power output out of five load values, which are 136psi, 159psi, 181psi, 204psi and 227psi, respectively. In comparison with individual assembly, module thickness difference in whole assembly degrades the system conversion efficiency. The cost recovery period of deploying this system in a residential house installed with a 24kW boiler and a 1 m2 solar collector has been evaluated. Based on the conversion efficiency and thermal efficiency that is 4% and 67% at 130C temperature difference. the house can produce 98W electricity and 1640W useable heat when the boiler is running and the contribution from the solar energy is included. It takes less than 4.2 years to recover the system cost.
APA, Harvard, Vancouver, ISO, and other styles
9

Borgström, Fredrik, and Jonas Coyet. "Waste heat recovery system with new thermoelectric materials." Thesis, Linköpings universitet, Mekanisk värmeteori och strömningslära, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125716.

Full text
Abstract:
Increasing fuel prices, higher demands on "greener" transports and tougher international emission regulations puts requirements on companies in the automotive industry in improving their vehicle fuel efficiency. On a typical heavy duty Scania truck around 30% of the total fuel energy is wasted through the exhaust system in terms of heat dissipated to the environment. Hence, several investigations and experiments are conducted trying to find ways to utilize this wasted heat in what is called a waste heat recovery (WHR) system. At Scania several techniques within the field of WHR are explored to find the profits that could be made. This report will cover a WHR-system based on thermoelectricity, where several new thermoelectric (TE) materials will be investigated to explore their performance. A reference material which is built into modules will be mounted in the exhaust gas stream on a truck to allow for measurements in a dyno cell. To analyze new materials a Simulink model of the WHR-system is established and validated using the dyno cell measurements. By adjusting the model to other thermoelectric material properties and data, the performance of new TE materials can be investigated and compared with today’s reference material. From the results of the simulations it was found that most of the investigated TE materials do not show any increased performance compared to the reference material in operating points of daily truck driving. This is due to dominance of relatively low exhaust gas temperatures in average, while most advantages in new high performing TE-materials are seen in higher temperature regions. Still, there are candidates that will be of high interest in the future if nanotechnology manufacturing process is enhanced. By using nanostructures, a quantum well based BiTe material would be capable of recovering 5-6 times more net heat power compared to the reference BiTe material. Another material group that could be of interest are TAGS which in terms of daily driving will increase the power output with pending values between 40-80 %. It is clear that for a diesel truck application, materials with high ZT-values in the lower temperature region (100-350°C) must be developed, and with focus put on exhibiting low thermal conductivity for a wide temperature span.
APA, Harvard, Vancouver, ISO, and other styles
10

Yamamoto, Masahiro, Hiromichi Ohta, and Kunihito Koumoto. "Thermoelectric phase diagram in a CaTiO3- SrTiO3 - BaTiO3 system." American Institute of Physics, 2007. http://hdl.handle.net/2237/8769.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Thermoelectric System"

1

Palu, Ivo. Impact of wind parks on power system containing thermal power plants =: Tuuleparkide mõju soojuselektrijaamadega energiasüsteemile. Tallinn: TUI Press, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

United States. National Aeronautics and Space Administration., ed. Small stirling dynamic isotope power system for multihundred-watt robotic missions. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Perez-Davis, Marla E. Sensible heat receiver for solar dynamic space power system. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

United States. National Aeronautics and Space Administration., ed. Effects of the cooling system parameters on heat transfer and performance of the PAFC stack during transient operation. [Cleveland, Ohio]: Cleveland State University, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

United States. National Aeronautics and Space Administration., ed. Effects of the cooling system parameters on heat transfer and performance of the PAFC stack during transient operation. [Cleveland, Ohio]: Cleveland State University, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

G, Attey, ed. Hydrocool thermoelectric refrigeration system: Results of research carried out as MERIWA Project No. E213 at Poseidon Scientific Instruments Pty Ltd and Hyco Pty Ltd. East Perth, WA: Minerals and Energy Research Institute of Western Australia, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zlatić, Veljko. New Materials for Thermoelectric Applications: Theory and Experiment. Dordrecht: Springer Netherlands, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fundamentals of thermophotovoltaic energy conversion. Amsterdam: Elsevier, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Omer, Siddig Adam. Solar thermoelectric system for small scale power generation. 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Spry, Michael. Comprehensive Guide to Thermoelectric Fundamentals and System Design. Independently Published, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thermoelectric System"

1

Lakhani, Tirth, and Vilas H. Gaidhane. "An Efficient Thermoelectric Energy Harvesting System." In Lecture Notes in Electrical Engineering, 590–97. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4775-1_64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bose, Arnab, Avishek Debnath, and Sibsankar Dasmahapatra. "Thermoelectric Refrigeration System with Water Cooling." In Learning and Analytics in Intelligent Systems, 702–9. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42363-6_82.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gonçalves, José Teixeira, Cristina Inês Camus, and Stanimir Stoyanov Valtchev. "Solar Thermoelectric System with Biomass Back-up." In IFIP Advances in Information and Communication Technology, 358–69. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56077-9_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dhar, Ritwik, Param Shah, Parth Kansara, and Niti Doshi. "Renewable Energy System Using Thermoelectric Generator (RESTEC)." In Lecture Notes in Mechanical Engineering, 1401–9. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0550-5_133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pan, Haodan, Xueying Li, and Dongliang Zhao. "Thermoelectric System for Personal Cooling and Heating." In Personal Comfort Systems for Improving Indoor Thermal Comfort and Air Quality, 185–211. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0718-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Iyer, Rakesh Krishnamoorthy, Adhimoolam Bakthavachalam Kousaalya, and Srikanth Pilla. "Polymer-Derived Ceramics: A Novel Inorganic Thermoelectric Material System." In Novel Thermoelectric Materials and Device Design Concepts, 229–52. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12057-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lamba, Ravita, and S. C. Kaushik. "Parametric Optimization of Concentrated Photovoltaic-Thermoelectric Hybrid System." In The Role of Exergy in Energy and the Environment, 525–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89845-2_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Man, E. A., E. Schaltz, and L. Rosendahl. "Thermoelectric Generator Power Converter System Configurations: A Review." In Proceedings of the 11th European Conference on Thermoelectrics, 151–66. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07332-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nardello, Matteo, Pietro Tosato, Maurizio Rossi, and Davide Brunelli. "A Thermoelectric Powered System for Skiing Performance Monitoring." In Lecture Notes in Electrical Engineering, 135–44. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93082-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Castañeda, Manuela, Andrés A. Amell, and Henry A. Colorado. "Thermoelectric Generators System Made with Low-Cost Thermoelectric Modules for Low Temperature Waste Heat Recovery." In The Minerals, Metals & Materials Series, 479–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92381-5_44.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermoelectric System"

1

Funahashi, R., A. Kosuga, N. Miyasou, E. Takeuchi, S. Urata, K. Lee, H. Ohta, and K. Koumoto. "Thermoelectric properties of CaMnO3 system." In 2007 26th International Conference on Thermoelectrics (ICT 2007). IEEE, 2007. http://dx.doi.org/10.1109/ict.2007.4569439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

LeBlanc, S. A., Y. Gao, and K. E. Goodson. "Thermoelectric Heat Recovery From a Tankless Water Heating System." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68860.

Full text
Abstract:
Thermoelectric cogeneration promises to recover waste heat energy from a variety of combustion systems. There is a need for computationally efficient simulations of practical systems that allow optimization and illustrate the impact of key material and system parameters. Previous research investigated thermoelectric material enhancement and thermoelectric system integration separately. This work connects material parameters and system integration. We develop a thermal simulation for a 15kW tankless, methane-fueled water heater with thermoelectric modules embedded within a cross-flow heat exchanger. The simulation employs a finite volume method for the two fluids. It links external convection with a surface efficiency of 85%, internal convection for laminar flow, and conduction through the system in order to determine power generation within the thermoelectric. For a single pipe in the water heater system, 126 W of electrical power can be generated, and a typical system could yield 370 W. Realization of effective cogeneration systems hinges on investigating the impact of thermoelectric material parameters coupled with system parameters, so the impact of varying flow rate, convection coefficient, TEM thermal conductivity, Seebeck coefficient, and thermal interface materials are investigated. While varying parameters can improve thermoelectric output by over 50%, thermal interface materials can severely limit cogeneration system power output.
APA, Harvard, Vancouver, ISO, and other styles
3

Headings, Leon M., and Gregory N. Washington. "Building-Integrated Thermoelectrics as Active Insulators and Heat Pumps." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-43122.

Full text
Abstract:
Heating, ventilation, and air conditioning (HVAC) accounts for 40% to 60% of residential and commercial building energy consumption, making this a critical component of energy usage in the face of rising energy prices. Building-integrated thermoelectrics (BITE) may provide a step towards adaptive homes and buildings that offer significantly improved efficiency and comfort. Integrating thermoelectrics into thermal mass and resistance (insulation) wall systems presents a fundamental shift from optimizing heating and cooling source efficiencies and minimizing building-envelope energy losses to a new regime where an active envelope is optimized to most efficiently eliminate those losses. This approach not only offers improved energy efficiency, but improves the uniformity and consistency of temperature, eliminates the need for all other heating and air conditioning equipment including thermal energy transport, and provides the platform for adaptive zone heating and cooling which can provide additional efficiency gains. Because of the solid-state nature of thermoelectrics, such a system would be reliable, low maintenance, silent, and clean. This paper examines various wall configurations and sizing for thermal mass, resistance, and thermoelectric components. A dynamic simulation is used to demonstrate how proper system design of thermal resistance and capacitance elements with existing thermoelectric materials may improve the typically low coefficient of performance of thermoelectric devices, making it competitive with traditional building systems. The results for different wall configurations are shown as a basis for future configuration design and optimization.
APA, Harvard, Vancouver, ISO, and other styles
4

LaManna, Jacob, David Ortiz, Mark Livelli, Samuel Haas, Chinedu Chikwem, Brittany Ray, and Robert Stevens. "Feasibility of Thermoelectric Waste Heat Recovery in Large Scale Systems." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68676.

Full text
Abstract:
With the growing emphasis on energy efficiency because of environmental, political, and economic reasons and the fact there has been significant advances in thermoelectric materials, there is a renewed interest in using thermoelectrics for waste heat recovery. A mathematical model of a thermoelectric power system is developed from a heat transfer analysis of a waste heat recovery system. The model is validated by altering design parameters of a small prototype thermoelectric system that converts heat into electricity. A heated air stream is produced using an exhaust simulation test stand and provides the waste heat source for the prototype. The prototype is designed to be able to change several system parameters such as different heat sinks, thermoelectric module counts, and module configurations to better validate the developed model. The model does predict the electrical performance with typical accuracy of 30% error from the prototype over a range of configurations and operating conditions. A feasibility study using the validated model was used to determine under what conditions this technology will become economically viable, such as remote power generation with 20 year payback.
APA, Harvard, Vancouver, ISO, and other styles
5

Ionescu, Viorel, and Anisoara Arleziana Neagu. "Performance Analysis of Thermoelectric Cooler — Thermoelectric Generator System for Heat Recovery Applications." In 2022 IEEE 28th International Symposium for Design and Technology in Electronic Packaging (SIITME). IEEE, 2022. http://dx.doi.org/10.1109/siitme56728.2022.9987959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

McAlonan, M., and G. W. Budesheim. "Burner System for a Thermoelectric Generator." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ard, Kevin E., David A. King, Harley Leigh, and Juli A. Satoh. "Radioisotope thermoelectric generator transport trailer system." In Proceedings of the 12th symposium on space nuclear power and propulsion: Conference on alternative power from space; Conference on accelerator-driven transmutation technologies and applications. AIP, 1995. http://dx.doi.org/10.1063/1.47231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cernaianu, Mihail Octavian, and Aurel Gontean. "Thermoelectric modules thermal conductance measurement system." In 2012 10th International Symposium on Electronics and Telecommunications (ISETC). IEEE, 2012. http://dx.doi.org/10.1109/isetc.2012.6408046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sfirat, Alexandru, and Aurel Gontean. "Thermoelectric harvesting system control algorithms analysis." In 2016 12th IEEE International Symposium on Electronics and Telecommunications (ISETC). IEEE, 2016. http://dx.doi.org/10.1109/isetc.2016.7781084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kulkarni, Vikas V., and Vandana A. Kulkarni. "Performance Optimization of Photovoltaic Systems using Thermoelectric Cooling System." In 2022 International Conference on Futuristic Technologies (INCOFT). IEEE, 2022. http://dx.doi.org/10.1109/incoft55651.2022.10094413.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thermoelectric System"

1

King, D. A. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/6745005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

King, D. A. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/10113365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hendricks, Terry J., Tim Hogan, Eldon D. Case, and Charles J. Cauchy. Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1018164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tritt, Terry M. Search for Lower Temperature(T-100K) Thermoelectric Materials in the Pentatelluride System and other Low Dimensional Systems. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada413956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ferrell, P. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/341302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Satoh, J. A. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting. Office of Scientific and Technical Information (OSTI), November 1994. http://dx.doi.org/10.2172/10104946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Farmer, J. White Paper for U.S. Army Rapid Equipping Force: Waste Heat Recovery with Thermoelectric and Lithium-Ion Hybrid Power System. Office of Scientific and Technical Information (OSTI), November 2007. http://dx.doi.org/10.2172/926004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

John Rodgers and James Castle. An Innovative System for the Efficient and Effective Treatment of Non-Traditional Waters for Reuse in Thermoelectric Power Generation. Office of Scientific and Technical Information (OSTI), August 2008. http://dx.doi.org/10.2172/948841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cook, Bruce. A comparison of thermoelectric phenomena in diverse alloy systems. Office of Scientific and Technical Information (OSTI), January 1999. http://dx.doi.org/10.2172/754783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chabinyc, Michael, and Craig Hawker. Molecular Design of Doped Polymers for Thermoelectric Systems-Final Technical Report. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1095902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography