To see the other types of publications on this topic, follow the link: Thermochemistry - Chemical Hydrogen Storage.

Dissertations / Theses on the topic 'Thermochemistry - Chemical Hydrogen Storage'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Thermochemistry - Chemical Hydrogen Storage.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

McCaldin, Simon Roger. "Hydrogen storage in graphitic nanofibres." Thesis, University of Nottingham, 2007. http://eprints.nottingham.ac.uk/11568/.

Full text
Abstract:
There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) of hydrogen storage in GNFs and modifying the material structure to maximise the amount of hydrogen that can be reversibly stored in the material. GNFs were synthesised using chemical vapour deposition (CVD) with careful control of temperature and gas mixture to create predominately herringbone GNFs from both Iron and Nickel catalysts. Within this, it was found that once GNF growth has been initiated under certain conditions, alteration of those conditions does not alter the fundamental structure of the GNF synthesised, but can increase the carbon yield, although reorientation of the surfaces was observed. The GNFs synthesised were subsequently chemically (acid washed and CO2 oxidised) and thermally treated to remove the residual CVD catalyst and alter their surface structures in an attempt to allow dihydrogen molecules to penetrate and adsorb onto the internal graphene layers. However, it was found that after initial growth, the surface layers of the GNFs became re-orientated parallel to the fibre axis - representing a large energy barrier to adsorption onto the surfaces of the internal graphene layers. By careful use and control of conditions, this re-orientated layer can be removed to yield GNFs with cleaned surfaces. Once GNFs with cleaned edges had been synthesised, these were modified to remove oxygen species from their surfaces. To further develop the understanding of the potential hydrogen uptake mechanisms, Pd particles were introduced to the GNF surfaces to act as catalyst gateways. By carefully controlling the variables of the incipient wetness process, a variety of morphologies and structures were synthesised. This allowed the precise determination of the hydrogen uptake mechanism occurring in samples by Kubas binding, Dissociation or Spill-over mechanisms. All of the GNFs created have had their hydrogen uptake capacities precisely determined using a Sieverts apparatus designed and constructed by the author. None of the samples were found to adsorb any significant levels of hydrogen (>0.1 wt%), regardless of the treatments applied to them – this result has been discussed in light of the existing claims for high hydrogen uptake in GNFs made within the literature. The conclusion of this thesis is that no hydrogen uptake capacity could be observed in the GNFs synthesised during the project, however, the development of the uptake mechanisms and GNF structures has led to suggested modifications that may yield GNFs suitable for storing large quantities of hydrogen (i.e. in excess of US-DOE targets).
APA, Harvard, Vancouver, ISO, and other styles
2

BARLOCCO, ILARIA. "HYDROGEN PRODUCTION FROM CHEMICAL HYDROGEN STORAGE MATERIALS USING CARBON-BASED CATALYSTS." Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/901855.

Full text
Abstract:
The aim of this thesis is to design new catalytic systems in order to improve the performances of the existing catalysts to convert formic acid (FA) and hydrazine (N2H4 · H2O) into ultra-pure hydrogen in order to be effective in the future hydrogen economy. Different are the issues to solve in order to efficiently employ these chemicals in our energy transition. In particular, efficient carbon-based heterogeneous systems can effectively make enormous difference in the production of hydrogen from liquid carriers. Indeed, metal-based catalysts and especially Pd-based ones offer enhanced activity also at room temperature, but selectivity and stability need to be improved to be industrially applicable. In addition, carbon materials have the advantage of being easily tuned through variation in their structure, for example, changing the surface area and porosity and adding functional groups or generating topological defects. Moreover, their stability in liquid phase reactions makes them auspicious candidates in catalytic processes. For these reasons, the first part of this thesis is dedicated to the design of new catalytic materials with the aim to improve the catalytic behaviour compared to existing Pd-based catalysts for the selective decomposition of FA at mild reaction conditions. In particular, the effect of the metal-support interaction and the geometrical and electronic effect in alloyed catalysts play a fundamental role to enhance the catalytic performance (Chapter 3-5). Chapter 3 is devoted to study the metal-support interaction by doping with O and P functionalities the carbonaceous support. In order to establish the presence of functional groups in the support and their effect on Pd nanoparticles, the obtained samples were then, characterised by Transmission Electron Microscopy (HR-TEM, STEM-HAADF and STEM-EDS) and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) simulations provided further insights in the interaction of Pd15 cluster with different support surfaces, i.e. pristine graphene (PG), carboxyl doped graphene (G_COOH), hydroxyl doped graphene (G_OH), carbonyl doped graphene (G_CO) and phosphate doped graphene (G_PO3H). The effect of the addition of a second metal to Pd is considered (Rh in Chapter 4 and Au in Chapter 5). In particular, in Chapter 4 the synthesis of PdRh nanoparticles with different Pd:Rh molar ratios was studied. The obtained catalysts were characterised by Transmission Electron Microscopy (TEM) and Inductively coupled plasma optical emission spectroscopy (ICP-OES). For bimetallic catalysts, EDX-STEM analysis of individual nanoparticles was employed to investigate the presence of random-alloyed nanoparticles. Finally, PdRh catalysts were tested in the liquid-phase hydrogenation of muconic acid using formic acid as hydrogen donor. Chapter 5 combines DFT and experimental data to disclose the role of gold in enhancing activity, selectivity and stability of palladium catalyst during the formic acid decomposition. PdAu bimetallic nanoparticles with different Pd:Au molar ratio were synthesised and the obtained catalysts were characterised by using Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectroscopy (ICP - OES). Finally, Density functional theory (DFT) calculations on Pd15, Au15 and Pd9Au6 clusters supported on a carbon sheet were then simulated to provide atomic level understanding to the beneficial effect of gold observed in the experimental results. In addition, in order to decrease the cost and increase the environmental benignity of the catalyst, the application of metal-free carbon materials in the formic acid dehydrogenation is investigated (Chapter 6). Indeed, Commercial graphite (GP), graphite oxide (GO), and two carbon nanofibers (CNF-PR24-PS and CNF-PR24-LHT) were used as catalysts for the metal-free dehydrogenation reaction of formic acid (FA) in liquid phase. Raman and XPS spectroscopies were employed to characterize the materials and Density Functional Theory (DFT) calculations were utilized to study the role of defects in this reaction. In the final results chapter (Chapter 7), the above reported metal-free carbocatalysts are employed for the hydrazine hydrate dehydrogenation reaction, in order to produce H2 without the presence of CO2. A combination of DFT and experimental studies were used to unravelling the hydrazine hydrate decomposition reaction on metal-free catalysts. The study focuses on commercial graphite and two different carbon nanofibers, Pyrolytically Stripped (CNF-PS) and High Heat-Treated (CNF-HHT), respectively treated at 700 and 3000 °C to increase their intrinsic defects. Finally, Chapter 8 presents a summary of the main findings of this work and different possibilities to continue this research study.
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Zhe. "Novel solid state materials for chemical hydrogen storage." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/8324/.

Full text
Abstract:
This work investigates the hydrogen storage potential of a variety of solid state materials. The work has showed their synthesis, structure, morphology and hydrogen storage properties comprehensively. An MgH2 nanocomposite composed of 80% tetragonal α-MgH2 and 18% orthorhombic γ-MgH2 has been prepared for the first time without recourse to high pressure or temperature. By optimizing the ball milling conditions, addition of LiCl and use of THF solvent, the α-/γ-MgH2 nanocomposite so-produced is capable of releasing 6.6 wt% H2 with rapid kinetics, from ca. 260 °C without the use of a catalyst. Moreover, Ti-catalyzed MgH2 offering a capacity of 5.5 wt. % of H2 and superior hydrogen desorption kinetics has been successfully prepared by a novel wet chemical route. The MgH2 material, containing approximately 2~3 wt. % of Ti-additive exhibits hydrogen desorption at a temperature approximately 220 °C lower than pristine MgH2 where pure hydrogen evolution starts at ca. 420 °C via a synergetic effect of mechanochemical treatment and additives. Neutron scattering was employed to study the structure of activated MgD2 and for the first time local disorder in activated MgD2 has been verified using total neutron scattering (PDF fitting). Small angle neutron scattering (SANS) analysis indicates a surface fractal geometry, i.e high degree of surface roughness for activated MgD2 particles, in accordance with SEM analysis suggesting the morphological alteration introduced by mechanochemical treatment. A novel PANI-LiBH4 composite has been successfully fabricated through simple mixing. It is found that PANI-LiBH4 composites dehydrogenates from ca. 200 °C with over 10 wt.% H2 released by 400 °C, significantly outperforming pristine LiBH4. Importantly, rehydrogenation can be achieved under conditions unprecedented for LiBH4 in isolation (200 °C; 100 bar H2 or 330 °C, 20 bar H2 vs. 600 °C, 350 bar H2). Moreover, the PANI-LiBH4 composite can be readily cycled and a new endothermic uptake event at 140 °C, a remarkably low temperature for LiBH4-based systems, suggests that the polymer thermodynamically alters the hydrogenation mechanism. PANI-NaBH4 and PANI-LiH also exhibit vastly improved dehydrogenation properties compared with the respective hydride materials alone. The structures of some first row transition metal halide hydrazinates, TMX2·2N2H4 (TM= Mn, Fe, Co, Ni, Cu and Zn; X= Cl and Br), have been revisited and detailed structural information of three typical complexes, MnCl2·2N2H4, ZnCl2·2N2H4 and MnBr2·2N2H4 have been accurately determined by using a combination techniques of PXD, FTIR and PND. It is also found that TMX2·2N2H4 decomposes at relatively high temperature ( > 250 °C) with massive weight loss due to the dissociation and decomposition of the N2H4 ligand. However the major gas evolution has been determined to be N2 and NH3 with only a minor amount of H2 (and undesired impurity N2H2) released, which makes TMX2·2N2H4 unsuitable for hydrogen storage. Our strategy to combine TMCl2·2N2H4 with LiBH4 to fabricate novel transition metal borohydride hydrazinates has been proven to be successful. Two novel complexes, Mn(BH4)2·2N2H4 and Zn(BH4)2·2N2H4 have been successfully prepared via a facile mechanochemical route with careful manipulation over the milling parameters. The crystal structure of Mn(BH4)2·2N2H4 has been determined using SR-PXD to be isostructural with its parent material MnCl2·2N2H4. The phase evolution behaviour of Zn(BH4)2·2N2H4 has been probed with evidence of various intermediate phases during preparation when various milling conditions were employed. The dehydrogenation properties of both complexes have been studied using DTA-TGA coupled with MS. Mn(BH4)2·2N2H4 and Zn(BH4)2·2N2H4 are very promising materials for off-board hydrogen storage due to their high hydrogen content and useful dehydrogenation properties.
APA, Harvard, Vancouver, ISO, and other styles
4

Davies, Rosalind. "Lithium amide halides for hydrogen storage." Thesis, University of Birmingham, 2016. http://etheses.bham.ac.uk//id/eprint/6680/.

Full text
Abstract:
The lithium amide halides are a promising series of materials for hydrogen storage as they release hydrogen at a lower temperature than lithium amide on reaction with lithium hydride. The amide chloride system has been studied in detail, and two phases with reduced chloride content, Li\(_7\)(NH\(_2\))\(_6\)Cl and Li\(_6\)Mg\(_1\)\(_/\)\(_2\)(NH\(_2\))\(_6\)Cl, have been identified by powder X-ray diffraction and Raman spectroscopy. Both were seen to release hydrogen on reaction with LiH at a lower temperature than lithium amide, and ammonia release was suppressed. Rehydrogenation of the imide products of reaction of both new phases occurred more readily under the conditions used than for the known phase Li\(_4\)(NH\(_2\))\(_3\)Cl. The hydrogen cycling properties of Li\(_7\)(NH\(_2\))\(_6\)Cl were investigated alongside Li\(_7\)(NH\(_2\))\(_6\)Br and Li\(_3\)(NH\(_2\))\(_2\)I. The systems successfully cycled hydrogen, and the reversible structural changes that happened during cycling were studied. All three materials, however, showed a capacity loss on cycling under dynamic vacuum. The conductivity of the amide and imide halides was studied using A.C. impedance and found to be higher than for LiNH\(_2\) and Li\(_2\)NH, respectively. This supports kinetic analyses that indicate ion diffusion is not rate-limiting for the hydrogen cycling of these systems.
APA, Harvard, Vancouver, ISO, and other styles
5

Price, Tobias E. C. "Multi-component complex hydrides for hydrogen storage." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/11988/.

Full text
Abstract:
Hydrogen as an energy vector offers great potential for mobile energy generation through fuel cell technology, however this depends on safe, mobile and high density storage of hydrogen. The destabilised multi-component complex hydride system LiBH4 : MgH2 was investigated in order to characterise the destabilisation reactions which enable reduction of operating temperatures for this high capacity system (ca. 9.8 wt.%). In-situ neutron diffraction showed that regardless of stoichiometry similar reaction paths were followed forming LiH and MgB¬2¬ when decomposed under H¬2 and Mg-Li alloys (Mg0.816Li0.184 and Mg0.70Li0.30) when under dynamic vacuum. Hydrogen isotherms of the 0.3LiBH4 : MgH¬2¬ showed a dual plateau behaviour with the lower plateau due to the destabilised LiBH4 reaction. Thermodynamic data calculated from the isotherm results showed a significant reduction in the T(1bar) for LiBH4 to 322 C (cf. 459 C for LiBH4(l)). Cycling behaviour of 0.3LiBH4 : MgH2 system decomposed under both reaction environments showed very fast kinetics on deuteriding at 400C and 100 bar D2, reaching 90 % conversion within 20 minutes. In contrast 2LiBH4 : MgH2 samples had kinetics an order of magnitude slower and after 4 hours conversions <50 %. These results demonstrate the strong influence of stoichiometry in the cycling kinetics compared to decomposition conditions. Investigation of catalysts found dispersion of metal hydrides through long ball-milling times, or dispersion through reaction with metal halide additions provided the greatest degree of kinetic advantage, with pre-milled NbH providing the best kinetic improvement without reducing capacity due to Li-halide formation. Finally, additions of LiAlH4 to the system formed an Al dispersion through the sample during decomposition, which acted both as a catalyst and destabilising agent on the MgH2 component, forming Mg-Al-Li alloys. Decomposition under H2 also showed a destabilisation effect for the LiBH4 component.
APA, Harvard, Vancouver, ISO, and other styles
6

Haworth, Naomi Louise. "Quantum Chemical Studies of Thermochemistry, Kinetics and Molecular Structure." Thesis, The University of Sydney, 2003. http://hdl.handle.net/2123/509.

Full text
Abstract:
This thesis is concerned with a range of chemical problems which are amenable to theoretical investigation via the application of current methods of computational quantum chemistry. These problems include the calculation of accurate thermochemical data, the prediction of reaction kinetics, the study of molecular potential energy surfaces, and the investigation of molecular structures and binding. The heats of formation (from both atomisation energies and isodesmic schemes) of a set of approximately 120 C1 and C2 fluorocarbons and oxidised fluorocarbons (along with C3F6 and CF3CHFCF2) were calculated with the Gaussian-3 (G3) method (along with several approximations thereto). These molecules are of importance in the flame chemistry of 2-H-heptafluoropropane, which has been proposed as a potential fire retardant with which to replace chloro- and bromofluorocarbons (CFC�s and BFC�s). The calculation of the data reported here was carried out in parallel with the modelling studies of Hynes et al.1-3 of shock tube experiments on CF3CHFCF3 and on C3F6 with either hydrogen or oxygen atoms. G3 calculations were also employed in conjunction with the experimental work of Owens et al.4 to describe the pyrolysis of CFClBr2 (giving CFCl) at a radiation wavelength of 265 nm. The theoretical prediction of the dissociation energy of the two C-Br bonds was found to be consistent with the energy at which carbene production was first observed, thus supporting the hypothesis that the pyrolysis releases two bromine radicals (rather than a Br2 molecule). On the basis of this interpretation of the experiments, the heat of formation of CFClBr2 is predicted to be 184 � 5 kJ mol-1, in good agreement with the G3 value of 188 � 5 kJ mol-1. Accurate thermochemical data was computed for 18 small phosphorus containing molecules (P2, P4, PH, PH2, PH3, P2H2, P2H4, PO, PO2, PO3, P2O, P2O2, HPO, HPOH, H2POH, H3PO, HOPO and HOPO2), most of which are important in the reaction model introduced by Twarowski5 for the combustion of H2 and O2 in the presence of phosphine. Twarowski reported that the H + OH recombination reaction is catalysed by the combustion products of PH3 and proposed two catalytic cycles, involving PO2, HOPO and HOPO2, to explain this observation. Using our thermochemical data we computed the rate coefficients of the most important reactions in these cycles (using transition state and RRKM theories) and confirmed that at 2000K both cycles have comparable rates and are significantly faster than the uncatalysed H + OH recombination. The heats of formation used in this work on phosphorus compounds were calculated using the G2, G3, G3X and G3X2 methods along with the far more extensive CCSD(T)/CBS type scheme. The latter is based on the evaluation of coupled cluster energies using the correlation consistent triple-, quadruple- and pentuple-zeta basis sets and extrapolation to the complete basis set (CBS) limit along with core-valence correlation corrections (with counterpoise corrections for phosphorus atoms), scalar relativistic corrections and spin-orbit coupling effects. The CCSD(T)/CBS results are consistent with the available experimental data and therefore constitute a convenient set of benchmark values with which to compare the more approximate Gaussian-n results. The G2 and G3 methods were found to be of comparable accuracy, however both schemes consistently underestimated the benchmark atomisation energies. The performance of G3X is significantly better, having a mean absolute deviation (MAD) from the CBS results of 1.8 kcal mol-1, although the predicted atomisation energies are still consistently too low. G3X2 (including counterpoise corrections to the core-valence correlation energy for phosphorus) was found to give a slight improvement over G3X, resulting in a MAD of 1.5 kcal mol-1. Several molecules were also identified for which the approximations underlying the Gaussian-n methodologies appear to be unreliable; these include molecules with multiple or strained P-P bonds. The potential energy surface of the NNH + O system was investigated using density functional theory (B3LYP/6-31G(2df,p)) with the aim of determining the importance of this route in the production of NO in combustion reactions. In addition to the standard reaction channels, namely decomposition into NO + NH, N2 + OH and H + N2O via the ONNH intermediate, several new reaction pathways were also investigated. These include the direct abstraction of H by O and three product channels via the intermediate ONHN, giving N2 + OH, H + N2O and HNO + N. For each of the species corresponding to stationary points on the B3LYP surface, valence correlated CCSD(T) calculations were performed with the aug-cc-pVxZ (x = Q, 5) basis sets and the results extrapolated to the complete basis set limit. Core-valence correlation corrections, scalar relativistic corrections and spin orbit effects were also included in the resulting energetics and the subsequent calculation of thermochemical data. Heats of formation were also calculated using the G3X method. Variational transition state theory was used to determine the critical points for the barrierless reactions and the resulting B3LYP energetics were scaled to be compatible with the G3X and CCSD(T)/CBS values. As the results of modelling studies are critically dependent on the heat of formation of NNH, more extensive CCSD(T)/CBS calculations were performed for this molecule, predicting the heat of formation to be 60.6 � 0.5 kcal mol-1. Rate coefficients for the overall reaction processes were obtained by the application of multi-well RRKM theory. The thermochemical and kinetic results thus obtained were subsequently used in conjunction with the GRIMech 3.0 reaction data set in modelling studies of combustion systems, including methane / air and CO / H2 / air mixtures in completely stirred reactors. This study revealed that, contrary to common belief, the NNH + O channel is a relatively minor route for the production of NO. The structure of the inhibitor Nd-(N'-Sulfodiaminophosphinyl)-L-ornithine, PSOrn, and the nature of its binding to the OTCase enzyme was investigated using density functional (B3LYP) theory. The B3LYP/6-31G(d) calculations on the model compound, PSO, revealed that, while this molecule could be expected to exist in an amino form in the gas phase, on complexation in the active site of the enzyme it would be expected to lose two protons to form a dinegative imino tautomer. This species is shown to bind strongly to two H3CNHC(NH2)2+ moieties (model compounds for arginine residues), indicating that the strong binding observed between inhibitor and enzyme is partially due to electrostatic interactions as well as extensive hydrogen bonding (both model Arg+ residues form hydrogen bonds to two different sites on PSO). Population analysis and hydrogen bonding studies have revealed that the intramolecular bonding in this species consists of either single or semipolar bonds (that is, S and P are not hypervalent) and that terminal oxygens (which, being involved in semipolar bonds, carry negative charges) can be expected to form up to 4 hydrogen bonds with residues in the active site. In the course of this work several new G3 type methods were proposed, including G3MP4(SDQ) and G3[MP2(Full)], which are less expensive approximations to G3, and G3X2, which is an extension of G3X designed to incorporate additional electron correlation. As noted earlier, G3X2 shows a small improvement on G3X; G3MP4(SDQ) and G3[MP2(Full)], in turn, show good agreement with G3 results, with MAD�s of ~ 0.4 and ~ 0.5 kcal mol-1 respectively. 1. R. G. Hynes, J. C. Mackie and A. R. Masri, J. Phys. Chem. A, 1999, 103, 5967. 2. R. G. Hynes, J. C. Mackie and A. R. Masri, J. Phys. Chem. A, 1999, 103, 54. 3. R. G. Hynes, J. C. Mackie and A. R. Masri, Proc. Combust. Inst., 2000, 28, 1557. 4. N. L. Owens, Honours Thesis, School of Chemistry, University of Sydney, 2001. 5. A. Twarowski, Combustion and Flame, 1995, 102, 41.
APA, Harvard, Vancouver, ISO, and other styles
7

Haworth, Naomi Louise. "Quantum Chemical Studies of Thermochemistry, Kinetics and Molecular Structure." University of Sydney. Chemistry, 2003. http://hdl.handle.net/2123/509.

Full text
Abstract:
This thesis is concerned with a range of chemical problems which are amenable to theoretical investigation via the application of current methods of computational quantum chemistry. These problems include the calculation of accurate thermochemical data, the prediction of reaction kinetics, the study of molecular potential energy surfaces, and the investigation of molecular structures and binding. The heats of formation (from both atomisation energies and isodesmic schemes) of a set of approximately 120 C1 and C2 fluorocarbons and oxidised fluorocarbons (along with C3F6 and CF3CHFCF2) were calculated with the Gaussian-3 (G3) method (along with several approximations thereto). These molecules are of importance in the flame chemistry of 2-H-heptafluoropropane, which has been proposed as a potential fire retardant with which to replace chloro- and bromofluorocarbons (CFC�s and BFC�s). The calculation of the data reported here was carried out in parallel with the modelling studies of Hynes et al.1-3 of shock tube experiments on CF3CHFCF3 and on C3F6 with either hydrogen or oxygen atoms. G3 calculations were also employed in conjunction with the experimental work of Owens et al.4 to describe the pyrolysis of CFClBr2 (giving CFCl) at a radiation wavelength of 265 nm. The theoretical prediction of the dissociation energy of the two C-Br bonds was found to be consistent with the energy at which carbene production was first observed, thus supporting the hypothesis that the pyrolysis releases two bromine radicals (rather than a Br2 molecule). On the basis of this interpretation of the experiments, the heat of formation of CFClBr2 is predicted to be 184 � 5 kJ mol-1, in good agreement with the G3 value of 188 � 5 kJ mol-1. Accurate thermochemical data was computed for 18 small phosphorus containing molecules (P2, P4, PH, PH2, PH3, P2H2, P2H4, PO, PO2, PO3, P2O, P2O2, HPO, HPOH, H2POH, H3PO, HOPO and HOPO2), most of which are important in the reaction model introduced by Twarowski5 for the combustion of H2 and O2 in the presence of phosphine. Twarowski reported that the H + OH recombination reaction is catalysed by the combustion products of PH3 and proposed two catalytic cycles, involving PO2, HOPO and HOPO2, to explain this observation. Using our thermochemical data we computed the rate coefficients of the most important reactions in these cycles (using transition state and RRKM theories) and confirmed that at 2000K both cycles have comparable rates and are significantly faster than the uncatalysed H + OH recombination. The heats of formation used in this work on phosphorus compounds were calculated using the G2, G3, G3X and G3X2 methods along with the far more extensive CCSD(T)/CBS type scheme. The latter is based on the evaluation of coupled cluster energies using the correlation consistent triple-, quadruple- and pentuple-zeta basis sets and extrapolation to the complete basis set (CBS) limit along with core-valence correlation corrections (with counterpoise corrections for phosphorus atoms), scalar relativistic corrections and spin-orbit coupling effects. The CCSD(T)/CBS results are consistent with the available experimental data and therefore constitute a convenient set of benchmark values with which to compare the more approximate Gaussian-n results. The G2 and G3 methods were found to be of comparable accuracy, however both schemes consistently underestimated the benchmark atomisation energies. The performance of G3X is significantly better, having a mean absolute deviation (MAD) from the CBS results of 1.8 kcal mol-1, although the predicted atomisation energies are still consistently too low. G3X2 (including counterpoise corrections to the core-valence correlation energy for phosphorus) was found to give a slight improvement over G3X, resulting in a MAD of 1.5 kcal mol-1. Several molecules were also identified for which the approximations underlying the Gaussian-n methodologies appear to be unreliable; these include molecules with multiple or strained P-P bonds. The potential energy surface of the NNH + O system was investigated using density functional theory (B3LYP/6-31G(2df,p)) with the aim of determining the importance of this route in the production of NO in combustion reactions. In addition to the standard reaction channels, namely decomposition into NO + NH, N2 + OH and H + N2O via the ONNH intermediate, several new reaction pathways were also investigated. These include the direct abstraction of H by O and three product channels via the intermediate ONHN, giving N2 + OH, H + N2O and HNO + N. For each of the species corresponding to stationary points on the B3LYP surface, valence correlated CCSD(T) calculations were performed with the aug-cc-pVxZ (x = Q, 5) basis sets and the results extrapolated to the complete basis set limit. Core-valence correlation corrections, scalar relativistic corrections and spin orbit effects were also included in the resulting energetics and the subsequent calculation of thermochemical data. Heats of formation were also calculated using the G3X method. Variational transition state theory was used to determine the critical points for the barrierless reactions and the resulting B3LYP energetics were scaled to be compatible with the G3X and CCSD(T)/CBS values. As the results of modelling studies are critically dependent on the heat of formation of NNH, more extensive CCSD(T)/CBS calculations were performed for this molecule, predicting the heat of formation to be 60.6 � 0.5 kcal mol-1. Rate coefficients for the overall reaction processes were obtained by the application of multi-well RRKM theory. The thermochemical and kinetic results thus obtained were subsequently used in conjunction with the GRIMech 3.0 reaction data set in modelling studies of combustion systems, including methane / air and CO / H2 / air mixtures in completely stirred reactors. This study revealed that, contrary to common belief, the NNH + O channel is a relatively minor route for the production of NO. The structure of the inhibitor Nd-(N'-Sulfodiaminophosphinyl)-L-ornithine, PSOrn, and the nature of its binding to the OTCase enzyme was investigated using density functional (B3LYP) theory. The B3LYP/6-31G(d) calculations on the model compound, PSO, revealed that, while this molecule could be expected to exist in an amino form in the gas phase, on complexation in the active site of the enzyme it would be expected to lose two protons to form a dinegative imino tautomer. This species is shown to bind strongly to two H3CNHC(NH2)2+ moieties (model compounds for arginine residues), indicating that the strong binding observed between inhibitor and enzyme is partially due to electrostatic interactions as well as extensive hydrogen bonding (both model Arg+ residues form hydrogen bonds to two different sites on PSO). Population analysis and hydrogen bonding studies have revealed that the intramolecular bonding in this species consists of either single or semipolar bonds (that is, S and P are not hypervalent) and that terminal oxygens (which, being involved in semipolar bonds, carry negative charges) can be expected to form up to 4 hydrogen bonds with residues in the active site. In the course of this work several new G3 type methods were proposed, including G3MP4(SDQ) and G3[MP2(Full)], which are less expensive approximations to G3, and G3X2, which is an extension of G3X designed to incorporate additional electron correlation. As noted earlier, G3X2 shows a small improvement on G3X; G3MP4(SDQ) and G3[MP2(Full)], in turn, show good agreement with G3 results, with MAD�s of ~ 0.4 and ~ 0.5 kcal mol-1 respectively. 1. R. G. Hynes, J. C. Mackie and A. R. Masri, J. Phys. Chem. A, 1999, 103, 5967. 2. R. G. Hynes, J. C. Mackie and A. R. Masri, J. Phys. Chem. A, 1999, 103, 54. 3. R. G. Hynes, J. C. Mackie and A. R. Masri, Proc. Combust. Inst., 2000, 28, 1557. 4. N. L. Owens, Honours Thesis, School of Chemistry, University of Sydney, 2001. 5. A. Twarowski, Combustion and Flame, 1995, 102, 41.
APA, Harvard, Vancouver, ISO, and other styles
8

Mostajeran, Mehdi. "Catalyzed Hydrogen Release from BH- and BNH-based Hydrogen Storage Materials." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36875.

Full text
Abstract:
In order to reduce our ties to fossil-based energy and mitigate the undeniable impacts of climate change on the environment, remarkable efforts have been directed over the last 4 decades toward developing renewable energy sources such as solar, wind, geothermal, etc. For transportation applications biofuels, electricity and hydrogen all offer potential solutions although current usage is still largely linked to fossil fuels (bio-based ethanol-gasoline mixtures, power generation for battery recharging, and steam reforming for hydrogen production). While hydrogen offers the greatest potential in terms of energy density, its poor volumetric density (0.01 MJ/L at RT) requires costly compression and pressurized storage. When future technology finally allows for efficient hydrogen release from water splitting, we need to have optimal solutions in place for hydrogen storage. One promising solution is chemical hydrogen storage in which thermolysis of a chemical precursor affords a controlled hydrogen release that can then be reversed in an off-board regeneration step. With a focus on maximum gravimetric hydrogen storage, various BNH compounds have been shown to be promising chemical hydrogen storage precursors. In this Thesis we summarize the state of the art in B-N-H hydrogen storage compounds (Chapter 1) and then investigate several new chemical hydrogen storage solutions with a focus on portable power generation. In the first project (Chapter 2) we sought to prepare a robust, base-metal borohydride hydrolysis catalyst for use in a custom hydrogen generator designed to use the reaction heat to help separate the borate spent fuel. Active ‘reverse opal’ layered double hydroxide (LDH) catalysts were prepared and tested. While the classical Ni-Mg-Al LDH released 3.4 equiv. of hydrogen at 50 °C in 150 minutes, the polystyrene templated Ni-Mg-Al catalyst released 4 equiv. of hydrogen with a higher initial rate under the same reaction conditions. The long-term objective of this project was to test these catalysts in fuel cells for underground mine forklifts with our industry collaborator (Kingston Process Metallurgy Inc.). In the next three chapters, the synthesis and hydrogen release properties of ammine metal borohydrides [M(BH4)m(NH3)n, AMBs] were investigated. As promising hydrogen storage materials with high hydrogen content (10-15 wt%), AMBs can access lower hydrogen release temperatures resulting from the combination of protic (N-Hδ+) and hydridic (B-Hδ-) hydrogens. While AMBs also do not suffer from diborane formation that plagues thermolysis of metal borohydrides, hydrogen release is often accompanied by small concentrations of ammonia that deactivate the fuel cell catalyst. Our objective for this work was to identify base metal catalysts that could suppress ammonia formation by further reducing the energy barrier to H2 release. In Chapter 3 our studies of the solution synthesis of AMB materials (Y, La, Zn, etc.) in coordinating solvents such as tetrahydrofuran (thf) and diethyl ether revealed the unexpected formation of ammonia-borane (H3NBH3, AB). It was shown that while the amounts of produced AB correlate with the Zhang electronegativity for the s- and p-block metals, ionic radius is a stronger determining factor for the transition metals. It was also observed that reducible metals such as Ti and V produce large amounts of AB while Zn produced the least. This knowledge was then used in Chapter 4 to prepare pure samples of the Y and La complexes, M(BH4)3(NH3)4 that were characterized by thermal analysis (TGA-MS), powder X-ray diffraction, FT-IR and 11B and 1H MAS NMR spectroscopy. Furthermore, a series of base-metal nanoparticle catalysts, prepared using a novel route from MCl2 and liquid hexylamine-borane, was shown to suppress ammonia formation from these Y and La AMBs. Immobilizing 5 wt.% of Co NPs on Y(BH4)3(NH3)4 and 5 wt.% of Fe NPs on La(BH4)3(NH3)4 resulted in reduction of ammonia release by three- and fourfold, respectively. In Chapter 5 the attempted solution synthesis of Zn(BH4)2(NH3)2 revealed complications due to preferred formation of MIZn(BH4)3 [instead of Zn(BH4)2] from the reaction of ZnCl2 and MIBH4 (MI= Li, Na, K). As a result, the mixed-metal AMB, KZn(BH4)3(NH3)n was prepared and characterized. Although the effects of both heterogeneous and homogeneous catalysts were not as pronounced as those for Y and La, using 5 wt.% FeNPs resulted in fourfold reduction in the amount of released ammonia which led to a purer hydrogen stream (98.9 mol%) compared to the uncatalyzed thermolysis (97.0 mol%). Finally, in Chapter 6 our results are considered vs. the current state of the art and suggestions are made for further investigations.
APA, Harvard, Vancouver, ISO, and other styles
9

Peck, Michael S. "Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4860.

Full text
Abstract:
Thesis (Ph. D.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed Feb. 27, 2008). Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
10

Onay, Aytun. "Hydrogen Storage Capacity Of Nanosystems: Molecular." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609636/index.pdf.

Full text
Abstract:
In recent decades, tremendous efforts have been made to obtain high hydrogen storage capacity in a stable configuration. In the literature there are plenty of experimental works investigating different materials for hydrogen storage and their storage values. In the first part of this thesis the available literature data have been collected and tabulated. In addition to the literature survey the hydrogen storage capacity of carbon nanotubes and carbon nanotubes doped with boron nitride (CBN nanotubes) with different chirality have been investigated by performing quantum chemical methods at semiempirical and DFT levels of calculations. It has been found that boron nitrite doping increases the hydrogen storage capacity of carbon nanotubes. Single wall carbon nanotubes (SWNT) can be thought as formed by warping a single graphitic layer into a cylindrical object. SWNTs attract much attention because they have unique electronic properties, very strong structure and high elastic moduli. The systems under study include the structures C(4,4), H2@C(4,4), C(7,0), C(4,0), and the BN doped C(4,4), H2@C(4,4), 2H2@C(4,4), C(7,0), H2@C(7,0), 2H2@C(7,0). Also, we have investigated adsorption and desorption of hydrogen molecules on BN doped coronene models by means of theoretical calculations.
APA, Harvard, Vancouver, ISO, and other styles
11

Martin, Gregory Stephen Bernard. "Solid-state nuclear magnetic resonance studies of hydrogen storage materials." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14108/.

Full text
Abstract:
Currently, solid-state nuclear magnetic resonance (NMR) methodology is still evolving. However, this thesis focuses on the application of NMR methods to improving the understanding of solid-state hydrogen storage materials. In particular, this thesis demonstrates how NMR can provide a unique perspective on materials from a molecular level, complementary to other analytical techniques. All of this work has been done in collaboration with other research groups, so effort has been made to interpret the NMR results recorded here in the context of the synthetic methods used and results obtained from other analytical techniques. Firstly, chapter 1 contains a review on the necessity and challenges of storing hydrogen. Then a complete review of the relevant NMR theory and methodology will be given in chapter 2, before turning attention to its application to specific hydrogen storage systems in subsequent chapters. Chapter 3 studies the metal organic frameworks (MOF): NOTT-207, NOTT-201 and NOTT-209 as potential storage systems. Static 7Li studies elucidated the change in the lithium co-ordination environment upon desolvation, necessarily unblocking the pores for gas sorption. Chapter 4 contains a multi-nuclear study on the LiBH4/MgH2 system. In the first part, static 7Li NMR reveals the effects of ball milling (particle grain size reduction) on lithium ion diffusion; for the hexagonal (high temperature) structure of LiBH4. Evidence is also found for significant lithium ion diffusion in the orthorhombic (low temperature) structure. Then in the second part of chapter 4, 1H, 6Li, 7Li, 11B and 25Mg ex situ magic angle spinning experiments were used to follow the route of decomposition, analysing the effects of varying reaction temperature, pressure and sample stoichiometry. The different phases present at different stages in the amorphous intermediates and products were elucidated, in particular it was possible to show the necessary thermodynamic conditions for the [B12H12]2-intermediate formation. Chapter 5 uses static 7Li NMR to study the Li-N-H system. Firstly, Li3N nanowires are characterised in terms of lithium ion diffusion, with an improvement to diffusion being found upon nano-structuring. Then bulk Li2NH and dual phase Li2NH/LiNH2 are also characterised with respect to lithium ion diffusion, and analysis suggests hopping occurs between tetrahedral sites. Since the three systems studied in this thesis are different, each chapter will contain all the background scientfic information and conclusions relevant to the NMR results of the system under consideration. Finally, chapter 6 will summarise and conclude as a whole in the context of the technological importance of this work.
APA, Harvard, Vancouver, ISO, and other styles
12

Blackman, James Michael. "High pressure hydrogen storage on carbon materials for mobile applications." Thesis, University of Nottingham, 2005. http://eprints.nottingham.ac.uk/10117/.

Full text
Abstract:
Recognising the difficulties encountered in measuring the adsorption of hydrogen at high pressure, a reliable volumetric differential pressure method of high accuracy and good repeatability has been developed for measurement up to ca 100 bar. The apparatus used has two identical limbs, a sample and a blank limb, between which a high accuracy differential pressure cell measures changes in pressure. By simultaneously expanding the two limbs and closely controlling the temperature of the entire system, many of the errors due to expansion of the gas can be avoided. In addition, helium blank measurements are used as a base line correction, which substantially reduces the effects caused by the rapid expansion of gas through a small port. Using this method, the hydrogen storage capacities of relatively small samples (1.0-2.5 g) of a selection of carbon materials have been accurately measured to a conservative limit of detection of 0.05 wt% and an accuracy of +/-0.02 wt%. The accuracy of the apparatus has been proven using lanthanide nickel (LaNi5), which has a known hydrogen storage capacity of 1.5 wt%, as a standard. The method has also been developed in order to analyse samples at elevated temperatures of up to 270 C. This has been demonstrated using lithium nitride (Li3N) compounds. The carbon materials studied include a series of activated carbons, carbon nanofibres (CNF) and carbon nanotubes (CNT). The activated carbons have displayed almost instantaneous hydrogen uptake independent of the degas method used, which indicates that sorption occurs via a physisorption mechanism. The series of powdered activated carbons have displayed direct correlation between the BET surface area and the hydrogen sorption capacity. The largest hydrogen sorption capacity observed for activated carbons was for a chemically activated carbon with a surface area of 3100 m2 g-1, achieving an uptake of 0.6 wt%. The preparation of CNF, grown from ethylene over mixed copper, iron and nickel alloy catalysts, has been extensively investigated. Control of the parameters of preparation has allowed the formation of CNF with surface areas of 10 - 500 m2 g-1, diameters of 100 - 1000 nm, lengths of 1-10s nm, gas conversions of 0-90 % and the formation of herringbone and platelet CNF structures. The CNF studied have been observed to be capable of adsorbing a maximum of 0.5 wt% hydrogen at 100 bar and ambient temperature. Only one of the materials studied was observed to break by a significant amount the trend of surface area vs hydrogen sorption capacity, observed for the activated carbons. This was a single-walled nanotube (SWNT) sample which achieved ca 1.6 wt% after slow carbon dioxide activation at low temperature. This larger sorption is hypothesised to result from the hydrogen slowly diffusing into the SWNT through defects in the structure and between the graphite planes in the CNF.
APA, Harvard, Vancouver, ISO, and other styles
13

Smith, Christopher. "p-block hydrogen storage materials." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:6dd710a5-baf2-4fd2-918c-d1df97c229bf.

Full text
Abstract:
The development of a clean hydrogen economy will aid a smooth transition from fossil fuels which is required to stem the environmental impact and economic instability caused by oil dependency. For vehicular application, in addition to being cheap and safe, a commercial hydrogen store must contain a certain weight percentage of hydrogen to provide a reasonable range (~300 miles). It must also be able to release hydrogen under near-ambient conditions (80-120°C) and have a reasonable cycling capacity (~1000 cycles). The primary motivation of this thesis is to gain a fundamental understanding into the sorption processes of hydrogen on carbon- and aluminium-based materials to improve their hydrogen storage capacity. The sorption processes of hydrogen on mechanically milled graphite have been investigated, primarily using Electron Spin Resonance Spectroscopy and Inelastic Neutron Scattering. An investigation into the storage properties of tetrahydroaluminates, primarily NaAlH4 and LiAlH4, is performed in the presence and absence of a catalyst, and a new phase of NaAlH4 is observed prior to its decomposition. Variable temperature neutron and synchrotron diffraction, in conjunction with gravimetric and mass spectroscopy data were obtained for several mixtures of tetrahydroaluminates and alkali amides and the hydrogen desorption processes are shown to be quite different from the constituent materials. The structure of Ca(AlH4)2 has been experimentally determined for the first time and a complete set of equations describing its decomposition pathway is given.
APA, Harvard, Vancouver, ISO, and other styles
14

Ertan, Asli. "Fabrication of nanostructured metals and their hydrogen storage properties." Cleveland, Ohio : Cleveland State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1227313116.

Full text
Abstract:
Thesis (D. Eng.)--Cleveland State University, 2008.
Abstract. Title from PDF t.p. (viewed on Feb. 4, 2009). Includes bibliographical references (p. 87-93) and appendix. Available online via the OhioLINK ETD Center. Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
15

Fry, Christopher. "Development of magnesium-based multilayer PVD coatings for hydrogen storage applications." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/14064/.

Full text
Abstract:
On the long list of solid-state hydrogen storage materials, magnesium hydride stands out for its relatively high hydrogen storage capacity of 7.7 wt%, combined with the low cost and abundance of magnesium. For practical applications however, issues such as the slow kinetics and the high stability of magnesium hydride must be resolved in order to reduce the potential operating temperatures of a magnesium-based solid-state hydrogen storage system. Catalysis has been widely used to improve the hydrogen storage kinetics and thin film techniques have been used to explore novel structures and combinations of materials in order to improve both the kinetics and thermodynamics of hydrogen storage in magnesium. The original contribution to knowledge of this work lies in the study and understanding of the evolution of a range of novel thin film multilayer coatings and the effect of the structure, structural evolution and materials on the hydrogen storage properties of these materials, each consisting of 150 layers of magnesium, < 20 nm thick, separated by < 3 nm thick layers of a nickel-rich, iron-based transition metal mix, chromium and vanadium. The samples, as well as a non-catalysed control sample, were produced by means of magnetron-assisted physical vapour deposition and delaminated from the substrate for volumetric, gravimetric and calorimetric hydrogen cycling measurements. The coatings were analysed both before and after hydrogen cycling to understand the structural evolution of the coatings from highly structured thin film multilayers to flaky thin film particles containing finely distributed nano-crystalline catalyst particles. The formation of the intermetallic Mg2Ni in one of the samples was found to be beneficial for the hydrogenation kinetics, whilst the dehydrogenation kinetics were found to be affected mostly by the nano-crystalline transition metal phases that formed in the catalysed samples during hydrogen cycling. This resulted in hydrogenation and dehydrogenation of magnesium hydride in less than 4 and 13 minutes at 250°C with activation energies as low as 60.6 ± 2.5 kJ mol-1.
APA, Harvard, Vancouver, ISO, and other styles
16

Bravo, Diaz Laura. "Sorption properties in lightweight hydrogen storage materials for portable power applications." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/8893/.

Full text
Abstract:
Modern society increasingly depends on reliable and secure energy supplies for economic growth and social prosperity. Thus, it is crucial to implement a low-carbon energy carrier based on renewable energy sources to ensure energy security and tackle climate change. Hydrogen (H2) is undoubtedly one of the most promising energy carriers to achieve a low-carbon energy future scenario. However, before the hydrogen economy can become completely viable, the safe and compact storage of H2 is an issue that must be overcome. This thesis concentrates on the development of potential “modular” solid state H2 storage solutions for portable power applications. A wide range of potential H2 storage materials was investigated with the aim of providing an improved performance in the form of a low desorption onset temperature, fast desorption kinetics and a high H2 gravimetric capacity. This research work focused on the study of light metal hydride – hydroxide systems, in particular the nanostructured MgH2-Mg(OH)2 system, and ammonia borane (AB) composites, specifically AB within a porous carbon-based matrix composites. The nanostructured MgH2-Mg(OH)2 “modular” H2 release system was investigated as a candidate exothermic filler material combined with an industrial MgH2 matrix to produce a novel solid state H2 storage hybrid tank. It was postulated that the heat of the reaction of the exothermic filler material could initiate and propagate a reaction in the matrix hydride and additionally contribute to the H2 yield. Detailed information about the thermodynamic and kinetic behaviour of the MgH2-Mg(OH)2 system, under operational conditions, was obtained. The thermal decomposition of this system was found to be a two-step process, associated with two H2 releases, resulting from: 1) almost simultaneous decomposition of Mg(OH)2 and hydrolysis of MgH2 at 616 K (exothermic event) and 2) decomposition of unreacted MgH2 at 743 K (endothermic event). The formation of a MgO layer on the unreacted MgH2 resulting from the previous hydrolysis was found to retard the H2 release. The formation of MgH2-MgO core-shell structures was investigated and confirmed by kinetic measurements, ex-situ Scanning Electron Microscopy / Energy Dispersive X-ray Spectroscopy (SEM/EDX) analysis and ex-situ Powder X-ray Diffraction (PXD) experiments. Kinetics measurements performed under operational conditions proved the H2 release of the system to be very slow (≈ 20 hours at 573 K). The mechanism for H2 evolution of this system was elucidated by in-situ Powder Neutron Diffraction (PND) performed at the Institut Laue-Langevin (ILL) in Grenoble, confirming the observations by thermal analysis methods and ex-situ PXD experiments. The use of additives (graphite and silicon carbide) was investigated to enhance the kinetic and thermodynamic properties in the system. The incorporation of SiC proved to be successful in improving the H2 release of the first step. However, no further kinetic improvements were observed by incorporating additives. Besides, the H2 capacity was slightly reduced by the introduction of 10 wt. % of C/SiC and traces of water were released alongside H2. AB-based nanocomposites and nanoconfined samples were also investigated with the aim of synthesising novel solid-state H2 storage materials with enhanced desorption properties. Highly ordered mesoporous carbons (FDU-25, CGY-1), activated carbons (AX21, Sigma AC, MAST Carbon TE7), and graphene (Angstron, Alfa), were employed to prepare nanocomposites (via ball milling or solution impregnation) in different ratios. A double-solution impregnated composite with a 2:3 weight ratio of AB to activated carbon (AC) showed the best performance with a dehydrogenation onset of 353 K and the suppression of borazine and boron-based by-products. The use of an external NiCl2 filter absorbed any released gaseous ammonia and no by-products were detected with a mass spectrometer sensitivity of 100 ppb. The nanoconfinement of AB in AC hosts was investigated by simultaneous Small Angle X-ray Scattering (SAXS) and Wide Angle X-ray Scattering (WAXS) at the Elettra synchrotron in Trieste. The results confirm that the nanoconfinement of ammonia borane was successfully induced and central to the performance improvements of the H2 storage material. To underpin the validity of the results and allow a quantitative comparison of the performance of these new developed materials with previously assessed systems, the reproducibility and repeatability of the measurements was ensured by means of intra and inter-laboratory comparisons. This was accomplished by using the facilities at the European Commission Joint Research Centre (JRC), Energy Storage Unit in Petten (The Netherlands) and the laboratories of the School of Chemistry in University of Glasgow (UK).
APA, Harvard, Vancouver, ISO, and other styles
17

Sweeney, Jason T. (Jason Thomas) 1971. "Novel metal oxide nanocomposites for oxygen storage, sulfur dioxide adsorption and hydrogen sulfide absorption." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/29295.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, February 2003.
Includes bibliographical references.
Increasingly stringent regulations on automotive emissions have resulted in the need for improved pollution control technology. To reduce mobile emissions, researchers have investigated alternatives such as lean-bum engines and fuel cells. This work is focused on the synthesis, characterization and testing of novel metal oxide nanocomposites to facilitate the utilization of these technologies. In lean-bum engines, the use of adsorbents to remove NOx faces two major challenges: (1) excess hydrocarbon and CO emissions during fuel-rich pulses for adsorbent regeneration, and (2) reduced NOx adsorption efficiencies due to competitive adsorption of SO2 in the gas stream. To provide for the low-temperature oxidation of hydrocarbons and CO under a reducing atmosphere, CeO2, a well-known oxygen storage material, was modified through secondary metal oxide doping to improve thermal stability and oxygen accessibility. 20 at% substitution of Pr, Sc and Zr in CeO2 successfully promoted microstructural stability, with Ceo.8Zro0.202- retaining grain size of 30 nm even after calcination at 10000C. At high doping levels, Zr improved grain size stability further, but ZrO2 phase segregation was noted in CelxZrxO2.8 with x > 0.2. TPR experiments under 2.5% H2 in He showed that Ceo8Pr0.202- provided superior low-temperature reduction and overall reducibility amongst Ce0.8M0.2026- materials. Moreover, CelxPrxO2-8 showed increased reducibility with increasing x, achieving a maximum weight loss of 4.8% at x = 1.0. CO oxidation studies over Ceo.8M0.202-8 identified Sc and Zr doping with the lowest CO light-off temperatures (247⁰C and 264⁰C, respectively).
(cont.) For CelPrxO2- and CelxZrxO2-, low levels of doping resulted in the highest CO oxidation activity; light-off was successfully achieved at 264⁰C and 252⁰C for x = 0.4 and 0. 1, respectively. Metal oxide-based materials were developed to selectively adsorb SO2 during fuel-lean conditions and desorb SO2 during fuel-rich conditions, thereby preventing the SO2 poisoning of the NOX adsorbent. Of various simple and mixed metal oxides, the Cr203-CuO system was found to provide SO2 adsorption under oxidizing conditions at 400⁰C, and SO2 evolution under reducing conditions below 350⁰C. The CuCr20O4 phase present at the optimal Cr20O3-CuO composition gave rise to improved low-temperature CO activity, which facilitated SO2 desorption. With increased CuO content, both adsorption capacity and regenerability were increased. Through the introduction of dopants, phase-pure CuCr2yCoyO4 was obtained to allow for SO2 desorption below 300Ê»C, which corresponded well with increased CO2 evolution. By introducing excess CuO onto CuCr1.9Co0.1O4 via various synthesis routes, improved SO2 sorption characteristics were attained. In pulse adsorption/desorption studies, the CuO/ CuCr.9Co0.104 materials and CuO/CuCr204 also demonstrated excellent capacity and superior regenerability relative to the conventional CuO/A1203 adsorbent. For on-board H2 production for fuel cells, the removal of H2S is paramount to avoiding poisoning of the H2 separation membrane and the fuel cell. Conventional coarse-grained ZnO is not viable for H2S ...
by Jason T. Sweeney.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, Yinzhe. "Low melting point alkali metal borohydride mixtures for hydrogen storage." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8447/.

Full text
Abstract:
With relatively high gravimetric and volumetric hydrogen capacities and low hydrogen operating pressures, borohydrides are being investigated for their potential use as solid-state hydrogen storage media. This work focuses on investigating the hydrogen sorption mechanisms for \(LiBH_4\)-based low-melting-point borohydride mixtures (e.g. \(0.62LiBH_4\)-\(0.38NaBH_4\), \(0.75LiBH_4\)-\(0.25KBH_4\)), and their destabilized systems using selected additives. Solid solutions and bimetallic borohydride are found in the as-prepared \(0.62LiBH_4\)-\(0.38NaBH_4\) and \(0.75LiBH_4\)-\(0.25KBH\) mixtures, respectively. Under Ar, the \(0.62LiBH_4\)-\(0.38NaBH_4\) mixture releases 10.8 wt.% of hydrogen at 650 °C; whilst the \(0.75LiBH_4\)-\(0.25KBH_4\) mixture releases 8.9 wt.% of hydrogen at 700 °C. Their dehydrogenation peak temperatures are strongly affected by Na+ or K+ and therefore higher than \(LiBH_4\). These mixtures have poor cycling stabilities. Additives, such as micron-sized \(SiO_2\) and nano-sized Ni, cannot affect their melting points; but they cause lower dehydrogenation temperatures, decrease the hydrogen evolution, and facilitate the formation of metal dodecaborates. Besides, the addition of nano-sized Ni cannot significantly improve the cycling stability; however, it leads to partial reversible \(LiBH_4\). Therefore, a further compositional optimization with respect to the rehydrogenation conditions, in parallel with the use of nano-confinement of the mixture via an infiltration approach, is needed before practical use of a low-melting-point alkali metal borohydride mixture.
APA, Harvard, Vancouver, ISO, and other styles
19

Segales, Marc. "Nanoconfinement of complex hydrides in porous hosts for hydrogen storage applications." Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/7149/.

Full text
Abstract:
The transition from a fossil fuel-dependent society to a cleaner, more sustainable society will not be possible without renewable energy sources. Hydrogen holds great potential as an energy carrier as an alternative to fossil fuels in such society. However, the compact and safe storage of hydrogen are still major challenges. Solid state hydrogen storage offers the possibility to store hydrogen in solids offering high volumetric and high gravimetric energy densities, while reducing the risks associated when handling hydrogen gas. However, no single system has fully achieved the required properties for on-board mobile applications. Various approaches can be adopted with the aims of improving the kinetics and thermodynamics of hydrogen sorption. The nanostructuring of materials is one of the more promising strategies to achieve these aims. Reduction of the particle size of hydrides by nanoconfinement in forms of porous matrix leads to an increased surface area of the active material, and shorter diffusion distances for hydrogen atoms or ions to travel in the solid state. Kinetic barriers can be overcome and thermodynamics manipulated. An enhanced dehydrogenation rate and a reduced dehydrogenation temperature can be achieved by impregnating metal hydrides into porous scaffolds. Two complex hydrides are selected for study in this work; LiAlH4 and LiNH2. LiAlH4, is the lightest of the alanates, with a theoretical hydrogen storage capacity of 10.5 wt.%, and 7.9 wt.% H2 evolved below 220 °C. LiNH2 mixed with LiH, as part of the Li-N-H system, can reversibly desorb/uptake 6.5 wt.% H2 at 300 °C. When LiNH2 is heated alone, it releases ammonia (which is decomposed to N2 and H2 at higher temperatures > 400 °C). In this work, LiAlH4 has been impregnated in different types of commercial and synthesised porous carbon scaffolds for the first time. Nanoconfinement of the active material was achieved using solution impregnation with diethyl ether as a solvent. Analogously, the confinement of LiNH2 in porous carbon was achieved “in-situ” using lithium-ammonia solutions. Both confined composites showed lower dehydrogenation temperatures in comparison with the respective bulk materials. The influence of the design of the carbon scaffold (as manifested for example, by the surface area and the pore volume and pore size distribution) on the dehydrogenation behaviour of the impregnated complex hydrides is demonstrated. By judicious selection of an appropriate porous host, we show how it is possible to induce faster H2 desorption and substantially reduce the desorption temperature. The onset of hydrogen release for confined LiAlH4 decreased significantly in temperature, being reduced by 51 °C (in both porous hosts used, AX-21 and FDU-15) in comparison with pristine LiAlH4. The temperature at which the hydrogen release was maximised was also lowered (by 16 °C in FDU-15 and by 26 °C in AX-21) in comparison with as-received LiAlH4. The confined LiNH2 showed a much earlier release of hydrogen compared with as-received LiNH2. Normally LiNH2 would thermally decompose to Li2NH with ammonia evolution, but ammonia release was eliminated for the confined sample. Reaction with carbon led to irreversible Li2CN2 formation and hydrogen evolution. A set of experiments to establish the formation of Li2CN2 with physically mixed samples were performed. The physically mixed samples showed hydrogen release between 400 - 450 °C, producing a mixture of Li2NH and Li2CN2, suggesting two decomposition pathways were followed. In contrast, confined LiNH2 released hydrogen ca. 220 °C lower than the physically mixed sample, with no detectable trace of ammonia release.
APA, Harvard, Vancouver, ISO, and other styles
20

Onyegbule, Nkele. "Composite low temperate hydrogen storage material on the basis of iron-titanium alloy." Thesis, University of the Western Cape, 2006. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6344_1242888003.

Full text
Abstract:

It is widely believed that hydrogen will, within a few years, become the means of storing and transporting energy. The reason is the depletion of hydrocarbons and the relatively facile production of hydrogen from various renewable sources of energy. Hydrogen can be combusted in an efficient way in a fuel cell with water as emission product. The overall goal of the project was to deevlop the knowledge base for solid-state hydrogen storage technology suitable for stationary and mobile applications. The aim of this research was to develop a novel composite hydrogen storage material with high wt% storage capacity, high intrinsic safety, appropriate thermodynamics, high mechanical strength, reversibility of the system and fast kinetics based on a well known "
low temperature"
intermetallic alloy (Ti/Fe) as the core.

APA, Harvard, Vancouver, ISO, and other styles
21

Royse, David M. "High density ammonia storage materials." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:2ccbf0d0-2fa7-4508-9544-565e47bfaddc.

Full text
Abstract:
This Thesis considers the use of solid-state metal ammines as ammonia storage materials and endeavours to understand these materials on a fundamental chemical level. The ammines of LiBH₄, MgCl₂, MgBr₂, MgI₂ and Mg(BH₄)₂, are investigated. The structures of lithium borohydride ammines, Li(NH₃)nBH₄ with n = 1, 2, 3 and 4 are solved using X-ray and neutron diffraction, vibrational spectroscopy, nuclear magnetic resonance, and first-principles calculations. The reversibility, bonding and ammonia storage properties of this system are discussed, and investigated using gravimetric analysis and vibrational spectroscopy. The ammines of magnesium halides are investigated using X-ray and neutron powder diffraction, gravimetric techniques, nuclear magnetic resonance, first-principles calculations and vibrational spectroscopy. Their disordered structures, bonding, and decomposition are discussed, and the trends in their properties are used to interpret the properties of other ammines. The ammines of magnesium borohydride are investigated using X-ray and neutron powder diffraction, gravimetric techniques, first-principles calculations and vibrational spectroscopy. The structure, decomposition and reversibility of Mg(NH₃)₆(BH₄)₂ as an ammonia store are presented. Throughout the Thesis and at the end of each Chapter the possibility of using these ammines as solid-state ammonia stores is discussed.
APA, Harvard, Vancouver, ISO, and other styles
22

Rivera, Luis A. "Destabilization and characterization of LiBH4/MgH2 complex hydride for hydrogen storage." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0001984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Torres, Escalona Javier. "Electronic properties study on hydrazines and nitriles complexed by Lewis acids. Towards chemical hydrogen storage." Thesis, Pau, 2017. http://www.theses.fr/2017PAUU3051.

Full text
Abstract:
Dans la problématique de l'utilisation de nouvelles énergies non polluantes, l'hydrogène est l'un des principaux carburants verts du futur. Les dérivés d'hydrazine et de borane sont potentiellement intéressants pour le stockage chimique de l'hydrogène. Les complexes entre hydrazines ou nitriles avec des boranes ou des alanes sont à la base de cette étude. Ces composés ont été synthétisés afin d'étudier leur structure électronique avant et après la création de la liaison entre les acides et les bases de Lewis. La spectroscopie photoélectronique à rayonnement UV (UV-SPE) est utilisée comme outil principal de caractérisation fournissant des énergies d'ionisation (IE). L’interprétation des résultats expérimentaux est supportée par des calculs quantiques comme ΔSCF + TD-DFT, OVGF, P3 et SAC-CI. Des simulations et des expériences par Flash Vacuum Thermolysis (FVT) ont été effectuées, portant sur l’élimination d'hydrogène à partir de dérivés d'hydrazine borane
Within the problematic of the use of new non-polluting energies, hydrogen is one of the main green fuels of the future. Hydrazine borane derivatives are potentially interesting chemical hydrogen storage materials. Complexes between hydrazines or nitriles with boranes or alanes are the basis of this study. These compounds were synthesized in order to study their electronic structure before and after creation of the bond between the Lewis acids and bases. Ultraviolet Photoelectron Spectroscopy (UV-PES) is used as a main characterization tool, providing Ionization Energies (IE). The interpretation of the experimental results is supported by Quantum Chemical Calculations as ΔSCF+TD-DFT, OVGF, P3 and SAC-CI methods. Simulations and experiments by Flash Vacuum Thermolysis (FVT) were carried out on hydrogen release from hydrazine borane derivatives
APA, Harvard, Vancouver, ISO, and other styles
24

D'angelo, Anthony Joseph. "Investigation and Synthesis of Novel Graphene-Based Nanocomposites for Hydrogen Storage." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4024.

Full text
Abstract:
It is of great interest to develop and utilize a high surface area material with optimized hydrogen sorption properties. The need for a renewable energy source to replace automobile gasoline has become more critical in the past decade. Hydrogen is a viable fuel source for automobile usage; however, the question of how hydrogen will be safely and efficiently stored still remains. Critical factors for optimum hydrogen storage include ambient conditions and low activation temperature for adsorption and desorption phenomena. In order for optimum hydrogen adsorption to be achieved, the properties of (1) high surface area, (2) optimum hydrogen adsorption energy, and (3) Kubas interactions between metals and hydrogen molecules need to be considered. Fullerenes have recently become more popular with the discovery and mass production of graphene sheets derived from graphite. Graphene is a modified form of graphite that takes the form of sheets with less agglomeration than its respective graphitic form. This form has the potential for high surface area and storage capabilities. Storage of hydrogen at room temperature must be optimized by increasing the surface area and having an adsorption enthalpy between 15 - 20 KJ/mol. Graphene (G) sheets and graphene oxide (GO) sheets have been utilized as a matrix for hydrogen storage. These materials can also be cross-linked with organic spacers in order to form a porous framework of higher surface area. Metal decorating by calcium and platinum of the G/GO matrix has been used to enhance Kubas interactions, adsorption enthalpies, and spillover phenomenon. The use of a polymer matrix has also been implemented. Polyaniline is a novel superconducting polymer with unique electronic properties. Complexes of Polyaniline with graphene and graphene oxide have been investigated for hydrogen storage properties. Graphene and graphene oxide surface modification via metal decoration have been investigated in order to determine the most efficient synthesis and particle size on the G/GO matrix. Characterization by XRD, BET, adsorption enthalpy, PCT, TGA, FT-IR, and TEM/SEM (when applicable) were employed to optimize and compare the materials in the effort to develop a suitable storage material.
APA, Harvard, Vancouver, ISO, and other styles
25

Culligan, Scott D. "The crystal chemistry and hydrogen storage properties of light metal borohydrides." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:5a27d358-6b0d-4287-8b5d-f18304533dde.

Full text
Abstract:
This work examines various light metal borohydrides, particularly those formed from group II metals, with the aim of understanding their fundamental physical properties and improving their hydrogen storage ability. The structure of a new phase (γ) of Mg(BH4)2 is reported and the decomposition is fully characterized in a combination of diffraction and thermogravimetric studies. The bulk properties of γ-Mg(BH4)2 are compared to those of an SiO2 isostructure and probed by various neutron scattering techniques. Negative thermal expansion is observed at low temperatures and the material absorbs up to 1.5 moles of hydrogen gas to form one of the most gravimetrically hydrogen-dense materials ever reported. The structural evolution of Ca(BH4)2 under different synthetic conditions and external influences (e.g. temperature) is studied up until the material decomposes. The effects of various additives on group II metal borohydrides are also examined and the influence of each is justified by observing subtle structural changes in the mixed system via in situ synchrotron X-ray powder diffraction and 11B NMR measurements.
APA, Harvard, Vancouver, ISO, and other styles
26

Reed, Daniel Thomas. "An investigation into the synthesis and characterisation of metal borohydrides for hydrogen storage." Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/1008/.

Full text
Abstract:
With relatively high gravimetric and volumetric hydrogen storage capacities, borohydride compounds are being investigated for their potential use as hydrogen storage media. A study has been made into the mechanical milling of metal chlorides with sodium borohydride to try to form homoleptic borohydrides. Mechanical milling of zinc chloride with sodium borohydride resulted in the formation of a covalent complex NaZn\(_2\)(BH\(_4\))\(_5\). Thermal decomposition occurred at 80°C with a mass change of 12 wt.%, associated with the evolution of hydrogen and diborane. A composite mixture with magnesium hydride a reaction between diborane and magnesium hydride was observed form magnesium borohydride. Mechanical milling of calcium chloride or magnesium chloride with sodium borohydride did not produce calcium borohydride and magnesium borohydride, but rather resulted in solid solutions where chlorine ions substitute for borohydride ions within the cubic sodium borohydride lattice. Thermal decomposition of milled calcium chloride and sodium borohydride occurs at a similar manner to that of Ca(BH\(_4\))\(_2\) (from Sigma-Aldrich). Milled magnesium chloride and sodium borohydride thermally decomposes via several unknown phases with a weight loss of 4.4 wt.% yielding Mg, MgB\(_2\), B, and [B\(_{12}\)H\(_{12}\)]\(^{2-}\). Lithium borohydride investigated using Raman spectroscopy. After heating lithium borohydride through its orthorhombic to hexagonal phase change (118°C) and melting point (280°C), shifts in Raman peak position and peak width were measured as a function of temperature. This work shows the in-situ decomposition of LiBH\(_4\) observing formation of lithium dodecaborane (Li\(_2\)B\(_{12}\)H\(_{12}\)) at 340°C and amorphous boron from liquid lithium borohydride.
APA, Harvard, Vancouver, ISO, and other styles
27

Choudhury, Pabitra. "Theoretical and experimental study of solid state complex borohydride hydrogen storage materials." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Schmidt, Joel Edward. "The Use of Ammonium Carbamate as a High Specific Thermal Energy Density Material for Thermal Management of Low Grade Heat." University of Dayton / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1310666985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lamonte, Kevin Anthony. "Modeling H2 adsorption in carbon-based structures." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kung, Chih-Chien. "Development of Three Dimensional Platinum–Ruthenium/Graphene Foam Bimetallic Nanocatalysts for Methanol and Ethanol Oxidation Reactions in Energy Storage and Hydrogen Peroxide Detection in Biosensing." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1391512843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Haraldsson, Kristina. "On direct hydrogen fuel cell vehicles : modelling and demonstration." Doctoral thesis, Stockholm : Department of Chemical Engineering and Technology, Royal Institute of Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jarrett, Colby Lewis. "Quantifying the impact of pump performance, chemical conversion, and material properties on solar hydrogen production." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54297.

Full text
Abstract:
As renewable energy production becomes more prevalent, the challenge of producing renewable dispatchable fuel for the transportation sector remains unresolved. One promising approach is to produce hydrogen from solar energy with a two step thermochemical cycle which utilizes an oxygen storage material (OSM) to split water through two reversible reactions. Due to the strong coupling between reactor design, operational parameters, and OSM properties, the direct comparison of two OSMs is not straightforward. In order to guide the designs of OSMs for two-step thermochemical hydrogen production, a methodology is developed to model the max performance possible for a two-step thermochemical cycle. The novel contribution of this model considers the strong coupling between reactor operation, OSM properties, and reactor performance. Next, a method for screening and evaluating new OSMs which utilizes thermogravimetric analysis (TGA) is proposed. With this data, the modeling method previously developed is applied to determine maximum reactor efficiency possible with new materials. This allows many materials to be evaluated quickly, and facilitates further characterization new OSMs. Additionally, by comparing the predicted maximum efficiency of a new material with the efficiency of current ones, this method facilitates the comparison of two different OSMs on equal footing.
APA, Harvard, Vancouver, ISO, and other styles
33

Gupta, Apoorv. "Vätgaslagring, -distribution och -rening." Thesis, KTH, Skolan för kemivetenskap (CHE), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-213674.

Full text
Abstract:
Rising greenhouse gas (GHG) emissions is a major cause of concern today. The primary source of energy all over the globe is fossil fuels, a non-renewable source of energy that is expected to get exhausted in the next 60-100 years. Damage to environment cannot be easily reversed but the initial steps are to reduce the damage done.  Other alternative cleaner sources of energy are being looked into as viable options to replace fossil fuels. The objective of this study is to identify options for using hydrogen as an energy carrier in the future with a major focus on the transportation sector. This project is limited to theoretical study looking into the options for hydrogen storage and distribution. Gaseous and liquid hydrogen storage have been looked in to thoroughly and are far from meeting Department of Energy, USA, (DOE) ultimate targets for automobile fleets, hence a shift to other storage options is imminent. Metal hydride storage is believed to be the upcoming technology as the mid-term solution to storage issues and hence is given a lot of attention in this project. On-board storage in metal hydrides is studied and it can be concluded that no metal hydride known to us today is capable of satisfying the DOE ultimate targets. Finally, the study ends with options accessible to AGA to purchase hydrogen within Sweden and how they can be cleaned to meet the fuel cell gas purity requirements.
APA, Harvard, Vancouver, ISO, and other styles
34

Ryan, Katharine Rachel. "A study of ammonia borane and its derivatives." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:56384446-e80a-42f2-afdd-3c8a8ea33ce8.

Full text
Abstract:
This thesis reports the investigation of molecular materials for hydrogen storage applications with a particular emphasis on alkali-metal amidoboranes. I have developed new routes for the synthesis of $alpha$-LiNH$_{2}$BH$_{3}$ and NaNH$_{2}$BH$_{3}$, and have studied their hydrogen storage properties by thermogravimetric analysis, variable temperature X-ray and neutron diffraction and inelastic neutron scattering. I report the synthesis and full structural characterization of two new materials, KNH$_{2}$BH$_{3}$ and $beta$-LiNH$_{2}$BH$_{3}$, and have performed initial studies on a tetragonal phase of a variant of LiNH$_{2}$BH$_{3}$ with a preliminary structure solution. I have also performed variable temperature neutron diffraction on ammonium borodeuteride, ND$_{4}$BD$_{4}$, and report the full structural characterisation of the three phases identified as a result of these measurements. Furthermore, variable temperature inelastic neutron scatting (INS) measurements were performed on ammonia borane, NH$_{3}$BH$_{3}$, and the results are discussed in terms of crystallographic phase changes.
APA, Harvard, Vancouver, ISO, and other styles
35

Petit, Jean-Fabien. "Etude de la stabilité thermique de l’ammoniaborane : de la synthèse aux caractérisations thermogravimétriques et spectroscopiques." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS256.

Full text
Abstract:
Les matériaux à base de bore et d'azote présentent un grand potentiel et donc un grand intérêt pour des applications énergétique et en particulier dans le domaine du stockage de l'hydrogène. L'ammoniaborane (NH3BH3) s'est révélé, au milieu des années 2000, comme un matériau avec une grande capacité gravimétrique (19,6%m) et volumétrique (140 g.L-1) en hydrogène. Au cours de l'analyse de la bibliographie nous nous sommes aperçus que tous les travaux sur l'ammoniaborane portés sur sa déstabilisation thermique, nous avons donc choisi une approche originale en nous concentrant sur la stabilisation thermique de l'ammoniaborane. Mon travail de thèse a consisté à revisiter la synthèse de l'ammoniaborane pour en dégager les meilleurs paramètres de synthèse (précurseurs de bore et d'azote, solvant et température) possible en vue d'obtenir une température de début de déshydrogénation la plus haute possible. En effet, en faisant varier certains précurseurs nous avons pu observer une modification de la température de début de déshydrogénation et donc de la stabilité thermique de l'ammoniaborane. Après avoir déterminé les meilleurs paramètres de synthèses nous avons entrepris une étude thermique et thermolytique afin de comprendre quel(s) facteur(s) étai(en)t à l'origine de cette différence de stabilisation. Pour cela nous avons effectué une étude d'analyse thermogravimétrique couplée à un spectromètre de masse afin de déterminer le mécanisme de déshydrogénation et une étude en conditions isotherme afin de vérifier la stabilité des ammoniaboranes que nous avons synthétisés. Dans un troisième temps nous avons effectué une étude spectroscopique de surface, grâce à l'XPS et du matériau dans son ensemble, grâce à la RMN-MAS à l'état solide des noyaux de bore 11 et d'azote 15. Ces études nous ont permis de déterminer un nouveau mécanisme de déshydrogénation de l'ammoniaborane pour des expériences en conditions isotherme
Boron and nitrogen based-materials offer a great potential and interest in energy applications and in particular in the field of hydrogen storage. The ammonia borane (NH3BH3) was revealed, in the mid 2000s, as a material with high gravimetric (19.6%m) and volumetric (140 g.L-1) capacities in hydrogen. During the analysis of the literature we realized that all studies on ammonia borane treated on its thermal destabilization, so we chose an original approach by focusing our work on the thermal stabilization of ammonia borane. My thesis work focused on the synthesis of ammonia borane to identify the best synthesis parameters (boron and nitrogen precursors, solvent, and temperature) for the highest possible onset temperature. Indeed, by varying some precursors we observed a change in the onset temperature and therefore in the thermal stability of the ammonia borane. After determining the best synthesis parameters we undertook thermal and thermolytic studies to understand which factor(s) is(are) responsible for the stabilization's differences. For this, we performed thermogravimetric analysis coupled to mass spectrometer studies to determine the dehydrogenation mechanism and studies in isothermal conditions to verify the stability of our ammonia boranes. Thirdly we performed a spectroscopic study by XPS and solid state MAS-NMR of boron 11 and nitrogen 15. These studies allowed us to identify a new mechanism of dehydrogenation of ammonia borane for experiments in isothermal conditions
APA, Harvard, Vancouver, ISO, and other styles
36

Ayvali, Tugce. "One-pot Synthesis And Characterization Of Colloidally Robust Rhodium(0) Nanoparticles Catalyst: Exceptional Activity In The Dehydrogenation Of Ammonia Borane For Chemical Hydrogen Storage." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613375/index.pdf.

Full text
Abstract:
The production of transition metal(0) nanoparticles with controllable size and size distribution are of great importance in catalysis since their catalytic activity decreases as nanoparticles aggregate into clumps and ultimately to the bulk metal. Reducing the particle size of heterogeneous catalyst provides a significant rise in its activity as the fraction of surface atoms increases with decreasing particle size. Therefore, transition metal(0) nanoparticles need to be stabilized to certain extend in their catalytic applications by strong stabilizers. In this regard, tert-butylammonium octanoate [(CH3)3CNH3+][CH3(CH2)6COO-] seems to be an appropriate stabilizer for rhodium(0) nanoparticles since octanoate anion and its associated tert-butylammonium cation can provide a sufficient protection for rhodium(0) nanoparticles against aggregation by the combined electrostatic and steric effects. We report herein the preparation and characterization of rhodium(0) nanoparticles stabilized by tert-butylammonium octanoate and their catalytic use in the dehydrogenation of ammonia borane, H3NBH3, which appears to be the most promising hydrogen storage material due to its high hydrogen content (19.6 wt %). Rhodium(0) nanoparticles stabilized by tert-butylammonium octanoate were reproducibly prepared by the reduction of rhodium(II) octanoate dimer with tert-butylamine borane in toluene at room temperature and characterized by EA, XRD, ICP/OES, TEM, HRTEM, STEM, FTIR, XPS, UV-VIS and NMR spectroscopy. The new rhodium(0) nanoparticles is the first example of well-defined, reproducible, and isolable true heterogeneous catalyst used in the dehydrogenation of ammonia borane. They show record catalytic activity in the dehydrogenation of ammonia borane at room temperature with an apparent initial TOF value of 342 h-1 and TTO value of 1100.
APA, Harvard, Vancouver, ISO, and other styles
37

Nickels, Elizabeth Anne. "Structural and thermogravimetric studies of group I and II borohydrides." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:f18f8f7c-1837-4b96-b4bb-5f964e93899c.

Full text
Abstract:
This thesis investigates the structure and thermal behaviour of LiBH4, NaBH4, KBH4, LiK(BH4)2, Ca(BH4)2 and Sr(BH4)2. LiK(BH4)2 is the first mixed alkali metal borohydride and was synthesised and characterised during this work. The crystal structures of these borohydrides were studied using variable temperature neutron and synchrotron X-ray diffraction. The synthesis of isotopically enriched samples of 7Li11BD4, Li11BD4, Na11BD4 and K11BD4 allowed high quality neutron diffraction data to be collected. Particular attention was paid to the exact geometry of the borohydride ions which were generally found to be perfect tetrahedra but with orientational disorder. New structures of Ca(BH4)2 were identified and the first crystal structure of Sr(BH4)2 was determined from synchrotron X-ray diffraction data. Solid state 11B NMR and Raman spectroscopy provided further information about the structure of these borohydrides. The thermal behaviour of the borohydrides was investigated using thermogravimetric analysis with mass spectrometry of the decomposition gas products. Hydrogen is the main decomposition gas product from all of these compounds but small amounts of B2H6 and BH3 were also detected during decomposition. Thermogravimetic analyses of Na11BD4 and K11BD4 were completed whilst collecting in-situ neutron diffraction data allowing information about structural changes and mass losses to be combined in order to better understand the decomposition process.
APA, Harvard, Vancouver, ISO, and other styles
38

Meng, Yao. "Hydrogen electrochemistry in room temperature ionic liquids." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:be24c6ea-c351-4855-ad9c-98e747ac87e4.

Full text
Abstract:
This thesis primarily focuses on the electrochemical properties of the H2/H+ redox couple, at various metallic electrodes in room temperature ionic liquids. Initially, a comprehensive overview of room temperature ionic liquids, RTILs, compared to conventional organic solvents is presented which identifies their favourable properties and applications, followed by a second chapter describing the basic theory of electrochemistry. A third chapter presents the general experimental reagents, instruments and measurements used in this thesis. The results presented in this thesis are summarized in six further chapters and shown as follows. (1) Hydrogenolysis, hydrogen loaded palladium electrodes by electrolysis of H[NTf2] in a RTIL [C2mim][NTf2]. (2) Palladium nanoparticle-modified carbon nanotubes for electrochemical hydrogenolysis in RTILs. (3) Electrochemistry of hydrogen in the RTIL [C2mim][NTf2]: dissolved hydrogen lubricates diffusional transport. (4) The hydrogen evolution reaction in a room temperature ionic liquid: mechanism and electrocatalyst trends. (5) The formal potentials and electrode kinetics of the proton_hydrogen couple in various room temperature ionic liquids. (6) The electroreduction of benzoic acid: voltammetric observation of adsorbed hydrogen at a Platinum microelectrode in room temperature ionic liquids. The first two studies show electrochemically formed adsorbed H atoms at a metallic Pt or Pd surface can be used for clean, efficient, safe electrochemical hydrogenolysis of organic compounds in RTIL media. The next study shows the physicochemical changes of RTIL properties, arising from dissolved hydrogen gas. The last three studies looked at the electrochemical properties of H2/H+ redox couple at various metallic electrodes over a range of RTILs vs a stable Ag/Ag+ reference couple, using H[NTf2] and benzoic acid as proton sources. The kinetic and thermodynamic mechanisms of some reactions or processes are the same in RTILs as in conventional organic or aqueous solvents, but other remarkably different behaviours are presented. Most importantly significant constants are seen for platinum, gold and molybdenum electrodes in term of the mechanism of proton reduction to form hydrogen.
APA, Harvard, Vancouver, ISO, and other styles
39

Zaharieva, Roussislava. "Ab initio studies of equations of state and chemical reactions of reactive structural materials." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42784.

Full text
Abstract:
The motivations for the research issues addressed in this thesis are based on the needs of the aerospace structural analysis and the design community. The specific focus is related to the characterization and shock induced chemical reactions of multi-functional structural-energetic materials that are also know as the reactive structural materials and their reaction capabilities. Usually motivation for selection of aerospace structural materials is to realize required strength characteristics and favorable strength to weight ratios. The term strength implies resistance to loads experienced during the service life of the structure, including resistance to fatigue loads, corrosion and other extreme conditions. Thus, basically the structural materials are single function materials that resist loads experienced during the service life of the structure. However, it is desirable to select materials that are capable of offering more than one basic function of strength. Very often, the second function is the capability to provide functions of sensing and actuation. In this thesis, the second function is different. The second function is the energetic characteristics. Thus, the choice of dual functions of the material are the structural characteristics and energetic characteristics. These materials are also known by other names such as the reactive material structures or dual functional structural energetic materials. Specifically the selected reactive materials include mixtures of selected metals and metal oxides that are also known as thermite mixtures, reacting intermetallic combinations and oxidizing materials. There are several techniques that are available to synthesize these structural energetic materials or reactive material structures and new synthesis techniques constitute an open research area. The focus of this thesis, however, is the characterization of chemical reactions of reactive material structures that involve two or more solids (or condensed matter). The subject of studies of the shock or thermally induced chemical reactions of the two solids comprising these reactive materials, from first principles, is a relatively new field of study. The published literature on ab initio principles or quantum mechanics based approach contains the ab initio or ab initio-molecular dynamics studies in related fields of a solid and a gas. One such study in the literature involves a gas and a solid. This is an investigation of the adsorption of gasses such as carbon monoxide (CO) on Tungsten. The motivation for these studies is to synthesize alternate or synthetic fuel technology by Fischer-Tropsch process. In this thesis these studies are first to establish the procedure for solid-solid reaction and then to extend that to consider the effects of mechanical strain and temperature on the binding energy and chemisorptions of CO on tungsten. Then in this thesis, similar studies are also conducted on the effect of mechanical strain and temperature on the binding energies of Titanium and hydrogen. The motivations are again to understand the method and extend the method to such solid-solid reactions. A second motivation is to seek strained conditions that favor hydrogen storage and strain conditions that release hydrogen easily when needed. Following the establishment of ab initio and ab initio studies of chemical reactions between a solid and a gas, the next step of research is to study thermally induced chemical reaction between two solids (Ni+Al). Thus, specific new studies of the thesis are as follows: 1. Ab initio Studies of Binding energies associated with chemisorption of (a) CO on W surfaces (111, and 100) at elevated temperatures and strains and (b) adsorption of hydrogen in titanium base. 2. Equations of state of mixtures of reactive material structures from ab initio methods 3. Ab initio studies of the reaction initiation, transition states and reaction products of intermetallic mixtures of (Ni+Al) at elevated temperatures and strains. 4. Press-cure synthesis of Nano-nickel and nano-aluminum based reactive material structures and DTA tests to study experimentally initiation of chemical reactions, due to thermal energy input.
APA, Harvard, Vancouver, ISO, and other styles
40

Richard, Laura Amanda. "A study of the crystallographic, magnetic and electronic properties of selected ZrM2-H systems." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:276c59fe-cf45-42d2-a5a0-8c534c8b46bd.

Full text
Abstract:
Dissolution of hydrogen into intermetallic compounds characteristically occurs at interstitial sites, causing little alteration to the base metal substructure but often bringing about substantial electronic and magnetic changes to the material. These hydrogen-induced alterations in the intermetallic hydrides are of interest both on a fundamental research level and in terms of technological applications; however, there exists no general theory as to how and why these alterations arise. The objective of this research is to elucidate to general effect of hydrogen on intermetallic compounds through the study of crystallographic, magnetic and electronic properties. An investigation has been carried out on the properties of three intermetallic compound - hydrogen systems of general formula ZrM₂, where M = V, Cr, Mn. All three compounds reversibly absorbed hydrogen with no change in crystal symmetry: powder diffraction studies showed that hydrogen was accommodated in interstitial sites of the existing metal sublattice via lattice expansion. The measurement of the magnetic properties of these systems was combined with the determination of conductivity and dielectric properties in order to describe the electronic e¤ects of hydrogen absorption. Despite the lack of signi…cant structural alteration in these systems, electron transfer between the metal sublattice and hydrogen may occur, as manifested in the appearance/disappearance of magnetic phenomena and the increase/decrease of electrical conductivity. Whilst the hydrogen addition in ZrM₂-H occurs simply via an expansion of the crystal structure, hydrogen does not act purely as null dilutant - there exist subtle electronic changes connected with the hydriding process as well.
APA, Harvard, Vancouver, ISO, and other styles
41

SALMAN, MOHAMMED. "Etude thermophysique de la liaison hydrogene en vue d'applications au stockage thermique." Nice, 1988. http://www.theses.fr/1988NICE4250.

Full text
Abstract:
Utilisation de la reaction reversible a liaison hydrogene, entre l'acide acetique et la triethylamine pour le stockage chimique de la chaleur. Etude dynamique dans un reacteur chimique experimental; definition de la temperature de dissociation. Etude d'un deuxieme couple reactif: acide formique/n,n,n',n' tetramethylene diamine. Utilisation de melanges binaires de ces reactifs ayant des caracteristiques energetique optimales
APA, Harvard, Vancouver, ISO, and other styles
42

Lemort, Lucille. "Élaboration et caractérisation d'alliages hydrurables de type ABx (A=Pr, Nd, La, Mg ; B=Ni; x=3, 3.5, 3.8, 5) en vue de leur utilisation comme matière active pour électrode négative d'accumulateurs NiMH." Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00599399.

Full text
Abstract:
Une alternative aux énergies fossiles comme vecteur énergétique peut se présenter sous la forme de l'hydrogène et de son stockage. Les hydrures métalliques sont une des options possibles pour le stockage de l'hydrogène. Les accumulateurs alcalins Ni-MH présentent une technologie intéressante pour les applications portables et pour le développement des véhicules électriques hybrides (HEV). Afin de répondre à la demande d'augmentation de la capacité massique des accumulateurs, de nouveaux composés intermétalliques hydrurables de type ABx (3etlt;xetlt;5) sont étudiés. Le groupe A est constitué de terres rares partiellement substituées par du magnésium, le groupe B contient du Ni. Après un état de l'art sur ce type de composés, le travail de cette thèse consiste à rechercher les conditions d'élaboration des composés A1-yMgyNix (3etlt;xetlt;5, 0etlt;yetlt;1, A= La, Pr, Nd) ainsi que de les caractériser d'un point de vue structural et physico-chimique (DRX, microsonde électronique, ICP) et de déterminer leurs propriétés vis-à-vis de l'hydrogène (réac tion solide-gaz et électrochimique). Durant ce travail de nouvelles phases ont été découvertes et caractérisées : les phases (A1-yMgy)5Ni19
APA, Harvard, Vancouver, ISO, and other styles
43

Brun, Nicolas. "Chimie intégrative pour la conception de matériaux poreux fonctionnels avancés et applications." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2010. http://tel.archives-ouvertes.fr/tel-00593936.

Full text
Abstract:
Une organisation contrôlée de la porosité offre l'opportunité de combiner les avantages structuraux des macropores (diamètres supérieures à 50 nm), assurant l'intégrité et l'interconnectivité de l'ossature du matériau, avec ceux des pores plus étroits (méso- et micropores), déployant des surfaces spécifiques réactives importantes. L'élaboration de telles architectures, dites " hiérarchisées ", à l'échelle du laboratoire représente un véritable défi physico-chimique. Dans ce contexte, ce travail de thèse s'intéresse à l'élaboration de matériaux poreux fonctionnels avancés, s'inscrivant dans le concept de chimie intégrative, en combinant matière molle (mésophases lyotropes, émulsions directes concentrées, auto-assemblages organique-organique, etc.), procédé sol-gel, polymérisation organique et principe de l'empreinte " dure ". Dans une première approche générale, des monolithes hybrides macrocellulaires à base de silice ont été fonctionnalisés par greffage covalent post-synthèse ou par co-condensation de précurseurs organosilanes appropriés. Dès lors, l'encapsulation de complexes luminescents (ions europium), de catalyseurs métalliques piégés dans une phase liquide ionique supportée (sels ou nanoparticules de palladium), ou d'entités biologiques (enzymes hydrosolubles : lipases) a offert une modulation rationnelle des propriétés optiques, catalytiques ou biocatalytiques induites in fine. Dans une seconde approche générale, l'utilisation de monolithes de silice macrocellulaires comme empreintes dures " sacrificielles " a permis la genèse de composés carbonés poreux, associée à un contrôle structural sur plusieurs échelles. Dès lors, une surface spécifique développée et une porosité hiérarchisée, conjuguées à des propriétés intrinsèques opportunes (stabilités thermique et chimique, conductivité électrique), ont offert un large champ d'applications, comme électrodes pour systèmes de stockage de l'énergie électrochimique (batteries Li-ion et condensateurs à double couche électrochimique), sites de nucléation de borohydrures de lithium (LiBH4) pour le stockage de l'hydrogène, ou encore comme électrodes enzymatiques pour biopiles.
APA, Harvard, Vancouver, ISO, and other styles
44

Andrieux, Jérome. "Stockage de l'hydrogène dans les borohydrures alcalins : hydrolyse du borohydrure de sodium." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00654299.

Full text
Abstract:
Le contexte environnemental (réchauffement climatique) et économique (épuisement des ressources en énergies fossiles) entraîne une nécessaire mutation du paysage énergétique mondial. L'hydrogène est présenté comme un vecteur d'énergie propre pouvant, par l'intermédiaire d'une pile à combustible, fournir de l'électricité pour diverses applications (nomade, portable, automobile et stationnaire). Cependant, son développement reste tributaire de son mode de stockage. Parmi les composés présentant de bonnes capacités de stockage, le borohydrure de sodium NaBH4 se distingue puisqu'il permet aussi un dégagement contrôlé de l'hydrogène d'après la réaction d'hydrolyse suivante : ( ) (2 ) ( ) ( ) 4 ( ) 4 2 2 2 2 NaBH ++ x H O l→NaBO . xH O + H g Il constitue ainsi une solution sûre et facile d'utilisation, et est donc envisageable pour des applications grand public. La thèse avait pour objectif l'approfondissement des connaissances relatives à la réaction catalysée d'hydrolyse du borohydrure de sodium selon deux axes principaux: la catalyse de la réaction et l'étude des produits d'hydrolyse. Concernant le premier axe, notre objectif était de mieux comprendre et d'améliorer la cinétique de la réaction d'hydrolyse, les catalyseurs étudiés étant à base de cobalt. Un catalyseur " modèle " a été utilisé et comparé à des nanoparticules métalliques synthétisées et d'autres espèces chimiques à base de cobalt (oxyde, hydroxyle et carbonate). Le modèle cinétique de Langmuir-Hinshelwood a permis de décrire la cinétique de l'hydrolyse. Un mécanisme réactionnel basé sur les adsorptions en surface du catalyseur de BH4 - et de H2O a été proposé. Enfin, la nature des sites actifs en surface a été discutée. En ce qui concerne le second axe de la thèse, nous avions deux objectifs : identifier les phases formées en fonction des conditions expérimentales et approfondir les connaissances thermodynamiques du système binaire NaBO2-H2O pour définir les différents équilibres se formant à l'issu de la réaction d'hydrolyse. Pour ce faire, les borates ont d'abord été synthétisés, puis caractérisés en termes de structure cristallographique et de stabilité en température. C'est ainsi qu'un nouveau borate de sodium, Na3[B3O4(OH)4] ou NaBO2*2/3H2O, a été obtenu. D'autre part, l'étude des équilibres liquide+solide, solide+solide et liquide+vapeur nous a permis d'établir le diagramme binaire NaBO2-H2O à pression atmosphérique.
APA, Harvard, Vancouver, ISO, and other styles
45

St, John Adam. "Development of a Hydrogen Producing Thermal Control for Chemical Hydrogen Storage." Thesis, 2007. http://hdl.handle.net/1974/936.

Full text
Abstract:
This thesis investigated a potential improvement to hydrogen storage for fuel cells using a thermally efficient hydrogen storage method. The efficiency of the storage system was improved using a metal hydride system to act as a thermal control unit for an exothermic chemical hydrogen storage system. A cylindrical shaped “hybrid” reactor was created to allow hydrogen production from a sodium borohydride packed bed reactor and the metal hydride. Additionally, a custom built pressure-composition-temperature apparatus was built to record the amount of hydrogen desorption from the metal hydride while isolating the metal from potential poisons such as oxygen. Before using the chemical hydride packed bed, heat transfer through the reactor was studied using circulating water. The water experiments showed that an increase in heat flux to the reactor led to a faster desorption rate of hydrogen from the metal hydride resulting in a larger temperature drop throughout the reactor. After the operating characteristics of the hybrid reactor were studied, a 10 wt% solution of sodium borohydride was created and pumped through the packed bed to produce enough hydrogen for a 300 W fuel cell. The amount of heat produced from the packed bed portion of the reactor was significant, but temperatures levelled to around 80 °C. As expected, temperature control was directly proportional to the rate of hydrogen release from the metal hydride. On average, approximately 10% of the available heat energy was transferred to the metal hydride, and the hybrid reactor operated with gravimetric and volumetric energy densities of 0.27 kWh·kg-1 and 1.29 kWh·L-1 respectively. If the hybrid reactor is used solely to control peak temperatures, the amount of metal hydride necessary for thermal control could be decreased. Additionally, improvements in heat transfer as well as the hydrogen storage materials themselves would increase the energy density values further. When compared to other energy storage devices, the hybrid reactor without improvements is competitive as a backup power generator due to its silent operation and large volumetric energy density. Since the hybrid reactor can provide quiet and cool energy storage in a relatively small volume, it may become an effective and efficient means for hydrogen storage with limited improvements.
Thesis (Master, Mining Engineering) -- Queen's University, 2007-12-06 14:45:56.551
AUTO21
APA, Harvard, Vancouver, ISO, and other styles
46

Nieckarz, Robert John. "Strong Hydrogen Bonds in Anion-Solvent Clusters: Structural and Thermochemical Properties." Thesis, 2008. http://hdl.handle.net/10012/3914.

Full text
Abstract:
Insight into the effect of secondary interactions, fluorination, as well as substituent effects on strong ionic hydrogen bonds has been acquired through studies of FHF-, NFnH3-n•••F- (n = 0..2) and [M-H]- (M = Glycine, Alanine, Valine, Serine) clustered with ROH (R = H, CH3, C2H5). Excellent agreement was observed between thermochemical values obtained from high pressure mass spectrometry measurements and those predicted from MP2(full)/6-311++G(d,p)//B3LYP/6-311++G(d,p) calculations. In the examination of the clustering of FHF-, a strong correlation between the hydrogen bond strength and the gas phase acidity of the solvent was observed. In addition, several interesting observations on various structural and thermochemical properties were made for each of the three solvents. Upon formation of clusters with water, it was found that the large entropic advantage of one particular structure, which was not the most enthalpically favored, was significant enough to make it the predominant species within the ion source. In the case of methanol solvation, no evidence of secondary interaction of the methyl group and any other moiety could be found. The structural details revealed from calculations of the ethanol-solvated clusters indicate that secondary interactions between the terminal methyl group and FHF- had an impact on the length of both the FHF and OHF bonds present. In an attempt to gain insight into the effects of fluorination on hydrogen bonding, clusters of NFnH3-n (n = 0..2) and F- have been computationally investigated. The hydrogen bond energy in NH3∙∙∙F-, NFH2∙∙∙F- and NF2H∙∙∙F- were calculated to be -67.9 kJ∙mol-1, -120.2 kJ∙mol-1 and -181.2 kJ∙mol-1, respectively, and clearly show the effect of fluorination on hydrogen bond strength in amine-fluoride systems. The change in enthalpy and entropy for the clustering of methanol to NF2H∙∙∙F- to form the fluoride bound dimer of methanol and difluoramine has been measured via high pressure mass spectrometry to be -68.3 kJ∙mol-1 and -90.5 J∙K-1∙mol-1. These values are in excellent agreement with the calculated analogues, -70.9 kJ∙mol-1 and -88.5 J∙K-1∙mol-1. Finally, an examination of the thermochemical properties associated with the formation of a hydrogen bond linkage between protic solvents and deprotonated amino acids has been performed. In addition to observations of the effect of side chain substitution, a comparison between measured and calculated properties has provided insight into the thermochemical effects arising from the isomeric nature of this clustering system. A new theoretical model describing the impact of a distribution of isomers on thermochemical measurements made via high pressure mass spectrometry is given. When this new model was applied, and the distribution of isomers correctly accounted for, the measured values of 〖∆H〗^°, 〖∆S〗^° and 〖∆G〗_298^° consistently agreed, to a very high degree of accuracy, with those predicted by MP2(full)/6-311++G(d,p)//B3LYP/6-311++G(d,p) calculations. As well, IR spectra for the clustering of deprotonated glycine with ROH have been calculated and analyzed to demonstrate the ability of techniques such as IRMPD to identify the presence of a distribution of isomers.
APA, Harvard, Vancouver, ISO, and other styles
47

McLafferty, Jason Macdonald Digby D. "Electrochemical research in chemical hydrogen storage materials sodium borohydride and organotin hydrides /." 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-3855/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Peng, Dan. "Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage." Thesis, 2013. http://hdl.handle.net/10012/7931.

Full text
Abstract:
Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility of power grid operations. Underground storage of hydrogen with natural gas (UHNG) is proposed as a new energy storage technology, to be considered for utility-scale energy storage applications. UHNG is a composite technology: using electrolyzers to convert electrical energy to chemical energy in the form of hydrogen. The latter is then injected along with natural gas into existing gas distribution and storage facilities. The energy stored as hydrogen is recovered as needed; as hydrogen for industrial and transportation applications, as electricity to serve power demand, or as hydrogen-enriched natural gas to serve gas demand. The storage of electrical energy in gaseous form is also termed “Power to Gas”. Such large scale electrical energy storage is desirable to baseload generators operators, renewable energy-based generator operators, independent system operators, and natural gas distribution utilities. Due to the low density of hydrogen, the hydrogen-natural gas mixture thus formed has lower volumetric energy content than conventional natural gas. But, compared to the combustion of conventional natural gas, to provide the same amount of energy, the hydrogen-enriched mixture emits less carbon dioxide. This thesis investigates the dynamic behaviour, financial and environmental performance of UHNG through scenario-based simulation. A proposed energy hub embodying the UHNG principle, located in Southwestern Ontario, is modeled in the MATLAB/Simulink environment. Then, the performance of UHNG for four different scenarios are assessed: injection of hydrogen for long term energy storage, surplus baseload generation load shifting, wind power integration and supplying large hydrogen demand. For each scenario, the configuration of the energy hub, its scale of operation and operating strategy are selected to match the application involved. All four scenarios are compared to the base case scenario, which simulates the operations of a conventional underground gas storage facility. For all scenarios in which hydrogen production and storage is not prioritized, the concentration of hydrogen in the storage reservoir is shown to remain lower than 7% for the first three years of operation. The simulation results also suggest that, of the five scenarios, hydrogen injection followed by recovery of hydrogen-enriched natural gas is the most likely energy recovery pathway in the near future. For this particular scenario, it was also found that it is not profitable to sell the hydrogen-enriched natural gas at the same price as regular natural gas. For the range of scenarios evaluated, a list of benchmark parameters has been established for the UHNG technology. With a roundtrip efficiency of 39%, rated capacity ranging from 25,000 MWh to 582,000 MWh and rated power from 1 to 100 MW, UHNG is an energy storage technology suitable for large storage capacity, low to medium power rating storage applications.
APA, Harvard, Vancouver, ISO, and other styles
49

Lee, Jeongyong. "Synthesis and gas sorption study of microporous metal-organic frameworks for hydrogen and methane storage." 2007. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.16719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Stonor, Maxim Richard Alphonse. "Bio-Energy with Carbon Capture and Storage (BECCS)- Production of H2 with Suppressed CO2 Formation via Alkaline Thermal Treatment." Thesis, 2017. https://doi.org/10.7916/D87M0DNW.

Full text
Abstract:
The demand for energy continues to grow but concerns over climate change means that conventional fossil fuels will eventually need to be replaced. The solution to the energy crisis will require a combination of both conventional energy sources with CO2 capture and renewable technologies. While many renewable technologies exist, it is not common that CO2 capture is incorporated into the process. Biomass is an ideal feed-stock for bio-energy production as it is CO2 neutral. Many thermochemical conversion technologies exist, but the Alkaline Thermal Treatment (ATT) reaction is particularly interesting because it combines conventional thermochemical conversion with CO2 capture in order to create a process that is potentially CO2 negative. By reacting biomass with a metal hydroxide, high purity H2 can be produced while simultaneously locking the carbon as a stable carbonate, which is a form of Bio-energy with Carbon Capture & Storage (BECCS). The H2 can then be used for applications ranging from Fischer-Tropsch synthesis to PEM fuel cells. Group I & II hydroxides were investigated for their ability to react with cellulose (a biomass model compound) in the ATT reaction scheme. Comparison between both groups indicated that NaOH and Ca(OH)2 were the best hydroxides from groups I & II respectively. However, the amount of H2 produced during the ATT of cellulose with Ca(OH)2 is considerably lower than with NaOH. A 10% Ni/ZrO2 catalyst was then added to increase the yield of H2 from the reaction between cellulose and Ca(OH)2. It was found that at 20% catalyst loading, the amount of H2 produced and the suppressed level of CO2 was similar to the ATT with NaOH. Several other catalytic metals were also investigated and found to have the following H2 production activity: Ni > Pt≈Pd > Co > Fe, Cu. Since Ni was the most active and has a considerably lower cost than noble metals it was chosen for additional studies. The ATT reaction in the presence of Ni has two distinct steps in the formation of H2 from cellulose. The presence of Ca(OH)2 enhances the formation of linear oxygenates from cellulose. These oxygenates are then reformed over the Ni-based catalyst to H2 and CO2, the latter of which is captured by Ca(OH)2 to form CaCO3. If either Ca(OH)2 or Ni was removed from the reaction, the yield H2 fell significantly. Although the reactants and the catalyst are all solid materials, they do not need to be physically mixed. The Ni-based catalyst produced H2 primarily through the reforming of gaseous species and therefore could be placed ex-situ of the cellulose and Ca(OH)2 mixture. However, placing the catalyst away from Ca(OH)2 prevented CO2 capture. In order to remedy this Ca(OH)2 was mixed with the Ni-based catalyst and mixture was placed ex-situ of pure cellulose. This created a process whereby cellulose could be decomposed thermally followed by a single gas-phase Alkaline Thermal Treatment (GATT) reforming step of the pyrolysis vapors to H2 with suppressed CO2.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography