Academic literature on the topic 'Thermo-stamping'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermo-stamping.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermo-stamping"
Yin, Hong Ling, Xiong Qi Peng, Tong Liang Du, and Jun Chen. "Experiment Study of Thermoforming of Plain Woven Composite (Carbon/Thermoplastics)." Key Engineering Materials 554-557 (June 2013): 507–11. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.507.
Full textCai, Yu Jun, Felix Stephanus Halim, Guo He Li, and Yu Guang Wang. "Thermo-Mechanical Simulation of Hot Stamping Tools Design." Applied Mechanics and Materials 121-126 (October 2011): 2390–94. http://dx.doi.org/10.4028/www.scientific.net/amm.121-126.2390.
Full textLiu, Yong Gang, Yun Zhang, Wu Zhang, Jun Wan Li, Hong Bin Wang, Hai Rong Gu, and Jia Chun Jin. "Investigation of Hot Stamping Process of 22MnB5 Based on Metallo-Thermo-Mechanical Theory." Advanced Materials Research 1063 (December 2014): 251–56. http://dx.doi.org/10.4028/www.scientific.net/amr.1063.251.
Full textSakai, Hiroshi. "Thermo Prepreg for the Hot Flow Stamping Molding." Seikei-Kakou 27, no. 3 (February 20, 2015): 85–88. http://dx.doi.org/10.4325/seikeikakou.27.85.
Full textChen, Wei, Zhi Feng Chen, Zhi Fu Cao, Tao Qi, Xiang Wang, and Qing Zhao. "Study on the Hot Stamping of Rectangular Box with Ultra-High Strength Steel." Advanced Materials Research 763 (September 2013): 156–59. http://dx.doi.org/10.4028/www.scientific.net/amr.763.156.
Full textXing, Zhong Wen, Jun Jia Cui, Hong Sheng Liu, and Chun Feng Li. "Numerical and Experimental Investigation into Hot Stamping of High Strength Steel Sheet for Auto B Pillar Reinforced Panel." Advanced Materials Research 129-131 (August 2010): 322–27. http://dx.doi.org/10.4028/www.scientific.net/amr.129-131.322.
Full textWang, Li Min, Tian Rui Zhou, Li Juan Wang, and Xiao Ling Yang. "Investigation on the Numerical Simulation of Hot Stamping of Advanced High Strength Steels." Advanced Materials Research 189-193 (February 2011): 2144–47. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.2144.
Full textWang, Chao, Bin Zhu, Yi Sheng Zhang, Jie Shi, and Han Dong. "Hot-Stamping Process Simulation and Optimize Research for Collision Beam of Automobile Door." Advanced Materials Research 201-203 (February 2011): 3–8. http://dx.doi.org/10.4028/www.scientific.net/amr.201-203.3.
Full textZhu, Hong, Hongbin Yin, and Sriram Sadagopan. "Study of Microstructural Evolution of Press Hardening Steels using Dilatometer and In-situ Studies for a Simulated Hot Stamping Condition." IOP Conference Series: Materials Science and Engineering 1284, no. 1 (June 1, 2023): 012008. http://dx.doi.org/10.1088/1757-899x/1284/1/012008.
Full textMerklein, M., and J. Lechler. "Investigation of the thermo-mechanical properties of hot stamping steels." Journal of Materials Processing Technology 177, no. 1-3 (July 2006): 452–55. http://dx.doi.org/10.1016/j.jmatprotec.2006.03.233.
Full textDissertations / Theses on the topic "Thermo-stamping"
Potdar, Bhargav [Verfasser], Marion [Akademischer Betreuer] Merklein, Marion [Gutachter] Merklein, and Björn [Gutachter] Kiefer. "A reliable methodology to deduce thermo-mechanical flow behaviour of hot stamping steels / Bhargav Potdar ; Gutachter: Marion Merklein, Björn Kiefer ; Betreuer: Marion Merklein." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1173975748/34.
Full textLiu, Zhigang. "Étude numérique et expérimentale de AZ31-O feuille en alliage de magnésium formage à chaud." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00718370.
Full textLacoma, Vincent. "Évaluation environnementale des procédés composites pour l'analyse multicritère des systèmes de production : méthodologies, outils et applications." Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0020.
Full textIn the current context of environmental transition, this thesis aims to participate in the reduction of environmental impacts related manufacturing of composite parts, which has been a growing sector for several years. To this purpose,an environmental assessment methodology dedicated to composite manufacturing processes is fundamental to develop and evaluate strategies forreducing environmental impacts. To be applicable in the industry, these strategies must respect the technical and economic imperatives of companies.To carry out environmental assessments, the standardized Life Cycle Assessment (LCA) method can be used. However, the general nature of this approach leaves latitudes on its application which have not been yet the subject of a scientific consensus in the case of composite manufacturing.Thus, our work proposes details for each step of the LCA method to build a model of the environmental impacts of the manufacturing process which depend on its parameters, such as the forming temperatures and the consolidation efforts. A similar approach is also developed for the evaluation of economic indicators based on the same parameters. Finally, multi-criteria decision-making tools are offered to find solutions to the objective of reducing environmental impacts and manufacturing costs while ensuringc ompliance with the technical specifications of the parts produced. In this thesis, the case of thermostamping of polyphenylene sulfide reinforced with carbon fibres (C/PPS) parts is studied to support the construction and presentation of the proposed methodologies
Le, Meur Kevin. "Etude du procédé d'estampage de plaques composites thermo-plastiques et recherche d'une méthodologie efficiente pour l'analyse de la faisabilité d'une pièce complexe." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0115.
Full textThe thermo-stamping process is a promising way for the mass production of the composite parts. However this process is complex to master and simulate due to the multi-physics background (textile deformation, thermal shock, rubbing...) and trial and error tests campaigns can be expensive. This study focuses on the measurement and assessment of the process and materials behaviour, to simulate the cooling down of the matrix and the forming of the woven. Typical defects are mentioned as well as associated industrial solutions to solve them. The simulation makes it possible to determine the consolidation time necessary in order to optimize the manufacturing time as a function of the material used and of its thickness. Furthermore the forming simulation shows the feasibility of the part and the fibre orientation to design the product for the static and crash cases. The contributions of this work are the following: thermal measurements of the pre-consolidated plate during the stamping phase and the thermal chock at the surface of the composites, an efficient method to analyse the feasibility of a complex shape in an industrial context is proposed through forming simulations compared to the experiment. Finally, a methodology for the analysis of the in-plane shearing behaviour of a woven fabric with non-orthogonal warp and weft yarn is proposed
Book chapters on the topic "Thermo-stamping"
Li, Da Yong, Qun Feng Chang, Ying Hong Peng, and Xiao Qin Zeng. "Thermo-Mechanical Coupled Simulation of Warm Stamping of AZ31 Magnesium Alloy Sheet." In Materials Science Forum, 281–84. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-432-4.281.
Full textConference papers on the topic "Thermo-stamping"
Cao, Wan, Ning Kang, Lingyu Sun, Shanshu Xiang, Xudong Yang, and Yiben Zhang. "Generation Mechanism of Interfacial Residual Stress and its Effect on Mechanical Properties of Hybrid Fiber-Reinforced Thermoplastic Polymer (HFRTP)." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86523.
Full textChen, Xiangjun, Namin Xiao, Dianzhong Li, Guangyao Li, and Guangyong Sun. "The coupled thermo-mechanical-microstructural finite element modeling of hot stamping process in 22MnB5 steel." In NUMISHEET 2014: The 9th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes: Part A Benchmark Problems and Results and Part B General Papers. AIP, 2013. http://dx.doi.org/10.1063/1.4850034.
Full textShih, Hua-Chu, and Ming F. Shi. "Die Wear and Coating Galling in Stamping Advanced High Strength Steels." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62668.
Full textZhang, W., Y. G. Liu, H. R. Gu, J. C. Jin, Y. Zhang, J. W. Li, and H. B. Wang. "Metallo-Thermo-Mechanical Coupled Analysis of the Influence of Key Process Parameters on the Quality of Hot Stamping Component." In The 2nd International Conference on Advanced High Strength Steel and Press Hardening (ICHSU 2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813140622_0047.
Full textAli Ablat, Muhammad, and Ala Qattawi. "Finite Element Analysis of Origami-Based Sheet Metal Folding Process." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67324.
Full textMatthiesen, Gunnar, Hubertus Murrenhoff, Johannes Storz, and Alexander Braun. "Pressure Control for a Hot Gas Bulge Test Using Parallel On-Off Valves." In ASME/BATH 2017 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fpmc2017-4239.
Full text