Journal articles on the topic 'Thermochemistry'

To see the other types of publications on this topic, follow the link: Thermochemistry.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Thermochemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rustembekov, Kenzhebek, Lazareva, Stoev, Fomin, and Kaykenov. "Thermochemistry of new holmium-calciumtellurite." Bulletin of the Karaganda University. "Chemistry" series 87, no. 3 (September 29, 2017): 108–13. http://dx.doi.org/10.31489/2017ch3/108-113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wood, J. V. "Materials Thermochemistry." Surface Engineering 9, no. 4 (January 1993): 277–78. http://dx.doi.org/10.1179/sur.1993.9.4.277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Simmie, John M., Wayne K. Metcalfe, and Henry J. Curran. "Ketene Thermochemistry." ChemPhysChem 9, no. 5 (March 10, 2008): 700–702. http://dx.doi.org/10.1002/cphc.200800003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alex Scott. "Replacing thermochemistry." C&EN Global Enterprise 101, no. 11 (April 3, 2023): 16–17. http://dx.doi.org/10.1021/cen-10111-feature1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Purwandari, Intan Diah, Muntholib Muntholib, and Anugrah Ricky Wijaya. "Improving Student's Critical Thinking Ability Using Argument-Drivent Inquiry Approach in Thermochemistry." JCER (Journal of Chemistry Education Research) 7, no. 2 (December 18, 2023): 243–51. http://dx.doi.org/10.26740/jcer.v7n2.p243-251.

Full text
Abstract:
This study aimed to investigate the impact of the Argument-Driven Inquiry instruction (ADI-Based Instruction) in thermochemistry on students' critical thinking skills. This study applied the one group pretest-posttest type of pre-experiment design. The subjects of this study were 71 eleven grade students of Public Senior High School of Ambulu Jember on academic year of 2022/2023. The instrument, namely the critical thinking ability test on thermochemistry, was developed by the researchers based on Ennis' critical thinking ability framework. This test consists of 10 valid items with a Cronbach's Alpha reliability of 0.782. The results showed that thermochemistry instruction carried out using ADI instructional model improve students' critical thinking skills with an N-gain of 0.731 (high category) and Cohen's d-effect size of 1.023 (large effect category) with an intermediate reliability of 0.619 (good categories). These results indicate that ADI-based instruction on thermochemistry can improve students' critical thinking skills. The implication of this study is that ADI-based instruction can be applied to other subjects who have the same characteristics of thermochemistry, namely having contextual, factual, conceptual, procedural, and metacognitive knowledge.
APA, Harvard, Vancouver, ISO, and other styles
6

Agustina, Rizza R. T., Afadil Afadil, Sitti Rahmawati, and Vanny M. A. Tiwow. "Learning Difficulties and Students' Ability Level During Pandemic Covid-19 on The Subject of Thermochemistry." Jurnal Akademika Kimia 12, no. 1 (February 28, 2023): 26–31. http://dx.doi.org/10.22487/j24775185.2023.v12.i1.pp26-31.

Full text
Abstract:
This study aims to identify learning difficulties learning experienced by students on the subject thermochemistry in class XI IPA SMA Negeri 8 Palu during the Covid-19 pandemic for the 2021 / 2022 school year. The instruments used in this study are thermochemistry tests, questionnaires, and interviews. The result showed students’ difficulties in the subject thermochemistry in class XI IPA was 60 %, the highest difficulty of students is found in the thermochemistry test of calculating the heat of the type of compound, calculating enthalpy changes, and formulating steps and hypotheses of an experiment. The difficulty is indicated by the low level of student comprehension of 54 %, medium 43 %, and high 3 % with an average of 30%. Furthermore, the difficulty of students in participating in chemistry learning during the Covid-19 pandemic is technical difficulties with a percentage of 65.92 %, difficulties in implementing learning with a percentage 0f 65.44 %, and external difficulties (environment and parents) with a percentage of 52.92 %. based on these results, the learning difficulties experienced by students during chemistry learning thermochemistry subjects during the Covid-19 pandemic include students often being constrained by signals and quotas to access materials on the internet and do not have student handbooks to study at home, difficulty understanding chemistry concepts because teacher explanations are elusive, students are not active in participating in learning because chemistry learning during the pandemic is not interesting, can’t afford chemistry books and quotas also parents don’t provide motivation and students are often lazy to do assignments because no one helps with doing. The result of this study indicates that the level of students' difficulties learning about thermochemistry is a quite high category with a low level of student ability and students agree that it is difficult to study chemistry during the pandemic Covid-19.
APA, Harvard, Vancouver, ISO, and other styles
7

Borzone, G., R. Raggio, and R. Ferro. "Comments on intermetallic thermochemistry." Journal of Mining and Metallurgy, Section B: Metallurgy 38, no. 3-4 (2002): 249–72. http://dx.doi.org/10.2298/jmmb0204249b.

Full text
Abstract:
The need of a concerted multi-disciplinary approach in the investigation of intermetallic systems and the role of thermochemistry are underlined. The activity carried out in the Author?s laboratory in the alloy thermodynamics is summarized. The different instruments (calorimeters) built in laboratory are briefly presented and their performance discussed. The results obtained in the measurement of the enthalpy of formation mainly of several rare earth alloys are described. The characteristics of the Eu and Yb thermochemistry and crystallochemistry are finally underlined.
APA, Harvard, Vancouver, ISO, and other styles
8

Navrotsky, A. "Thermochemistry of Nanomaterials." Reviews in Mineralogy and Geochemistry 44, no. 1 (January 1, 2001): 73–103. http://dx.doi.org/10.2138/rmg.2001.44.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jones, M. N. "3 Biochemical thermochemistry." Annual Reports Section "C" (Physical Chemistry) 96, no. 1 (2000): 55–94. http://dx.doi.org/10.1039/b000719f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jones, M. N., and G. Pilcher. "Chapter 4. Thermochemistry." Annual Reports Section "C" (Physical Chemistry) 84 (1987): 65. http://dx.doi.org/10.1039/pc9878400065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Jones, M. N., and G. Pilcher. "Chapter 8. Thermochemistry." Annual Reports Section "C" (Physical Chemistry) 89 (1992): 235. http://dx.doi.org/10.1039/pc9928900235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jones, M. N., and G. Pilcher. "Chapter 7. Thermochemistry." Annual Reports Section "C" (Physical Chemistry) 92 (1995): 165. http://dx.doi.org/10.1039/pc9959200165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Takhistov, V. V., D. A. Ponomarev, and A. V. Golovin. "Thermochemistry of Ketene." Russian Journal of General Chemistry 73, no. 11 (November 2003): 1774–76. http://dx.doi.org/10.1023/b:rugc.0000018654.83641.a6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Torchia, John W., Kelly O. Sullivan, and Lee S. Sunderlin. "Thermochemistry of N3O2-." Journal of Physical Chemistry A 103, no. 50 (December 1999): 11109–14. http://dx.doi.org/10.1021/jp992289g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Sazanov, Yu N. "Thermochemistry of polymers." Thermochimica Acta 110 (February 1987): 477–94. http://dx.doi.org/10.1016/0040-6031(87)88261-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Shuguang, Cai, Li Jun, and Li Bing. "Thermochemistry of teepleite." Thermochimica Acta 376, no. 2 (September 2001): 169–74. http://dx.doi.org/10.1016/s0040-6031(01)00562-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ruoyu, Chen, Li Jun, Xia Shuping, and Gao Shiyang. "Thermochemistry of ulexite." Thermochimica Acta 306, no. 1-2 (November 1997): 1–5. http://dx.doi.org/10.1016/s0040-6031(97)00269-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Sazanov, Yu N., and A. V. Gribanov. "Thermochemistry of lignin." Russian Journal of Applied Chemistry 83, no. 2 (February 2010): 175–94. http://dx.doi.org/10.1134/s1070427210020011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Picciochi, Ricardo, Hermínio P. Diogo, and Manuel E. Minas da Piedade. "Thermochemistry of paracetamol." Journal of Thermal Analysis and Calorimetry 100, no. 2 (January 20, 2010): 391–401. http://dx.doi.org/10.1007/s10973-009-0634-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Rojas-Aguilar, Aarón, Honorio Flores-Lara, Melchor Martinez-Herrera, and Francisco Ginez-Carbajal. "Thermochemistry of benzoquinones." Journal of Chemical Thermodynamics 36, no. 6 (June 2004): 453–63. http://dx.doi.org/10.1016/j.jct.2004.03.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Boerio-Goates, Juliana A., Sarah D. Hopkins, Ricardo A. R. Monteiro, Maria D. M. C. Ribeiro da Silva, Manuel A. V. Ribeiro da Silva, and Robert N. Goldberg. "Thermochemistry of inosine." Journal of Chemical Thermodynamics 37, no. 11 (November 2005): 1239–49. http://dx.doi.org/10.1016/j.jct.2005.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yongzhong, J., L. Jun, G. Shiyang, and X. Shuping. "Thermochemistry of aksaite." Journal of Chemical Thermodynamics 31, no. 12 (December 1999): 1605–8. http://dx.doi.org/10.1006/jcht.1999.0563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Boerio-Goates,, Juliana, Michael R. Francis,, Robert N. Goldberg,, Manuel A. V. Ribeiro da Silva,, Maria D. M. C. Ribeiro da Silva,, and Yadu B. Tewari. "Thermochemistry of adenosine." Journal of Chemical Thermodynamics 33, no. 8 (August 2001): 929–47. http://dx.doi.org/10.1006/jcht.2001.0820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Becerra, Rosa, and Robin Walsh. "ChemInform Abstract: Thermochemistry." ChemInform 30, no. 14 (June 16, 2010): no. http://dx.doi.org/10.1002/chin.199914313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ali, Mohamad Akbar, and Mohammad A. Alam. "Theoretical studies on the structure and thermochemistry of cyclicparaphenylenediazenes." RSC Advances 7, no. 64 (2017): 40189–99. http://dx.doi.org/10.1039/c7ra06409h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jawad, Huda M. "Quantum Mechanical Investigations into Thermochemistry Properties and Electronic, Structural of Nanocrystals." Al-Mustansiriyah Journal of Science 29, no. 3 (March 10, 2019): 133. http://dx.doi.org/10.23851/mjs.v29i3.632.

Full text
Abstract:
This paper presents quantum mechanical investigations that is into electronic and thermochemistry properties of Gallium phosphide. It also investigates diamondoids and nanocrystals using the density functional theory. This is done at the generalized gradient approximation of Perdew et al basis set. This has been used to create Gaussian 09 program auxiliary by Gaussian view. In order to full investigate the ionization potential, affinity, valance bond, conduction bond, zero point energy and thermochemistry properties. The result GaP diamondoids. Electron affinity and conduction band, decreases as a function of the total number of Ga and P atoms in most of the investigated range. Ionization energies zero point and valance bands increased with the number of Ga and P atoms but there are fluctuations in tetramantane and hexamantane In fact, since the present diamondoids are built from nearly cubic cages. Thermochemistry entails calculation of frequency which also includes thermochemical analysis of actual system comprising of thermal energy correction, heat capacity and entropy.
APA, Harvard, Vancouver, ISO, and other styles
27

Becerra, Rosa, and Robin Walsh. "Thermochemistry of germanium and organogermanium compounds." Physical Chemistry Chemical Physics 21, no. 3 (2019): 988–1008. http://dx.doi.org/10.1039/c8cp06208k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Abil’daeva, A. Z., Sh B. Kasenova, B. K. Kasenov, Zh I. Sagintaeva, E. E. Kuanyshbekov, B. B. Rakhimova, V. V. Polyakov, and S. M. Adekenov. "Thermochemistry of myricetin flavonoid." Russian Journal of Physical Chemistry A 88, no. 8 (July 18, 2014): 1277–80. http://dx.doi.org/10.1134/s0036024414080020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cioslowski, Jerzy, Guanghua Liu, and Pawel Piskorz. "Computationally Inexpensive Theoretical Thermochemistry." Journal of Physical Chemistry A 102, no. 48 (November 1998): 9890–900. http://dx.doi.org/10.1021/jp982024m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Surov, A. O., and O. V. Surov. "Thermochemistry of fenamates vaporization." Russian Journal of General Chemistry 78, no. 8 (August 2008): 1481–87. http://dx.doi.org/10.1134/s1070363208080033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Nikitin, M. I., N. S. Chilingarov, and A. S. Alikhanyan. "Thermochemistry of Cobalt Trifluoride." Russian Journal of Inorganic Chemistry 64, no. 3 (March 2019): 377–82. http://dx.doi.org/10.1134/s0036023619030136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yu, C. L., and S. H. Bauer. "Thermochemistry of the Boranes." Journal of Physical and Chemical Reference Data 27, no. 4 (July 1998): 807–35. http://dx.doi.org/10.1063/1.556022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bray, K. N. C., Michel Champion, and Paul Libby. "Bray-Moss Thermochemistry Revisited." Combustion Science and Technology 174, no. 7 (June 2002): 167–74. http://dx.doi.org/10.1080/713713053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Matskevich, Nata I., Thomas Wolf, and Yurii I. Pochivalov. "Thermochemistry of Gd2BaCuO5and LuBa2Cu3Ox." Inorganic Chemistry 47, no. 7 (April 2008): 2581–84. http://dx.doi.org/10.1021/ic701875h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Roux, Maria Victoria, Manuel Temprado, Pilar Jiménez, Pérez-Parajón, and Rafael Notario. "Thermochemistry of Furancarboxylic Acids." Journal of Physical Chemistry A 107, no. 51 (December 2003): 11460–67. http://dx.doi.org/10.1021/jp030772s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Brouwer, Henry. "Small-scale thermochemistry experiment." Journal of Chemical Education 68, no. 7 (July 1991): A178. http://dx.doi.org/10.1021/ed068pa178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sudlow, Kevin, and Alfred A. Woolf. "Thermochemistry of disulphur oxyfluorides." Journal of Fluorine Chemistry 64, no. 3 (October 1993): 269–77. http://dx.doi.org/10.1016/s0022-1139(00)80560-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Brutti, S., G. Balducci, A. Ciccioli, G. Gigli, P. Manfrinetti, and A. Palenzona. "Thermochemistry of ytterbium silicides." Intermetallics 11, no. 11-12 (2003): 1153–59. http://dx.doi.org/10.1016/s0966-9795(03)00152-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Parodi, N., G. Borzone, G. Balducci, S. Brutti, A. Ciccioli, and G. Gigli. "Thermochemistry of holmium bismuthides." Intermetallics 11, no. 11-12 (2003): 1175–81. http://dx.doi.org/10.1016/s0966-9795(03)00154-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hawari, J. A., D. Griller, and F. P. Lossing. "Thermochemistry of perthiyl radicals." Journal of the American Chemical Society 108, no. 12 (June 1986): 3273–75. http://dx.doi.org/10.1021/ja00272a021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, Zhi-Hong, and Wen-Juan Zhang. "Thermochemistry of triimidazolium nonaborate." Thermochimica Acta 436, no. 1-2 (October 2005): 156–58. http://dx.doi.org/10.1016/j.tca.2005.07.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Liu, Zhi-Hong, Wen-Juan Zhang, and Jian-Jian Zhang. "Thermochemistry of hexamethylenetetramine pentaborate." Thermochimica Acta 439, no. 1-2 (December 2005): 151–53. http://dx.doi.org/10.1016/j.tca.2005.08.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Vitorino, Joana, Filipe Agapito, Carlos E. S. Bernardes, and Manuel E. Minas da Piedade. "Thermochemistry of 1-alkylimidazoles." Journal of Chemical Thermodynamics 80 (January 2015): 59–64. http://dx.doi.org/10.1016/j.jct.2014.08.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kudin, Lev S., Anatoly M. Dunaev, Vladimir B. Motalov, Luigi Cavallo, and Yury Minenkov. "Thermochemistry of 5,10,15,20-tetraphenylporphyrin." Journal of Chemical Thermodynamics 151 (December 2020): 106244. http://dx.doi.org/10.1016/j.jct.2020.106244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ovchinnikov, V. V., L. R. Khazieva, L. I. Lapteva, and A. I. Konovalov. "Thermochemistry of heteroatomic compounds." Russian Chemical Bulletin 49, no. 1 (January 1990): 33–38. http://dx.doi.org/10.1007/bf02499061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fitzner, K., and O. J. Kleppa. "Thermochemistry of binary and." Metallurgical Transactions A 24, no. 8 (August 1993): 1827–34. http://dx.doi.org/10.1007/bf02657857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Piro, M. H. A., S. Simunovic, T. M. Besmann, B. J. Lewis, and W. T. Thompson. "The thermochemistry library Thermochimica." Computational Materials Science 67 (February 2013): 266–72. http://dx.doi.org/10.1016/j.commatsci.2012.09.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ovchinnikov, V. V., T. B. Makeeva, L. I. Lapteva, V. A. Valiullina, L. M. Pilishkina, and A. I. Konovalov. "Thermochemistry of heteroatomic compounds." Journal of Thermal Analysis 45, no. 4 (October 1995): 735–39. http://dx.doi.org/10.1007/bf02548889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kubaschewski, O. "Experimental thermochemistry of alloys." Thermochimica Acta 129, no. 1 (June 1988): 11–27. http://dx.doi.org/10.1016/0040-6031(88)87193-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Guo-Sheng, Huang, and Xu Zhi-Hong. "Thermochemistry of inorganic compounds." Thermochimica Acta 136 (December 1988): 133–37. http://dx.doi.org/10.1016/0040-6031(88)87433-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography