Academic literature on the topic 'Thermochemical modelling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermochemical modelling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermochemical modelling"

1

Cherednichenko, Oleksandr, Serhiy Serbin, Mykhaylo Tkach, Jerzy Kowalski, and Daifen Chen. "Mathematical Modelling of Marine Power Plants with Thermochemical Fuel Treatment." Polish Maritime Research 29, no. 3 (September 1, 2022): 99–108. http://dx.doi.org/10.2478/pomr-2022-0030.

Full text
Abstract:
Abstract The article considers the methodological aspects of the theoretical investigation of marine power plants with thermochemical fuel treatment. The results of the study of the complex influence of temperature, pressure, and the ratio of steam / base fuel on the thermochemical treatment efficiency are presented. The adequacy of the obtained regression dependences was confirmed by the physical modelling of thermochemical fuel treatment processes. For a gas turbine power complex with a thermochemical fuel treatment system, the characteristics of the power equipment were determined separately with further merging of the obtained results and a combination of material and energy flow models. Algorithms, which provide settings for the mathematical models of structural and functional blocks, the optimisation of thermochemical energy transformations, and verification of developed models according to the indicators of existing gas turbine engines, were created. The influence of mechanical energy consumption during the organisation of thermochemical processing of fuel on the efficiency of thermochemical recuperation is analysed.
APA, Harvard, Vancouver, ISO, and other styles
2

Wheeler, Vincent M., Roman Bader, Peter B. Kreider, Morteza Hangi, Sophia Haussener, and Wojciech Lipiński. "Modelling of solar thermochemical reaction systems." Solar Energy 156 (November 2017): 149–68. http://dx.doi.org/10.1016/j.solener.2017.07.069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ogawa, Toru, and Takashi Iwai. "Thermochemical modelling of UZr alloys." Journal of the Less Common Metals 170, no. 1 (June 1991): 101–8. http://dx.doi.org/10.1016/0022-5088(91)90055-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Greenwood, A. J., I. Kamp, L. B. F. M. Waters, P. Woitke, W. F. Thi, Ch Rab, G. Aresu, and M. Spaans. "Thermochemical modelling of brown dwarf discs." Astronomy & Astrophysics 601 (April 26, 2017): A44. http://dx.doi.org/10.1051/0004-6361/201629389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Braz, Ana, Maria Margarida Mateus, Rui Galhano dos Santos, Remígio Machado, João M. Bordado, and M. Joana Neiva Correia. "Modelling of pine wood sawdust thermochemical liquefaction." Biomass and Bioenergy 120 (January 2019): 200–210. http://dx.doi.org/10.1016/j.biombioe.2018.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Melgar, Andrés, Juan F. Pérez, Hannes Laget, and Alfonso Horillo. "Thermochemical equilibrium modelling of a gasifying process." Energy Conversion and Management 48, no. 1 (January 2007): 59–67. http://dx.doi.org/10.1016/j.enconman.2006.05.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wołowiec-Korecka, E. "Methods of data mining for modelling of low-pressure heat treatment." Journal of Achievements in Materials and Manufacturing Engineering 1, no. 85 (November 1, 2017): 31–40. http://dx.doi.org/10.5604/01.3001.0010.7987.

Full text
Abstract:
Purpose: This paper addresses the methods of the modelling of thermal and thermochemical processes used in computer-aided design, optimization and control of processes of thermal and thermochemical treatment in terms of obtaining real-time results of the calculations, which allows for observation of how an item changes during its treatment to respond immediately and to determine the parameters of a corrective process should any irregularities be detected. The main goal of the literature review was to develop a methodology for the design of functional and effective low-pressure processes of thermal and thermochemical treatments using effective calculation methods. Design/methodology/approach: A detailed analysis was conducted regarding the modelling methods with low-pressure carburizing and low-pressure nitriding. Findings: It was found the following criteria of methods selection of heat treatment modelling should be applied: data quality, data quantity, implementation speed, expected relationship complexity, economic and rational factors. Practical implications: Because of its non-equilibrium nature and transient states in the course of the processes computational support is particularly required in low-pressure thermochemical treatments. The primary goal of the simulation is to predict the course of the process and the final properties of the product, what ensures the repeatability of the process results. Originality/value: It was presented a synthetic presentation of modelling methods, in particular methods of artificial intelligence; it was also analysed the possibilities and risks associated with methods.
APA, Harvard, Vancouver, ISO, and other styles
8

Chalyavi, Nahid, Peter S. Doidge, Richard J. S. Morrison, and Guthrie B. Partridge. "Fundamental studies of an atmospheric-pressure microwave plasma sustained in nitrogen for atomic emission spectrometry." Journal of Analytical Atomic Spectrometry 32, no. 10 (2017): 1988–2002. http://dx.doi.org/10.1039/c7ja00159b.

Full text
Abstract:
Fundamental characteristics of a microwave plasma sustained in nitrogen (Agilent 4200 MP-ES) are investigated by a combination of thermochemical modelling and spectroscopic techniques, including Thomson scattering.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Chengcheng, Hongkun Ma, Abdalqader Ahmad, Hui Yang, Mingxi Ji, Boyang Zou, Binjian Nie, et al. "Discharging Behavior of a Fixed-Bed Thermochemical Reactor under Different Charging Conditions: Modelling and Experimental Validation." Energies 15, no. 22 (November 9, 2022): 8377. http://dx.doi.org/10.3390/en15228377.

Full text
Abstract:
Thermochemical heat storage has attracted significant attention in recent years due to potential advantages associated with very high-energy density at the material scale and its suitability for long-duration energy storage because of almost zero loss during storage. Despite the potential, thermochemical heat storage technologies are still in the early stage of development and little has been reported on thermochemical reactors. In this paper, our recent work on the charging and discharging behavior of a fixed-bed thermochemical reactor is reported. Silica gels were used as the sorbent for the experimental work. An effective model was established to numerically study the effect of different charging conditions on the discharging behavior of the reactor, which was found to have a maximum deviation of 10.08% in terms of the root mean square error compared with the experimental results. The experimentally validated modelling also showed that the discharging temperature lift increased by 5.84 times by changing the flow direction of the air in the discharging process when the charging level was at 20%. At a charging termination temperature of 51.25 °C, the maximum discharging temperature was increased by 2.35 °C by reducing the charging flow velocity from 0.64 m/s to 0.21 m/s. An increase in the charging temperature and a decrease in the air humidity increased the maximum discharging outlet temperature lift by 3.37 and 1.89 times, respectively.
APA, Harvard, Vancouver, ISO, and other styles
10

Darkwa, K., and P. W. O'Callaghan. "Mathematical modelling of a thermochemical energy store: Automobile application." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 211, no. 5 (May 1, 1997): 337–46. http://dx.doi.org/10.1243/0954407971526489.

Full text
Abstract:
An analytical evaluation of a thermochemical store for minimizing energy consumption and pollutants simultaneously from automobile engines has been carried out. The analysis of the model indicates a possibility of achieving a working temperature of a typical 2 litre petrol engine within 4 minutes. However, the viability of the model depends on addressing issues such as the life cycle of the storage material and the bed configuration of the store. Experimental validation is therefore recommended.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thermochemical modelling"

1

Siddons, Graham. "Thermochemical databases for light source simulation and modelling." Thesis, University of Sheffield, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Laios, Michail. "Ammonia Metal Halides Thermochemical Heat Storage System Design." Thesis, KTH, Energiteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263607.

Full text
Abstract:
One of the most crucial issues nowadays is the protection of the environment and the replacement of fossil fuels, which are abundantly used around the world, with more efficient and renewable sources. The highest portion of global energy demands today is used in heating and cooling purposes. One way of alleviating the fossil-based thermal energy uses is to harvest excess thermal energy using thermochemical storage materials (TCMs) for use at heating/cooling demands at different times and locations. Along this, in this master’s thesis, a bench-scale thermochemical heat storage (TCS) system is numerically designed, as a part of a collaborative project: Neutrons for Heat Storage (NHS), funded by Nordforsk. The TCS system that is designed herein employs the reversible chemical reaction of ammonia with a metal halide (MeX) for a heat storage capacity of 0.5 kWh, respectively releasing and storing heat during absorption and desorption of ammonia into and from the MeX. This system is designed for low temperature heat applications, around 40-80 °C. SrCl2 is chosen as the metal halide to be used, based on the research outcomes in determining the most suitable materials conducted by NHS project partners. In the ammonia-SrCl2 system, only the absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3 are considered. The main reason is because absorption/desorption between the last ammine and SrCl2 undergoes at a significantly higher/lower reaction pressure (for a given temperature), with a significant volume change compared to the rest of the ammines, and therefore is practically less cost effective. This thesis also includes a detailed discussion of four different thermochemical storage designs from literature, found as the most relevant to the present TCS system study, which use the reaction between ammonia and metal halides. The first system that was examined is a TCS system built by the NHS project partners at Technical University of Denmark (DTU), owing to its similarities with the desired project, regarding the design and parameters the system uses. This system works in batch mode, only allowing either absorption (i.e. heat release) or desorption (i.e. heat storage) at a given cycle. Thus, upgrading the design of this TCS system at DTU is considered as a most-likely solution to the research objectives of this current thesis project. Moreover, the TCS system at DTU uses storage conditions and desorption temperature similar to the current project’s desired low temperature range of 40-80 °C. The second system discussed herein from literature uses two reactors for cold and heat generation, which means that both charging and discharging processes occur simultaneously. This simultaneous operability is the main reason that this particular system was examined in this thesis. The next discussed system from literature also uses two reactors, for absorption and desorption processes, which work reversibly when each process is completed, like in the desired concept of this project. These two systems (i.e., the secondly and the thirdly discussed systems) use the reversible solid-gas reaction for absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3, however, the conditions of pressure and temperature between them differ. The second system from literature operates at desorption and absorption at respective conditions of 96 °C, 15 bar and 87 °C, 11 bar while the third system discussed operates at 103 °C, 16 bar and 59 °C, 3 bar during desorption and absorption respectively. The last system from literature that is discussed herein provides the same desorption temperature of 80 °C. Inaddition this particular study suggests that the reaction of solid with gaseous NH3 is better (than the solid with liquid NH3 reaction) based on results derived from several different low-pressure experiments of the reactions. The main differences between all these discussed systems from literature, as opposed to the desired TCS system design in this thesis project, concern the systems’ operating mode and the pressure and temperature-conditions. The first difference is that only one of the examined systems pumps the solid VIII powder salt around the system in contrast to the others that keep the salt static inside the reactors and pumped only the ammonia around the system, as chosen in the current system. The second difference concerns the operating conditions during absorption and desorption reactions, where these different systems operate at a widely different pressure and temperature conditions as compared to the current system expectations. Thus, there are four main lessons that were learnt via this literature analysis, to improve the TCS system at DTU to the desired new system in this work. The first lesson is related to the reactants’ transportation mechanism that should be used in this system. Regarding this, it was decided to maintain the solid salt (metal halide) stationary inside each reactor (but not pumping it instead of ammonia), similar to the majority of designs discussed from literature. According to the second and third lessons, the solid-gas reaction is the most suitable solution and only the reactions of absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3 are considered, following the experience from literature (for the reasons explained earlier). The last lesson regards the system’s suitable operating conditions and more specifically the TCS system’s temperatures that should match the district heating temperatures. Thus, the temperature point that was chosen as a priority was 80 °C, from the range 40- 80 °C set in the partner project NHS. To maintain this condition, therefore, the most suitable condition of pressure of both reactions (according to the equilibrium pressure vs temperature curve) was chosen to be at around 8 bar. This same pressure was chosen for both reactions, since the pressure difference between these reactors and the storage of ammonia (i.e. from 8 to 10 bar) should be as small as possible due to the high costs that can arise in the case of a higher pressure difference (i.e. requiring more compressors and heat exchangers). Inspired by these literature cases, firstly a conceptually suitable TCS system was proposed in this project and after that the final desired system was designed and was implemented and evaluated numerically. The numerical design and optimization of the chosen TCS system was performed herein by using the software Aspen Plus (version 9), which contains both fluids and solids in a simulation environment, using consistent physical properties. This TCS system is designed to store and release heat at around 80 °C and 8 bar through absorption and desorption by using two identical reactors respectively. Each reactor includes the amount of around 1 kg (more specifically 0.985 kg) strontium chloride salt reacting with 1.7 kg of ammonia. A verification system is also modelled in Aspen, using available experimental data from literature. Here, the modelled novel system design was adapted to this chosen other system layout from literature which uses the same reaction pair, yet at different operating conditions. This adapted system design in Aspen was then used to verify the chosen configuration and the reliability of the constructed system for the NHS project. Good agreements between the modelled results in Aspen against the available experimental data of this verification model are obtained. A sensitivity analysis is also conducted herein on the proposed novel TCS system to identify the optimum operating conditions and the behaviour of the chosen most important parameters of the system. The designed system provides an energy storage capacity of 0.5 kWh for the specific amounts (in volumetric flow rates) of ammonia and monoammine of strontium chloride, that comes from the analysis, of 1.08696 e-05 kmol/s and 1.5528 e-06 kmol/s respectively. For these specific values of the HTF, the analysis showed that the volumetric flow rates of the heat and cold external sources must be 1.56 l/min (which is decreasing with the increase of the inlet HTF temperature) and 0.42 l/min (which is increasing with the increase of the inlet HTF temperature) respectively. In conclusion, this study presents an ammonia-SrCl2 TCS benchscale system design that allows continuous heat storage and release, in an easy-to-scale up design, also suggesting optimum operating conditions.
En av de mest avgörande frågorna i dag är skyddet av miljön och utfasningen av fossila bränslen som används allmänt över hela världen för mer effektiva och förnybara resurser. Den största delen av den globala energibehovet idag avser uppvärmnings- och kylapplikationer. Ett sätt att minska fossilbaserad termiskenergianvändning är att lagra överskottsvärmeenergi genom termokemiska lagringsmaterial (TCM) och använda den för värme- och kylbehov vid olika tidpunkter och platser. I samband med detta är ett termokemiskt värmelagringssystem numeriskt utformat i detta mastersexamensprojekt, som en del av ett samarbetsprojekt Neutrons for Heat Storage (NHS) finansierat av Nordforsk. Det termokemiska lagringssystemet (TCS) som är konstruerat utnyttjar den reversibla kemiska reaktionen av ammoniak med en metallhalogenid (MeX) för en värmelagringskapacitet på 0.5 kWh, och frigör och lagrar värme respektive under absorption och desorption av ammoniak till och från MeX. Systemet är designat för lågtemperaturuppvärmningstillämpningar runt 40-80 °C. SrCl2 väljs som det mest lämpliga metallhalogeniden för systemet, baserat på studier som utförts av NHS-projektpartnerna. I ammoniak SrCl2-systemet beaktas endast absorption och desorption mellan SrCl2NH3 och SrCl28NH3. De huvudsakliga orsakerna till detta är att absorptionen/desorptionen mellan den sista aminen och SrCl2 kräver ett betydligt högre/lägre reaktionstryck (för en given temperatur), och resulterar i en betydande volymförändring jämfört med resten av aminerna, och är därför praktiskt taget mindre kostnadseffektivt. Detta mastersexamensprojekt inkluderar en detaljerad genomgång av fyra olika TCS-system från litteratur som använder reaktionen mellan ammoniak och metallhalogenider. Dessa väljs här eftersom dessa anses vara de mest relevanta (från litteratur) jämfört med det valda systemet i denna studie. Det första undersökta systemet är ett system byggt av NHS-projektpartnerna vid Danmarks Tekniska Universitet (DTU). Detta har valts på grund av likheterna med det önskade systemet i det aktuella mastersexamensprojektet, vad gäller systemdesign och parametrar. Detta system fungerar i batch-läge, vilket endast tillåter antingen absorption (dvs värmeavgivning) eller desorption (dvs värmelagring) under en specifik cykel. Således kan en uppgraderad design av detta TCS-system vid DTU möjligen vara en lämplig lösning på forskningsmålen för detta mastersexamensprojekt. Dessutom använder detta TCS-system från DTU ganska liknande driftsförhållanden (temperaturer och tryck) i nivå med det aktuella projektets önskade lågtemperaturintervall på 40-80 °C. Det andra systemet från den litteratur som diskuterats använder två reaktorer för kyla och värmeproduktion, vilket innebär att både laddningsoch urladdningsprocesser sker samtidigt. Denna samtidiga operation är främst anledningen till att systemet undersöktes, eftersom detta är en önskad funktion att uppnå i det aktuella projektet. Nästa system från den litteratur som diskuteras häri använder också två reaktorer för absorptions- och desorptionsprocesser, som fungerar reversibelt när varje process är klar, precis som önskat i detta projekt. Dessa två system (dvs det andra och det tredje diskuterade systemen) använder den reversibla fastgasreaktionen för absorption och desorption mellan SrCl2NH3 och SrCl28NH3, dock vid olika tryck- och temperaturförhållanden. Det andra systemet arbetar nämligen under kombinationer av absorption och desorption av 96 °C, 15 bar och 87 °C, 11 bar, medan det tredje systemet arbetar vid 103 °C, 16 bar respektive 59 °C, 3 bar. Det sista systemet som diskuterats från litteraturen arbetar vid samma temperatur som det önskade systemet gör (dvs. 80 ° C) och genom olika lågtrycksexperiment visar att den fasta salt-gasreaktionen är ett bättre val än reaktionen av det fasta saltet med flytande gasreaktion. De viktigaste skillnaderna mellan alla dessa diskuterade system från litteratur i motsats till det önskade TCS-system i detta mastersexamensprojekt, avser systemdriftläge samt deras tryck och X temperaturförhållanden. Den första skillnaden är att endast ett av alla undersökta system pumpar saltet i fast pulverform, till skillnad från de andra som håller saltet stillastående i reaktorerna och endast pumpar ammoniak. Den andra skillnaden gäller driftsförhållandena under absorptions- och desorptionsreaktioner där dessa system arbetar vid mycket olika tryck- och temperaturförhållanden jämfört med det nuvarande systemet. Således, från översynen av alla system, finns det fyra huvudsakliga lärdomar för att förbättra TCS-systemet vid DTU till det önskade nya systemet. Den första är relaterad till reaktanttransportmekanismen som bör användas i detta system. I detta avseende har det beslutats att hålla det fasta saltet (metallhalogenid) stillastående i varje reaktor (men inte pumpa det istället för ammoniak), till skillnad från de flesta system i litteraturen. Enligt dem andra och tredje lektionerna är den fasta gasreaktionen den mest lämpliga lösningen och endast reaktionerna på absorption och desorption mellan SrCl2∙NH3 och SrCl2∙8NH3 bör övervägas enligt erfarenheten från litteraturen (av de skäl som förklarats tidigare). Den sista lärdomen avser systemets lämpliga driftsförhållanden och mer specifikt TCS-systemets temperaturer för att matcha fjärrvärmetemperaturerna. Den temperaturpunkten valts som prioritet, från området 40-80 °C inställt av moderprojektet NHS, sattes till 80 °C. För att bibehålla detta tillstånd var det lämpligaste tryckvillkoret för båda reaktionerna (enligt jämviktstrycket kontra temperaturkurva) valdes att ligga på cirka 8 bar. Samma tryck valdes för båda reaktionerna, eftersom tryckskillnaden mellan dessa reaktorer och lagring av ammoniak (dvs. från 8 till 10 bar) borde vara så liten som möjligt på grund av de höga kostnaderna som kan uppstå vid högre tryckskillnad (dvs. fler kompressorer krävs och värmeväxlare). Inspirerad av denna litteratur föreslogs för det första ett konceptuellt lämpligt TCS-system i detta mastersexamensprojekt, varefter det slutliga systemet implementerades och utvärderades numeriskt för de önskade förhållandena. Den numeriska utformningen och optimeringen av det valda TCS-systemet utfördes här med hjälp av programvaran Aspen Plus (version 9), som innehåller både vätskor och fasta ämnen i en simuleringsmiljö, med konstant fysiska egenskaper. Detta TCS-system är utformat för att lagra och släppa värme vid cirka 80 °C och 8 bar genom absorption och desorption med användning av två identiska reaktorer respektive. Varje reaktor innefattar cirka 1 kg (närmare bestämt 0.985 kg) strontiumkloridsalt reagerande med 1.7 kg ammoniak. Ett verifieringssystem modelleras också i Aspen med hjälp av tillgängliga experimentella data från litteraturen. I detta anpassades den modellerade nya systemdesignen till denna valda andra verifieringssystemlayout från litteratur, som använder samma reaktionspar, men under olika driftsförhållanden. Denna anpassade systemdesign i Aspen användes sedan för att verifiera den valda konfigurationen och tillförlitligheten för det designade systemet för NHS-projektet. Här erhålls ett bra avtal för denna verifieringssystemdesign mellan Aspenmodellresultaten och experimentdata. Här utförs också en känslighetsanalys för det utformade TCSsystemet i det aktuella projektet för att identifiera de optimala driftsförhållandena och beteendet för de valda viktigaste parametrarna i systemet. Det konstruerade systemet ger en energilagringskapacitet på 0.5 kWh för de specifika mängderna (i volymflöde) av ammoniak och monoamin av strontiumklorid, som kommer från analysen, av 1.08696 e-05 kmol/s och 1.5528 e-06 kmol/s respektive. För dessa specifika värden på värmeöverföringsvätskan visade analysen att de volymetriska flödeshastigheterna för värme och kalla yttre källor måste vara 1.56 l/min (vilket minskar när temperaturen på värmeöverföringsvätskan ökar) och 0.42 l/min (som ökar när temperaturen på värmeöverföringsvätskan ökar). Sammanfattningsvis presenterar denna studie ett ammoniak-SrCl2 TCS-bänkskålsystem som möjliggör kontinuerlig värmelagring och frigöring, har en design som är lätt att anpassa och föreslår också optimala driftsförhållanden.
APA, Harvard, Vancouver, ISO, and other styles
3

Matta, Johnny. "Biomass Fast Pyrolysis Fluidized Bed Reactor: Modelling and Experimental Validation." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35516.

Full text
Abstract:
Of the many thermochemical conversion pathways for utilizing biomass as a renewable energy source, fast pyrolysis is a promising method for converting and upgrading carbonaceous feedstocks into a range of liquid fuels for use in heat, electricity and transportation applications. Experimental trials have been carried out to assess the impact of operational parameters on process yields. However, dealing with larger-scale experimental systems comes at the expense of lengthy and resource-intensive experiments. Luckily, the advances in computing technology and numerical algorithm solvers have allowed reactor modelling to be an attractive opportunity for reactor design, optimization and experimental data interpretation in a cost-effective fashion. In this work, a fluidized bed reactor model for biomass fast pyrolysis was developed and applied to the Bell’s Corners Complex (BCC) fluidized bed fast pyrolysis unit located at NRCan CanmetENERGY (Ottawa, Canada) for testing and validation. The model was programmed using the Microsoft Visual Basic for Applications software with the motivation of facilitating use and accessibility as well as minimizing runtime and input requirements. The application of different biomass devolatilization schemes within the model was conducted, not only for biomass fast pyrolysis product quantity but also liquid product composition (quality), to examine the effect of variable reaction kinetic sub-models on product yields. The model predictions were in good agreement with the results generated from the experimental work and mechanism modifications were proposed which further increased the accuracy of model predictions. Successively, the formulation of the modelled fluid dynamic scheme was adapted to study the effect of variable hydrodynamic sub-models on product yields for which no significant effect was observed. The work also looked into effect of the dominant process variables such as feedstock composition, bed temperature, fluidizing velocity and feedstock size on measurable product outputs (bio-oil, gas and biochar) and compared the results to those generated from the experimental fast pyrolysis unit. The ideal parameters for maximizing bio-oil yield have been determined to be those which: minimize the content of lignin and inorganic minerals in the feedstock, maintain the dense-bed temperature in a temperature range of 450-520 ºC, maximize the fluidization velocity without leading to bed entrainment, and limit the feedstock particle size to a maximum of 2000 μm.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Lijun. "Experimental and modelling studies of the thermophysical and thermochemical properties of some slag systems." Doctoral thesis, Stockholm : Skolan för teknikvetenskap, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lehmann, Christoph [Verfasser], Olaf [Akademischer Betreuer] Kolditz, Olaf [Gutachter] Kolditz, André [Gutachter] Thess, and Haibing [Gutachter] Shao. "Towards the numerical modelling of salt / zeolite composites for thermochemical energy storage / Christoph Lehmann ; Gutachter: Olaf Kolditz, André Thess, Haibing Shao ; Betreuer: Olaf Kolditz." Dresden : Technische Universität Dresden, 2021. http://d-nb.info/1231917288/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ndiaye, Khadim. "Etude numérique et expérimentale du stockage d'énergie par les matériaux cimentaires." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30202/document.

Full text
Abstract:
L'objectif de cette thèse est de développer un matériau cimentaire monolithe ayant une forte teneur en ettringite, capable de stocker et de déstocker de la chaleur, respectivement, par déshydratation endothermique et réhydratation exothermique. Une étude numérique et expérimentale du stockage de chaleur dans un réacteur thermochimique (prototype) contenant le matériau développé est aussi réalisée dans le cadre de cette étude. Pour atteindre ces objectifs, l'hydratation de différents liants ettringitiques a été suivie par DRX, ATG et MEB. Une simulation thermodynamique de l'hydratation a aussi été effectuée au moyen du logiciel GEMS (Gibbs Energy Minimization Sofware) afin d'optimiser la formulation du matériau. Le réseau poreux du matériau résultant a ensuite été amélioré par moussage chimique. Nous avons aussi étudié la durabilité et la stabilité du matériau ettringitique synthétisé (carbonatation, stabilité à la température, réversibilité du processus de stockage/déstockage sur plusieurs cycles). Pour prédire le comportement du système de stockage, un modèle bidimensionnel, prenant en compte les spécificités du matériau cimentaire, a été utilisé. Le bilan énergétique et massique dans le matériau poreux génère un système d'équations différentielles non-linéaires et couplées. La résolution numérique du système, effectuée en utilisant MatLab (r), est effectuée par discrétisation spatiale en utilisant la méthode des différences finies, et par intégration temporelle des variables d'état (température et pression de vapeur d'eau). La simulation du modèle, basée sur les propriétés mesurées du matériau en laboratoire, est ensuite utilisée comme outil de conception pour réaliser un premier prototype de réacteur thermochimique au laboratoire. Suite à ces essais, un prototype amélioré est ensuite élaboré et testé. Le résultat des essais de stockage et de déstockage de chaleur avec ces deux prototypes ont servi de validation du modèle numérique d'une part, et de preuve de concept du principe de stockage d'autre part
The objective of this study is to develop an ettringite-based material with high energy storage density in low temperature conditions, allowing to charge and discharge heat by endothermic dehydration and exothermic rehydration, respectively; then to perform the numerical and experimental study of heat storage in a thermochemical reactor containing the produced material (prototype). To achieve these goals, the hydration of ettringite binders was followed by XRD, TGA and SEM. The thermodynamic simulation of the hydration was also performed using GEMS (Gibbs Energy Minimization Sofware). The porous network of the resulting material was improved by chemical foaming. Furthermore, the carbonation, thermal stability and reversibility tests were performed on the produced material. Physicochemical stability of the material over time was followed by XRD, TGA, SEM and IR. To predict the behavior of the storage system, a bidimensional model, taking account the specificities of the cementitious material, was developed. The heat and mass balance in the thermochemical reactor generates a system of non-linear and coupled differential equations. The numerical resolution was first made by spatial discretization using the finite difference method, then by temporal integration of variables (temperature and water vapor pressure) on MatLab (r). The model simulation, with material properties, was used as concept design to build the thermochemical reactor prototype in the laboratory (cylindrical adsorber). The result of heat storage tests with the prototype was used as proof of concept of the principle on the one hand, and a way to validate the numerical model
APA, Harvard, Vancouver, ISO, and other styles
7

Osselin, Florian. "Thermochemical-based poroelastic modelling of salt crystallization, and a new multiphase flow experiment : how to assess injectivity evolution in the context of CO2 storage in deep aquifers." Phd thesis, Université Paris-Est, 2013. http://pastel.archives-ouvertes.fr/pastel-00977430.

Full text
Abstract:
In a context of international reduction of greenhouse gases emissions, CCS (ce{CO2} Capture and Storage) appears as a particularly interesting midterm solution. Indeed, geological storage capacities may raise to several millions of tons of ce{CO2} injected per year, allowing to reduce substantially the atmospheric emissions of this gas. One of the most interesting targets for the development of this solution are the deep saline aquifers. These aquifers are geological formations containing brine whose salinity is often higher than sea water's, making it unsuitable for human consumption. However, this solution has to cope with numerous technical issues, and in particular, the precipitation of salt initially dissolved in the aquifer brine. Consequences of this precipitation are multiple, but the most important is the modification of the injectivity i.e. the injection capacity. Knowledge of the influence of the precipitation on the injectivity is particularly important for both the storage efficiency and the storage security and durability. The aim of this PhD work is to compare the relative importance of negative (clogging) and positive (fracturing) phenomena following ce{CO2} injection and salt precipitation. Because of the numerous simulations and modelling results in the literature describing the clogging of the porosity, it has been decided to focus on the mechanical effects of the salt crystallization and the possible deformation of the host rock. A macroscopic and microscopic modelling has then been developed, taking into account two possible modes of evaporation induced by the spatial distribution of residual water, in order to predict the behavior of a porous material subjected to the drying by carbon dioxide injection. Results show that crystallization pressure created by the growth of a crystal in a confined medium can reach values susceptible to locally exceed the mechanic resistance of the host rock, highlighting the importance of these phenomena in the global mechanical behavior of the aquifer. At the experimental level, the study of a rock core submitted to the injection of supercritical carbon dioxide has been proceeded on a new reactive percolation prototype in order to obtain the evolution of permeabilities in conditions similar to these of a deep saline aquifer
APA, Harvard, Vancouver, ISO, and other styles
8

Haji, Abedin Ali. "Thermochemical energy storage systems: modelling, analysis and design." Thesis, 2010. http://hdl.handle.net/10155/119.

Full text
Abstract:
Thermal energy storage (TES) is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. Thermochemical TES is an emerging method with the potential for high energy density storage. Where space is limited, therefore, thermochemical TES has the highest potential to achieve the required compact TES. Principles of thermochemical TES are presented and thermochemical TES is critically assessed and compared with other TES types. The integration of TES systems with heating, ventilating and air conditioning (HVAC) applications is examined and reviewed accounting for various factors, and recent advances are discussed. Thermodynamics assessments are presented for general closed and open thermochemical TES systems. Exergy and energy analyses are applied to assess and compare the efficiencies of the overall thermochemical TES cycle and its charging, storing and discharging processes. Examples using experimental data are presented to illustrate the analyses. Some important factors related to design concepts of thermochemical TES systems are considered and preliminary design conditions for them are investigated. Parametric studies are carried out for the thermochemical storage systems to investigate the effects of selected parameters on the efficiency and behavior of thermochemical storage systems.
UOIT
APA, Harvard, Vancouver, ISO, and other styles
9

Lehmann, Christoph. "Towards the numerical modelling of salt / zeolite composites for thermochemical energy storage." 2018. https://tud.qucosa.de/id/qucosa%3A74019.

Full text
Abstract:
Komposit-Adsorbentien, die aus einer mit hygroskopischem Salz imprägnierten Zeolithmatrix bestehen, bilden eine vielversprechende Materialklasse für die thermochemische Energiespeicherung (TCES). Sie vereinen die hohe Wärmespeicherdichte des Salzes und die einfache technische Handhabbarkeit des Zeoliths. Dabei verhindert die poröse Matrix das Auslaufen von Salzlösung und kompensiert volumenänderungen während der Ad- und Desorption. Das dynamische Sorptionsverhalten solcher Komposite unterscheidet sich jedoch von dem reiner Zeolithe. Speziell die Adsorptionskinetik ist langsamer, was zu Problemen wie einer geringeren und nicht konstanten thermischen Leistung sowie unvollständiger Adsorption und langen Adsorptionspasen von Energiespeichern auf Basis dieser Materialien führt. Numerische Modellierung hat sich als wichtiges Werkzeug erwiesen, um die Ursachen solcher Leistungseinschränkungen zu identifizieren. Dadurch erleichtert es die Entwicklung von thermochemischen Energiespeichern: Optimale Designs und Arbeitsbedingungen können per Simulation gefunden werden bevor Prototypen gebaut werden müssen. In dieser Arbeit wurde ein numerisches Modell einer Adsorbensschüttung in einer offenen Sorptionskammer entwickelt, in die Open-Sourve Finite-Elemente-Software OpenGeoSys implementiert und mittels experimenteller Daten validiert. Die Modellierungserebnisse zeigen, dass etablierte Sorptionskinetiken das dynamische Adsorptionsverhalten von Salz/Zeolith-Kompositen unter anwendungsrelevanten Arbeitsbedingungen erfassen. Außerdem zeigen sie, dass der Hauptgrund für die Unterschiede zwischen dem Sorptionsverhalten der Komposite und reiner Zeolithe in ihren qualitativ unterschiedlichen Sorptionsgleichgewichten liegt. Ein zweiter Fokus dieser Arbeit liegt darauf zu untersuchen, ob ein begrenzter Umfang an experimentellen Daten genügt, um die entwickelten numerischen Modelle zu kalibrieren. Diese Möglichkeit wurde durch Simulationen von dynamischen Adsorptionsvorgängen an Komposit-Adsorbentien bestätigt. Zudem wurden Kriterien entwickelt, die die Rekonstruktion eines robusten Adsorptionsgleichgewichtsmodells aus einem beschränkten expermientellen Datensatz erlauben. Schließlich wurde im Kontext der Dubinin-Polanyi-Theorie der Adsorption in Mikroporen festgestellt, das die Wahl eines bestimmten Adsorbatdichtemodells nur einen kleinen Einfluss auf Vorhersagen der Leistungsfähigkeit von Adsorbentien für die TCES hat. Die Ergebnisse dieser Arbeit bilden eine fundierte Grundlage für die zukünftige numerische Untersuchung von Materialien, Reaktorgeometrien und Arbeitsbedingungen während der Entwicklung von thermochemischen Energiespeichern, die auf Zeolithen oder Komposit-Adsorbentien basieren.:Used symbols and abbreviations 1. Introduction 2. Foundations 2.1. Thermochemical energy storage 2.2. Zeolites and salt/zeolite composites 2.3. Dubinin-Polanyi theory 2.4. Multiphysical model of a fixed adsorbent bed 2.5. Experimental data 3. Assessment of adsorbate density models 4. Water loading lift and heat storage density prediction 5. Modelling of sorption isotherms based on sparse experimental data 6. Modelling sorption equilibria and kinetics of salt/zeolite composites 7. Summary 7.1. Main achievements 7.2. Conclusions and outlook Bibliography A. Publications A.1. Assessment of adsorbate density models A.2. A comparison of heat storage densities A.3. Water loading lift and heat storage density prediction A.4. Modelling of sorption isotherms based on sparse experimental data A.5. Modelling sorption equilibria and kinetics of salt/zeolite composites
Composite adsorbents consisting of a zeolite host matrix impregnated with a hygroscopic salt are a promising material class for thermochemical energy storage (TCES). They combine the high heat storage density of the salt with the easy technical manageability of the zeolite, which prevents the leakage of salt solution and inhibits volume changes upon ad- and desorption. The dynamic sorption behaviour of such composites, however, is different from the pure host matrix material. Particularly, the adsorption kinetics are slower, which leads to issues such as low and non-steady thermal output power, incomplete adsorption and long adsorption phases of TCES devices using these composite materials. Numerical modelling has proven to be a valuable tool to identify the causes for such performance limitations. Therefore, it facilitates the development of TCES devices: it allows to easily find optimum designs and operating procedures before actual prototypes have to be built. In this thesis a numerical model of a packed adsorbent bed in an open sorption chamber has been developed, implemented in the open-source finite element software OpenGeoSys and validated with experimental data. The modelling results show that established sorption kinetics models capture the dynamic sorption behaviour of salt/zeolite composites under application-relevant operating conditions. Moreover, they show that the main cause for the differences between the composites' and pure zeolite's sorption behaviour lies in their different sorption equilibria. A second focus of the thesis is to investigate the use of limited experimental data for the calibration of the numerical models. This possibility has been confirmed by dynamic sorption simulations of the composite materials. Furthermore, criteria were determined that allow the reconstruction of a robust adsorption equilibrium description from a reduced experimental data set. Finally, in the context of the Dubinin-Polanyi theory of adsorption in micropores, it has been found that the choice of a specific adsorbate density model has only a small influence on performance predictions of adsorbents for TCES. In summary, the results from this thesis will facilitate the screening of materials, reactor geometries and operating conditions via numerical simulations during the design of TCES devices based on zeolites and composite sorbents.:Used symbols and abbreviations 1. Introduction 2. Foundations 2.1. Thermochemical energy storage 2.2. Zeolites and salt/zeolite composites 2.3. Dubinin-Polanyi theory 2.4. Multiphysical model of a fixed adsorbent bed 2.5. Experimental data 3. Assessment of adsorbate density models 4. Water loading lift and heat storage density prediction 5. Modelling of sorption isotherms based on sparse experimental data 6. Modelling sorption equilibria and kinetics of salt/zeolite composites 7. Summary 7.1. Main achievements 7.2. Conclusions and outlook Bibliography A. Publications A.1. Assessment of adsorbate density models A.2. A comparison of heat storage densities A.3. Water loading lift and heat storage density prediction A.4. Modelling of sorption isotherms based on sparse experimental data A.5. Modelling sorption equilibria and kinetics of salt/zeolite composites
APA, Harvard, Vancouver, ISO, and other styles
10

Fraser, G. L. "High T-low P metamorphism in the Kanappa Hill area of the Mount Lofty Ranges, S.A.; Implications for thermal evolution." Thesis, 1996. http://hdl.handle.net/2440/103515.

Full text
Abstract:
This item is only available electronically.
High T - low P metamorphic rocks in the Kanappa Hill area of the eastern Mt. Lofty Ranges preserve evidence for mineral equilibration during crustal thickening at temperatures marginally greater than 600°C and pressures of 3-5 kbars. Field and petrographic observations suggest that the high temperature portion of the P-T-t path experienced by these rocks was near-isobaric, with the implication that the thermal perturbation recorded by these rocks occurred in response to rapid advective heat transfer rather than to purely conductive processes. Estimation of the metamorphic fluid flux from a stable isotope study indicates that pervasive fluid flushing made no significant contribution to the thermal perturbation. Thermomechanical modelling of the response of the crust to magma emplacement predicts metamorphic conditions which closely match observations from the field, viz: (1) peak metamorphic temperatures reached during convergent orogenesis, (2) near isobaric P-T-t paths immediately before and after attainment of peak metamorphic conditions. Consequently high T - low P metamorphism in the Kanappa Hill Area is considered to have occurred in response to upper crustal emplacement of melts generated by subcrustal heat input.
Thesis (B.Sc.(Hons)) -- University of Adelaide, School of Earth and Environmental Sciences, 1990
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Thermochemical modelling"

1

Keken, Peter Edwin van. Numerical modelling of thermochemically driven fluid flow with non-Newtonian rheology: Applied to the earth's lithosphere and mantle. [Utrecht: Faculteit Aardwetenschappen der Rijksuniversiteit te Utrecht, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thermochemical modelling"

1

Buekens, Alfons G., and Jos G. Schoeters. "Modelling of Biomass Gasification." In Fundamentals of Thermochemical Biomass Conversion, 619–89. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4932-4_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bacon, D. W., J. Downie, J. C. Hsu, and J. Peters. "Modelling of Fluidized Bed Wood Gasifiers." In Fundamentals of Thermochemical Biomass Conversion, 717–32. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4932-4_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Melaaen, M. C., and M. G. Grønli. "Modelling and Simulation of Moist Wood Drying and Pyrolysis." In Developments in Thermochemical Biomass Conversion, 132–46. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1559-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Skreiberg, Ø., J. E. Hustad, and E. Karlsvik. "Empirical NOx-Modelling and Experimental Results from Wood Stove Combustion." In Developments in Thermochemical Biomass Conversion, 1462–76. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1559-6_114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ganesan, Rajesh, and S. Vana Varamban. "Thermochemical Modeling of Ternary Alloys from Binary Systems." In Frontiers in Materials Modelling and Design, 137–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-80478-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pinto, José-Henrique Q., Zin-Eddine Dadach, Alain Lemoyne, and Serge Kaliaguine. "Acid Hydrolysis of Glycosidic Bonds in Polysaccharides: Modelling and Stochastic Simulation." In Advances in Thermochemical Biomass Conversion, 1583–97. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1336-6_129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Josyula, E., and W. F. Bailey. "Modelling dissociation in hypersonic blunt body and nozzle flows in thermochemical nonequilibrium." In Shock Waves, 653–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Said, Marwa, Laurent Cassayre, Jean-Louis Dirion, Ange Nzihou, and Xavier Joulia. "Behavior of heavy metals during gasification of phytoextraction plants: thermochemical modelling." In 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, 341–46. Elsevier, 2015. http://dx.doi.org/10.1016/b978-0-444-63578-5.50052-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Silva, Jornandes Dias da. "Technology of the Steam Reforming of CO2 for the Solar-Driven Thermochemical Reactor Assessment: Modelling and Computer Simulation." In Energia: um olhar sobre seus diferentes tipos. Editora Conhecimento Livre, 2022. http://dx.doi.org/10.37423/220305526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Silva, Jornandes Dias da, and Daniel Ribeiro Dessaune. "Thermochemical Hydrogen Production of the Steam Reforming of Methane in a Packed Bed Membrane Reformer: Mathematical Modelling and Computer Simulation." In Ciência e tecnologia: eixos do desenvolvimento. Editora Conhecimento Livre, 2022. http://dx.doi.org/10.37423/220906617.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermochemical modelling"

1

Piskin, Tugba, and Sinan Eyi. "Modelling Thermochemical Nonequilibrium during Atmospheric Re-Entry." In 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-3978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hamp, Rachael, Karen Olsson-Francis, Susanne Schwenzer, and Victoria Pearson. "Thermochemical Modelling of the Subsurface Environment on Enceladus." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shen, Yansong, Baoyu Guo, Aibing Yu, Sheng Chew, and Peter Austin. "Modelling ironmaking blast furnace: Solid flow and thermochemical behaviours." In POWDERS AND GRAINS 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media. AIP, 2013. http://dx.doi.org/10.1063/1.4812171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wild, Michael, and Aldo Steinfeld. "Modelling and Experimental Testing of a Tubular Thermochemical Reactor." In ISES Solar World Congress 2019/IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry 2019. Freiburg, Germany: International Solar Energy Society, 2019. http://dx.doi.org/10.18086/swc.2019.21.07.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Darkwa, Jo. "Modelling of an Agitated Fluidised Bed Thermochemical Energy Storage System." In 2nd International Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-5707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Bo, Vincent M. Wheeler, Johannes Pottas, Peter B. Kreider, and Wojciech Lipinski. "THERMAL MODELLING OF A SOLAR THERMOCHEMICAL REACTOR FOR METAL OXIDE REDUCTION." In International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/ihtc16.nee.022948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

dos Anjos, Emerson, Cláudio Oliveira, and Jornandes Silva. "MATHEMATICAL MODELLING TO THERMAL PERFORMANCE ANALYSIS OF A SOLAR THERMOCHEMICAL REACTOR." In 25th International Congress of Mechanical Engineering. ABCM, 2019. http://dx.doi.org/10.26678/abcm.cobem2019.cob2019-0307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kyrimis, Stylianos, Patrick Le Clercq, and Stefan Brendelberger. "3D modelling of a solar thermochemical reactor for MW scaling-up studies." In SOLARPACES 2018: International Conference on Concentrating Solar Power and Chemical Energy Systems. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5117693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Minutillo, Mariagiovanna, and Elio Jannelli. "Thermochemical Modelling and Analysis of a Compact Reforming System for PEM FC Application." In ASME 2005 3rd International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2005. http://dx.doi.org/10.1115/fuelcell2005-74123.

Full text
Abstract:
The main objective of this study is to foresee the performance of a PEM fuel cell generator operating as an emergency backup power system. The fuel cell generator is fuelled by hydrogen supplied by a compact reforming system. The reforming system must be able to use a carbon-based fuel, such as natural gas, standard gasoline or diesel to generate hydrogen for clean, on-site electrical power production. Hydrogen generation is provided by a non-catalytic reformer using high-voltage discharges to assist the exothermic partial oxidation process. Thermo-chemical modelling has been implemented considering both reforming system and hydrogen purification unit. The purification and separation unit must be able to produce high purity hydrogen because concentration of CO has to be strongly reduced before entering the fuel cell stack. A comparative performance analysis of different fuels for hydrogen generation has been provided. Thermochemical modelling has been conducted by means of Aspen Plus code.
APA, Harvard, Vancouver, ISO, and other styles
10

Atkins, Chay, and Ralf Deiterding. "Towards a Strand-Cartesian Solver for Modelling Hypersonic Flows in Thermochemical Non-Equilibrium." In 23rd AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-2404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography