Academic literature on the topic 'Thermo-responsive hydrogels'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermo-responsive hydrogels.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermo-responsive hydrogels"

1

Zhao, Haifeng, Heng An, Baozhong Xi, Yan Yang, Jianglei Qin, Yong Wang, Yingna He, and Xinguo Wang. "Self-Healing Hydrogels with both LCST and UCST through Cross-Linking Induced Thermo-Response." Polymers 11, no. 3 (March 13, 2019): 490. http://dx.doi.org/10.3390/polym11030490.

Full text
Abstract:
Self-healing hydrogels have drawngreat attention in the past decade since the self-healing property is one of the characteristics of living creatures. In this study, poly(acrylamide-stat-diacetone acrylamide) P(AM-stat-DAA) with a pendant ketone group was synthesized from easy accessible monomers, and thermo-responsive self-healing hydrogels were prepared through a series of diacylhydrazide compounds cross-linking without any additional stimulus. Although the copolymers do not show thermo-response, the hydrogels became thermo-responsive andboth the lower critical solution temperature (LCST) and upper critical solution temperature (UCST) varied with the composition of the copolymer and structure of cross-linkers. With a dynamic covalent bond connection, the hydrogel showed gel-sol-gel transition triggered by acidity, redox, and ketone to acylhydrazide group ratios. This is another interesting cross-linking induced thermo-responsive (CIT) hydrogel with different properties compared to PNIPAM-based thermo-responsive hydrogels. The self-healing hydrogel with CIT properties could have great potential for application in areas related to bioscience, life simulation, and temperature switching.
APA, Harvard, Vancouver, ISO, and other styles
2

Mah, Evan, and Raja Ghosh. "Thermo-Responsive Hydrogels for Stimuli-Responsive Membranes." Processes 1, no. 3 (September 30, 2013): 238–62. http://dx.doi.org/10.3390/pr1030238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mejia, Andres F., Ratna Ng, Peter Nguyen, Min Shuai, Hugo Y. Acosta, M. Sam Mannan, and Zhengdong Cheng. "Thermo-responsive discotic nematic hydrogels." Soft Matter 9, no. 43 (2013): 10257. http://dx.doi.org/10.1039/c3sm51358k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Al-Rajabi, Maha Mohammad, and Yeit Haan Teow. "Green Synthesis of Thermo-Responsive Hydrogel from Oil Palm Empty Fruit Bunches Cellulose for Sustained Drug Delivery." Polymers 13, no. 13 (June 29, 2021): 2153. http://dx.doi.org/10.3390/polym13132153.

Full text
Abstract:
Drug delivery is a difficult task in the field of dermal therapeutics, particularly in the treatment of burns, wounds, and skin diseases. Conventional drug delivery mediums have some limitations, including poor retention on skin/wound, inconvenience in administration, and uncontrolled drug release profile. Hydrogels able to absorb large amount of water and give a spontaneous response to stimuli imposed on them are an attractive solution to overcome the limitations of conventional drug delivery media. The objective of this study is to explore a green synthesis method for the development of thermo-responsive cellulose hydrogel using cellulose extracted from oil palm empty fruit bunches (OPEFB). A cold method was employed to prepare thermo-responsive cellulose hydrogels by incorporating OPEFB-extracted cellulose and Pluronic F127 (PF127) polymer. The performance of the synthesized thermo-responsive cellulose hydrogels were evaluated in terms of their swelling ratio, percentage of degradation, and in-vitro silver sulfadiazine (SSD) drug release. H8 thermo-responsive cellulose hydrogel with 20 w/v% PF127 and 3 w/v% OPEFB extracted cellulose content was the best formulation, given its high storage modulus and complex viscosity (81 kPa and 9.6 kPa.s, respectively), high swelling ratio (4.22 ± 0.70), and low degradation rate (31.3 ± 5.9%), in addition to high t50% value of 24 h in SSD in-vitro drug release to accomplish sustained drug release. The exploration of thermo-responsive cellulose hydrogel from OPEFB would promote cost-effective and sustainable drug delivery system with using abundantly available agricultural biomass.
APA, Harvard, Vancouver, ISO, and other styles
5

Yuan, Kun, Xiao Fang Wang, Yuan Cheng Zhu, and Guo Fang Zuo. "Preparation of the Microsphere-Sized Poly(N-Isopropylacrylamide) Hydrogel Dispersed in Poly(Vinyl Alcohol) Matrix and its Thermo-Responsive Releasing Behavior." Advanced Materials Research 311-313 (August 2011): 2084–88. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.2084.

Full text
Abstract:
A novel thermo-responsive microsphere-sized poly(N-isopropylacrylamide) (PNIPAm) composite hydrogels were prepared by gelation of poly(vinyl alcohol) (PVA) solution containing ultra-fine CaCO3, then treated with 2wt% glutaraldehyde solution, sequencely with HCl acid, and PVA matrix with microsphere-sized pores obtained. The internal pores of the dry PVA matrix were filled with PNIPAm hydrogels to give a thermo-responsive composite hydrogels for drug carrier. The composite hydrogel was characterized via scanning electron microscopy (SEM), temperature dependence of equilibrium swelling ratio in water of the composite hydrogels was also investigated. Rhodamine B (RB) was loaded to the composite hydrogels for release study.
APA, Harvard, Vancouver, ISO, and other styles
6

Tuan, Huynh Nguyen Anh, and Vo Thi Thu Nhu. "Synthesis and Properties of pH-Thermo Dual Responsive Semi-IPN Hydrogels Based on N,N’-Diethylacrylamide and Itaconamic Acid." Polymers 12, no. 5 (May 16, 2020): 1139. http://dx.doi.org/10.3390/polym12051139.

Full text
Abstract:
A series of semi-interpenetrating polymer network (semi-IPN) hydrogels based on N,N’-diethylacrylamide (DEA) and itaconamic acid (IAM) were synthesized by changing the molar ratio of linear copolymer P(DEA-co-IAM) and DEA monomer. Linear copolymer P(DEA-co-IAM) was introduced into a solution of DEA monomer to prepare pH-thermo dual responsive P(DEA-co-IAM)/PDEA semi-IPN hydrogels. The thermal gravimetric analysis (TGA) revealed that the semi-IPN hydrogel has a higher thermal stability than the conventional hydrogel, while the interior morphology by scanning electron microscopy (SEM) showed a porous structure with the pore sizes could be controlled by changing the ratio of linear copolymer in the obtained hydrogels. The oscillatory parallel-plate rheological measurements and compression tests demonstrated a viscoelastic behavior and superior mechanical properties of the semi-IPN hydrogels. Besides, the lower critical solution temperature (LCST) of the linear copolymers increased with the increase of IAM content in the feed, while the semi-IPN hydrogels increased LCSTs with the increase of linear copolymer content introduced. The pH-thermo dual responsive of the hydrogels was investigated using the swelling behavior in various pH and temperature conditions. Finally, the swelling and deswelling rate of the hydrogels were also studied. The results indicated that the pH-thermo dual responsive semi-IPN hydrogels were synthesized successfully and may be a potential material for biomedical, drug delivery or absorption applications. The further applications of semi-IPN hydrogels are being conducted.
APA, Harvard, Vancouver, ISO, and other styles
7

Chatterjee, Sudipta, and Patrick Chi-leung Hui. "Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems." Polymers 13, no. 13 (June 24, 2021): 2086. http://dx.doi.org/10.3390/polym13132086.

Full text
Abstract:
Some of thermo-responsive polysaccharides, namely, cellulose, xyloglucan, and chitosan, and protein-like gelatin or elastin-like polypeptides can exhibit temperature dependent sol–gel transitions. Due to their biodegradability, biocompatibility, and non-toxicity, such biomaterials are becoming popular for drug delivery and tissue engineering applications. This paper aims to review the properties of sol–gel transition, mechanical strength, drug release (bioavailability of drugs), and cytotoxicity of stimuli-responsive hydrogel made of thermo-responsive biopolymers in drug delivery systems. One of the major applications of such thermos-responsive biopolymers is on textile-based transdermal therapy where the formulation, mechanical, and drug release properties and the cytotoxicity of thermo-responsive hydrogel in drug delivery systems of traditional Chinese medicine have been fully reviewed. Textile-based transdermal therapy, a non-invasive method to treat skin-related disease, can overcome the poor bioavailability of drugs from conventional non-invasive administration. This study also discusses the future prospects of stimuli-responsive hydrogels made of thermo-responsive biopolymers for non-invasive treatment of skin-related disease via textile-based transdermal therapy.
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Xiacong, Yu Yin, Jiatao Yan, Wen Li, and Afang Zhang. "Thermo- and redox-responsive dendronized polymer hydrogels." Polymer Chemistry 9, no. 6 (2018): 712–21. http://dx.doi.org/10.1039/c7py01284e.

Full text
Abstract:
Unique supramolecular coordination of Fe2+ with terpyridine afford these hydrogels redox-responsive sol–gel transitions, while characteristic thermoresponsive properties from OEG-based first generation dendronized polymers render these hydrogels thermally-induced macroscopical volume changes and enhanced mechanical properties.
APA, Harvard, Vancouver, ISO, and other styles
9

Ravichandran, R., C. Astrand, H. K. Patra, Anthony P. F. Turner, V. Chotteau, and J. Phopase. "Intelligent ECM mimetic injectable scaffolds based on functional collagen building blocks for tissue engineering and biomedical applications." RSC Advances 7, no. 34 (2017): 21068–78. http://dx.doi.org/10.1039/c7ra02927f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lin, Qianming, Miao Tang, and Chenfeng Ke. "Thermo-responsive 3D-printed polyrotaxane monolith." Polymer Chemistry 11, no. 2 (2020): 304–8. http://dx.doi.org/10.1039/c9py01510h.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thermo-responsive hydrogels"

1

Guo, Hui. "Thermo-Responsive Toughening of Hydrogels." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066628/document.

Full text
Abstract:
Différentes architectures macromoléculaires sensibles à la température, des copolymères linéaires greffés et des hydrogels, ont été développées et leur structure, leurs propriétés rhéologiques ainsi que leurs propriétés mécaniques ont été étudiées. Dans le cas des hydrogels, le phénomène de séparation de phase des segments thermosensibles conduit, en conditions isochores, à une augmentation de la rigidité et de l'élongation à la rupture ainsi qu'à de remarquables propriétés de fatigue. Ce renforcement est de plus totalement réversible en pilotant le processus d'association/dissociation des interactions avec la température. Nous montrons que la topologie des réseaux joue un rôle important sur les performances mécaniques des hydrogels et plus spécialement sur le mode de propagation de fissure au sein de la structure. A partir d'études structurales par diffusion de neutrons complétées par des expériences sous traction, différentes nanostructures sont proposées en fonction de la topologie. Enfin, ce concept de renforcement stimulable des propriétés mécaniques des hydrogels, induit par un mécanisme de micro-séparation de phase, a été élargi à d'autres réseaux polymères combinant des propriétés thermodynamiques de LCST et UCST
Thermo-responsive linear graft copolymers and hydrogels with different topologies have been designed and their nanostructure, their rheological properties as well as their tunable mechanical properties have been investigated. In the case of hydrogels, the self-assembly of the thermo-responsive sequences, which serve as secondary interactions, induces in isochoric conditions a strong enhancement of both stiffness and elongation at break, including also remarkable fatigue properties. Specifically, this reinforcement is totally reversible by switching on/off the associations. It is clearly shown that the topology of the network displays a crucial influence on the mechanical performance of hydrogels, especially the resistance to fracture. After a careful investigation of the structure by 2-D neutron scattering and tensile experiments, different nanostructures are proposed according to the topology. Finally, this concept of thermo-toughening of hydrogels through a controlled microphase separation has been extended to other polymeric networks combining LCST and UCST type polymers
APA, Harvard, Vancouver, ISO, and other styles
2

Tomer-Teitelbaum, Ron. "Some thermo-, photo- and electro- responsive hydrogels." Thesis, University College London (University of London), 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Velthoen, Ingrid Winette. "Thermo-responsive hydrogels based on branched block copolymers." Enschede : University of Twente [Host], 2008. http://doc.utwente.nl/58918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mussault, Cécile. "Temperature-induced phase transition of grafted hydrogels : from primary structure to mechanical properties." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS216.

Full text
Abstract:
Afin d’étudier spécifiquement le rôle des processus de séparation de phase sur le renforcement des propriétés mécaniques des hydrogels, nous avons travaillé en conditions isochores en développant des architectures non seulement thermosensibles mais également capables de conserver un taux d’hydratation très élevé de part et d’autre de la température de transition de phase. Pour cela, des gels greffés ont été préparés à partir d’un réseau réticulé de polymère hydrophile en introduisant des chaînes latérales thermosensibles de type LCST (PNIPAm). A partir de cette structure primaire, et en maintenant fixe le rapport massique des précurseurs hydrophile/thermosensible, nous montrons que les caractéristiques thermodynamiques de la transition de phase (température et variation d’enthalpie) restent pratiquement indépendantes de la masse molaire des greffons de même que leur processus d’auto-assemblage qui conduit à la formation de domaines cylindriques concentrés en greffons PNIPAm. A l’instar des matériaux composites, la formation de ces domaines denses en polymère stabilisés par des interactions physiques vont ainsi largement augmenter la rigidité des gels à haute température ainsi que leur résistance à la fracture en jouant le rôle de dissipateur d’énergie. Nous montrons que ce renforcement thermo-contrôlé augmente avec la taille des chaînes à LCST. Dans le cas où l’on fait varier la composition massique hydrophile/thermosensible, tout en maintenant constante la masse molaire des greffons, on démontre des comportements opposés à basse et haute températures avec de bonnes propriétés à froid lorsque le réseau est riche en matrice hydrophile réticulée (élasticité d’origine entropique) et de très bonnes propriétés à chaud lorsque le comportement mécanique est contrôlé par les domaines concentrées en greffons à LCST (élasticité d’origine enthalpique). Le phénomène de séparation de phase des greffons PNIPAm étant thermo-réversible par nature, et les interactions entre ces mêmes chaînes peu dynamiques à haute température, nous montrons que ces hydrogels greffés cumulent, respectivement, des propriétés d’auto-adhésion et de mémoire de forme. Enfin, en généralisant le processus de séparation de phase, nous montrons que le remplacement du réseau hydrophile par un réseau thermosensible de type UCST, permet d’obtenir un double phénomène de séparation de phase, à basse et à haute température. Si les températures de transition sont parfaitement corrélées avec les caractéristiques thermodynamiques de chacun des polymères, le renforcement mécanique dépend plus quant à lui des énergies d’interaction qui se développent lors de la transition de phase au sein du réseau à UCST (liaisons-H) ou entre les greffons à LCST (interactions hydrophobes + liaisons-H)
To specifically study the impact of phase-separation processes on hydrogels mechanical reinforcement, we worked under isochoric conditions developing architectures not only thermo-responsive but also able to keep a high level of hydration on both sides of the phase-separation temperature. For this purpose, grafted hydrogels have been formulated from a chemically cross-linked hydrophilic polymer network grafted with thermo-sensitive side-chains of LCST type (PNIPAm). From this primary structure and keeping constant the weight ratio between the hydrophilic and thermo-responsive parts, we demonstrate that the thermodynamic characteristics of the phase transition (enthalpy and temperature transitions) are only very weakly dependent on the molar mass of PNIPAm grafts as well as their self-assembly process which leads to cylindrical domains concentrated in PNIPAm grafts. Like the nanocomposite materials, the formation of these dense polymer domains stabilized by physical interactions highly enhances both the gels stiffness and fracture resistance at high temperature by dissipating energy. We show that this temperature-controlled reinforcement increases with the molar mass of the PNIPAm grafts. Varying the hydrophilic/thermo-responsive parts weight ratio while keeping constant the molar mass of the grafts, opposite behaviours at low and high temperatures were established. When the hydrophilic cross-linked network weight is high compared to the one of thermo-responsive grafts, the hydrogels exhibit good properties at low temperature (entropic elasticity) whereas at high temperature, their mechanical behaviour is controlled by the phase-separated domains concentrated in PNIPAm grafts (energetic elasticity). The phase-separation phenomenon of PNIPAm grafts being thermo-reversible by nature and the interactions between these chains being weakly dynamic at high temperature, we demonstrate that these grafted hydrogels exhibit both adhesive and shape-memory properties. Finally, expanding the phase-separation concept, we show that replacing the hydrophilic network by a UCST type thermo-responsive one allows getting a dual thermo-response with phase-separation occurring at both low and high temperatures. While these transition temperatures are perfectly correlated to the thermodynamic characteristics of each polymer, the mechanical reinforcement is more dependent on the energy due to the nature of interactions developing inside the UCST network (H-bonds) or between the LCST grafts (H-bonds and hydrophobic interactions) during the phase-separation process
APA, Harvard, Vancouver, ISO, and other styles
5

Miasnikova, Anna. "New hydrogel forming thermo-responsive block copolymers of increasing structural complexity." Phd thesis, Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/5995/.

Full text
Abstract:
This work describes the synthesis and characterization of stimuli-responsive polymers made by reversible addition-fragmentation chain transfer (RAFT) polymerization and the investigation of their self-assembly into “smart” hydrogels. In particular the hydrogels were designed to swell at low temperature and could be reversibly switched to a collapsed hydrophobic state by rising the temperature. Starting from two constituents, a short permanently hydrophobic polystyrene (PS) block and a thermo-responsive poly(methoxy diethylene glycol acrylate) (PMDEGA) block, various gelation behaviors and switching temperatures were achieved. New RAFT agents bearing tert-butyl benzoate or benzoic acid groups, were developed for the synthesis of diblock, symmetrical triblock and 3-arm star block copolymers. Thus, specific end groups were attached to the polymers that facilitate efficient macromolecular characterization, e.g by routine 1H-NMR spectroscopy. Further, the carboxyl end-groups allowed functionalizing the various polymers by a fluorophore. Because reports on PMDEGA have been extremely rare, at first, the thermo-responsive behavior of the polymer was investigated and the influence of factors such as molar mass, nature of the end-groups, and architecture, was studied. The use of special RAFT agents enabled the design of polymer with specific hydrophobic and hydrophilic end-groups. Cloud points (CP) of the polymers proved to be sensitive to all molecular variables studied, namely molar mass, nature and number of the end-groups, up to relatively high molar masses. Thus, by changing molecular parameters, CPs of the PMDEGA could be easily adjusted within the physiological interesting range of 20 to 40°C. A second responsivity, namely to light, was added to the PMDEGA system via random copolymerization of MDEGA with a specifically designed photo-switchable azobenzene acrylate. The composition of the copolymers was varied in order to determine the optimal conditions for an isothermal cloud point variation triggered by light. Though reversible light-induced solubility changes were achieved, the differences between the cloud points before and after the irradiation were small. Remarkably, the response to light differed from common observations for azobenzene-based systems, as CPs decreased after UV-irradiation, i.e with increasing content of cis-azobenzene units. The viscosifying and gelling abilities of the various block copolymers made from PS and PMDEGA blocks were studied by rheology. Important differences were observed between diblock copolymers, containing one hydrophobic PS block only, the telechelic symmetrical triblock copolymers made of two associating PS termini, and the star block copolymers having three associating end blocks. Regardless of their hydrophilic block length, diblock copolymers PS11 PMDEGAn were freely flowing even at concentrations as high as 40 wt. %. In contrast, all studied symmetrical triblock copolymers PS8-PMDEGAn-PS8 formed gels at low temperatures and at concentrations as low as 3.5 wt. % at best. When heated, these gels underwent a gel-sol transition at intermediate temperatures, well below the cloud point where phase separation occurs. The gel-sol transition shifted to markedly higher transition temperatures with increasing length of the hydrophilic inner block. This effect increased also with the number of arms, and with the length of the hydrophobic end blocks. The mechanical properties of the gels were significantly altered at the cloud point and liquid-like dispersions were formed. These could be reversibly transformed into hydrogels by cooling. This thesis demonstrates that high molar mass PMDEGA is an easily accessible, presumably also biocompatible and at ambient temperature well water-soluble, non-ionic thermo-responsive polymer. PMDEGA can be easily molecularly engineered via the RAFT method, implementing defined end-groups, and producing different, also complex, architectures, such as amphiphilic triblock and star block copolymers, having an analogous structure to associative telechelics. With appropriate design, such amphiphilic copolymers give way to efficient, “smart” viscosifiers and gelators displaying tunable gelling and mechanical properties.
Diese Arbeit befasst sich mit der RAFT-vermittelten Synthese und Charakterisierung von stimuli-empfindlichen Polymeren und ihrer Selbstorganisation zu „intelligenten” Hydrogelen. Die Hydrogele wurden so entwickelt, dass sie bei niedrigen Temperaturen stark quellen, bei Temperaturerhöhung jedoch reversibel in einem hydrophoben, kollabierten Zustand umgewandelt werden. Mit dem permanent hydrophoben Polystyrol (PS) und dem hydrophilen, thermisch schaltbaren Poly(methoxy-diethylen¬glycol-acrylat) (PMDEGA) als Bausteine, wurden unterschiedliche Gelierungsverhalten und thermische Übergangstemperaturen erreicht. Zur Synthese von Diblock-, symmetrischen Triblock- und dreiarmigen Sternblock-Copolymeren wurden neue funktionelle Kettenüberträger entwickelt. Diese gestatteten es, tert-butyl Benzoeester und Benzoesäure Endgruppen in die Polymere einzubauen, die einerseits eine effiziente Analyse mittels Routine 1H-NMR und darüber hinaus eine spätere Funktionalisierung der Endgruppen mit einer Fluoreszenzsonde ermöglichten. Da über PMDEGA kaum Daten vorlagen, wurde der Einfluss von Molekulargewicht, Endgruppen und Architektur auf das thermo-responsive Verhalten untersucht. Die speziellen Kettenüberträger ermöglichten es, gezielt hydrophobe wie hydrophile Endgruppen in die Polymere einzuführen. Die Trübungspunkte der wässerigen Lösungen von PMDEGA zeigten sich bis zu relativ hohen molaren Massen abhängig gegenüber allen untersuchten Variablen, nämlich dem Molekulargewicht, der Art und Zahl von Endgruppen. Durch Variation der diversen Parameter ließ sich die Schalttemperatur von PMDEGA in physiologisch relevanten Temperaturbereich von 20 bis 40 °C einstellen. Um die Polymere für einen zweiten Stimulus, nämlich Licht, empfindlich zu machen, wurden Azobenzol-funktionalisierte Acrylate synthetisiert und statistisch mit MDEGA copolymerisiert. Die Zusammensetzung der Polymeren wurde variiert und das isotherme Schalten der Löslichkeit durch Licht untersucht. Obwohl ein reversibles Schalten erreicht wurde, waren die Unterschiede zwischen den Trübungstemperaturen von UV-Licht bestrahlten und unbestrahlten Proben nur gering. Interessanterweise senkte die UV-Bestrahlung, d.h. ein erhöhter Gehalt von cis-Azobenzol-Gruppen, die Trübungstemperaturen herab. Dies ist genau umgekehrt als für azobenzolbasierten Systeme klassisch beschrieben. Die Gelbildung der verschiedenen Blockcopolymere von PS und PMDEGA wurde mittels Rheologie untersucht. Dabei traten deutliche Unterschiede auf, zwischen dem Gelierungsverhalten der Diblockcopolymere, die nur einen PS Block enthalten, dem der symmetrischen Triblockcopolymere, die zwei assoziative PS Endblöcken besitzen, und dem der Sternpolymere, die drei assoziative PS Blöcke aufweisen. Unabhängig von der Länge des hydrophilen Blockes, bilden Diblockcopolymere des Typs PS11-PMDEGAn keine Gele, sondern selbst bei hohen Konzentrationen von 40 Gew. % Lösungen. Im Gegensatz dazu bildeten die Triblockcopolymere des Typs PS8-PMDEGAn-PS8 Gele bei niedrigen Temperaturen, vereinzelt schon ab 3.5 wt. %. Mit steigender Temperatur, tritt bereits unterhalb des Trübungspunktes für diese Systeme ein Gel-Sol Übergang auf. Der Gel-Sol Übergang bewegt sich zu höheren Temperaturen mit steigende Länge des hydrophilen inneren Blocks. Dieser Trend verstärkt sich mit zunehmender Anzahl von Endblöcken und deren Länge. An der Trübungstemperatur veränderten sich die mechanischen Eigenschaften aller Gele signifikant und die gebildeten flüssigen Dispersionen ließen sich reversibel beim Abkühlen wieder zu Gel schalten. Diese Arbeit, zeigt dass PMDEGA ein bei niedrigen Temperaturen gut wasserlösliches, nicht-ionisches, thermisch-schaltbares und wahrscheinlich biokompatibles Polymer ist. PMDEGA liest sich einfach mittels den RAFT-Verfahren molekular maßschneiden, mit spezifischen Endgruppen und komplexen Polymerarchitekturen. Solche amphiphilen Triblock- und Sternblock-Copolymeren hoher Molmasse, wirken als assoziative Telechele. Daher eigenen sich bei entsprechendem Design diese amphiphilen Blockcopolymere als effiziente Verdicker und Gelbildner mit einstellbaren mechanischen und thermischen Eigenschaften.
APA, Harvard, Vancouver, ISO, and other styles
6

Miasnikova, Anna [Verfasser], and André [Akademischer Betreuer] Laschewsky. "New hydrogel forming thermo-responsive block copolymers of increasing structural complexity / Anna Miasnikova. Betreuer: André Laschewsky." Potsdam : Universitätsbibliothek der Universität Potsdam, 2012. http://d-nb.info/1023802872/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Williams, Eva Christabel. "Smart Packaging: A Novel Technique For Localized Drug Delivery For Ovarian Cancer." Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4257.

Full text
Abstract:
Localized drug delivery is emerging as an effective technique due to its ability to administer therapeutic concentrations and controlled release of drugs to cancer sites in the body. It also prevents the contact of harsh chemotherapy drugs to healthy regions in the body that otherwise would become exposed to current treatments. This study reports on a model chemotherapy drug delivery system comprising non-ionic surfactant vesicles (niosomes) packaged within a temperature-sensitive chitosan network. This smart packaging, or package-within-a package system, provides two distinct advantages. First, the gel prevents circulation of the niosomes and maintains delivery in the vicinity of a tumor. Secondly, the chitosan network protects the niosomes against fluctuations in tonicity, which affects delivery rates. Tonicity is the sum of the concentrations of the solutes which have the capacity to exert an osmotic force across the membrane. Release rates were monitored from both bare niosomes alone and niosome-embedded, chitosan networks. It was observed that chitosan networks prolonged delivery from 100 hours to 55 days in low ionic strength environment and pH conditions similar to a tumor site. The primary effect of chitosan is to add control on release time and dosage, and stabilize the niosomes through a high ionic strength surrounding that prevents uncontrolled bursting of the niosomes. Secondary factors include cross-link density of the chitosan network, molecular weight of the individual chitosan polymers, dye concentration within the niosomes, and the number density of niosomes packaged within the chitosan network. Each of these factors can be altered to fine-tune release rates. Release rate experiments were conducted with 5,6-carboxyfluorescein, a fluorescent dye and chemotherapeutics paclitaxel and carboplatin. In vitro studies showed a preferential affinity of the smart packaged system to ovarian carcinoma cell line OV2008 as compared to normal epithelial cell lines of Ilow and MCC3. Further, feasibility of the drug delivery system was evaluated in vivo. Toxicity studies revealed that the system was non-toxic and feasible in vivo. The final outcome of this study includes tuning of the variables mentioned above that will contribute to the development of low cost and improved methods for drug delivery with application to intracavitary ovarian cancer treatment and other types of cancer
APA, Harvard, Vancouver, ISO, and other styles
8

Tsai, Tsung-Hsien, and 蔡宗憲. "Preparation and Properties of Novel Thermo-Responsive Hydrogels Scaffold." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/30410902403075293786.

Full text
Abstract:
碩士
高雄醫學大學
醫藥暨應用化學研究所
96
A new kind of thermo-responsive biological hydrogel scaffolds was synethized in this studies. First, P(NiPAAm-MAA) hydrogels were polymerized with N-isopropyl acryamide (NiPAAm) and Methylacrylic acid (MAA). Then the P(NiPAAm-MAA)-PEG-HA hydrogels were synthesized with Hyaluronic acid (HA) by cross-linking the Polyethyl glycol bisamine (PEG-diamine). The new hydrogles combined both advantages of NiPAAm and HA which including better mechanical properties, biodegradable and biocompatibility. The characteristic of P(NiPAAm-MAA)-PEG-HA hydrogels were evaluated by H-NMR, FT-IR and Viscometer. The swelling ratio and water content of hydrogels were measured in different pH value at 37℃. And the lower critical solution temperature (LCST) of the hydrogels was measured with different temperature by Viscometer. The hydrogels were immersed in PBS (pH=7.4) at 37℃ to observed the change of weight lost. The surface of hydrogels after freeze-drying were observed by SEM. Finally, MTS activity assay of hydrogels cultured for 24, 48, 72 hours. The results showed that the hydrogels exhibited a LCST at 34℃ and swelling ratio was between 4-8 times and water content was between 73-93%. The swelling ratio and water content depended on the pH value of PBS solution. MTS activity culture prove that the hydrogels were no toxicity. So The new thermo-responsive P(NiPAAm-MAA)-PEG-HA hydrogels will have great potential applications in tissue engineering.
APA, Harvard, Vancouver, ISO, and other styles
9

Wu, pei-kang, and 吳培綱. "Hepatic Tissue Engineering in Microgravity Bioreactor with Thermo-Responsive Hydrogels." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/71133727437924118263.

Full text
Abstract:
碩士
長庚大學
生化與生醫工程研究所
94
Abstract In this study we examined the behavior of freshly isolated rat hepatocytes cultivated within thermal-sensitive hydrogels based on N-isopropylacrylamide (NIPAAm) and acrylic (AAc). The hydrogel scaffold can mimic the in vivo extracellular matrix and provide a three-dimensional environment for cell proliferation and differentiation. Hepatocyes were encapsulated in NIPAAm-AAc copolymer hydrogel beads and cultured in the rotation cell culture system (RCCS) that could provide a microgravity cell culture environment. Factors such as rotation speed of RCCS, hydrogel encapsulation, cell numbers in hydrogel beads, culture condition (static or dynamic), and medium oxygen level were studied for its influence on cell aggregate size, albumin secretion rate, and urea production rate. Hydrogel copolymer modified with galactosamine, which provides a galactose moiety for recognition by hepatocytes surface receptors, was found to drastically up-regulate the metabolic functions of hepatocytes.
APA, Harvard, Vancouver, ISO, and other styles
10

Yu-YunHsu and 許毓芸. "Thermo-Responsive Supramolecular Hydrogels Formed by Cyclodextrin and Peptide Amphiphiles." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/44885431376661223600.

Full text
Abstract:
碩士
國立成功大學
化學工程學系
103
In this study, we reported the preparation of thermo-responsive supramolecular hydrogels via inclusion complexation between cyclodextrins (CDs) and peptide amphiphiles (PAs). Alkylamine were used as the macroinitiator of ring-opening polymerization (ROP) to synthesize PAs. CDs threaded onto alkyl chain and form inclusion complex. The network structure of hydrogels was composed of hydrophobic interactions between alkyl chain and inner cavity of CDs, hydrogen bonding between CDs and side chain of PAs. The gel-sol transition temperature and gelation concentration were tuned by alkyl chain length, type of amino acids and CDs, the molar ratio of CDs and PAs. The secondary structure of peptides was mainly random coil. C12Thr20+α-CD hydrogels formed lamellar packing and the one bilayer thickness decreased with increasing temperature. The intelligent hydrogels could be promising in tissue engineering.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thermo-responsive hydrogels"

1

Chu, Liang-Yin, Rui Xie, Xiao-Jie Ju, and Wei Wang. "Structure-Function Relationship of Thermo-responsive Hydrogels." In Smart Hydrogel Functional Materials, 3–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39538-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chu, Liang-Yin, Rui Xie, Xiao-Jie Ju, and Wei Wang. "Polyphenol-Induced Phase Transition of Thermo-responsive Hydrogels." In Smart Hydrogel Functional Materials, 91–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39538-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fujiwara, Tomoko, Tetsuji Yamaoka, and Yoshiharu Kimura. "Thermo-Responsive Biodegradable Hydrogels from Stereocomplexed Poly(lactide)s." In Biomedical Applications of Hydrogels Handbook, 157–77. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5919-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chu, Liang-Yin, Rui Xie, Xiao-Jie Ju, and Wei Wang. "Thermo-/pH-Dual-Responsive Hydrogels with Rapid Response Properties." In Smart Hydrogel Functional Materials, 193–232. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39538-3_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Okano, Teruo, Ryo Yoshida, Kiyotaka Sakai, and Yasuhisa Sakurai. "Thermo-Responsive Polymeric Hydrogels and Their Application to Pulsatile Drug Release." In Polymer Gels, 299–308. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5892-3_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Laschewsky, André, Peter Müller-Buschbaum, and Christine M. Papadakis. "Thermo-responsive Amphiphilic Di- and Triblock Copolymers Based on Poly(N-isopropylacrylamide) and Poly(methoxy diethylene glycol acrylate): Aggregation and Hydrogel Formation in Bulk Solution and in Thin Films." In Intelligent Hydrogels, 15–34. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01683-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fujiwara, Tomoko. "Thermo-Responsive Gels: Biodegradable Hydrogels from Enantiomeric Copolymers of Poly(lactide) and Poly(ethylene glycol)." In ACS Symposium Series, 287–311. Washington, DC: American Chemical Society, 2012. http://dx.doi.org/10.1021/bk-2012-1114.ch017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chu, Liang-Yin, Rui Xie, Xiao-Jie Ju, and Wei Wang. "Functional Membranes with Thermo-responsive Hydrogel Gates." In Smart Hydrogel Functional Materials, 111–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39538-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chu, Liang-Yin, Rui Xie, Xiao-Jie Ju, and Wei Wang. "Functional Microcapsules with Thermo-responsive Hydrogel Shells." In Smart Hydrogel Functional Materials, 135–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39538-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chu, Liang-Yin, Rui Xie, Xiao-Jie Ju, and Wei Wang. "Preparation and Properties of Monodisperse Thermo-responsive Microgels." In Smart Hydrogel Functional Materials, 25–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39538-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermo-responsive hydrogels"

1

Rueda, Juan Carlos, Kevin Contreras, Rafael Coello, Mauro Lomer, Hartmut Komber, Stefan Zschoche, and Brigitte Voit. "Characterization of new thermo-responsive hydrogels for optical sensing applications." In Defense and Security Symposium, edited by Michael J. Hayduk, Andrew R. Pirich, Peter J. Delfyett, Jr., Eric J. Donkor, John P. Barrios, Rebecca J. Bussjager, Michael L. Fanto, et al. SPIE, 2007. http://dx.doi.org/10.1117/12.720426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fu, Guoguang, and Winston Soboyejo. "Modified Poly (N-Isopropylacrylamide) Hydrogels for Drug Delivery." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19491.

Full text
Abstract:
Thermo-responsive hydrogel can change their swelling behavior and drug release characteristics in response to environmental temperature [1–5]. Poly(N-isopropylacrylamide) (PNIPA) hydrogel undergoes a phase transition when the temperatue is lower than a lower critical solution temperature (LCST) of ∼32°C in aqueous solution [8], and drug release profiles in PNIPA hydrogel can be controlled by the alternation of their solution temperatures.
APA, Harvard, Vancouver, ISO, and other styles
3

Toma, Mana, Wolfgang Knoll, Jakub Dostalek, Anca Mateescu, and Ulrich Jonas. "Plasmonic biosensor schemes with thermo-responsive hydrogel binding matrix." In 2011 International Workshop on Biophotonics. IEEE, 2011. http://dx.doi.org/10.1109/iwbp.2011.5954841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xue, Yan, Xinyong Wang, Bo Zhang, Bing Wei, and Zhongbin Ye. "Preparation and Evaluation of Thermo- and Salinity-Responsive Hydrogel as Intelligent Plugging Agent." In SPE International Conference on Oilfield Chemistry. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/184532-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Jyh-Ping, and Tai-Hong Cheng. "Mechanical Tensile Strain Stimulation of Chondrocytes and Meniscus Cells in Thermo-Responsive Hydrogel." In Proceedings of the First International Symposium on Bioengineering. Singapore: Research Publishing Services, 2011. http://dx.doi.org/10.3850/978-981-08-7615-9_te05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Amin, Samiul. "Design of Smart Sustainable Emulsions for Cosmetic Applications." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/mgyn7615.

Full text
Abstract:
Development and design of sustainable cosmetic products is a key R&D priority across all the cosmetic and personal care companies. This is primarily due to the focus on addressing the strong consumer driver for cosmetic products that do not have a negative environmental footprint. This has led to the rapid development of new formulations where traditional ingredients such as synthetic surfactants, polymers, silicone oils etc are being replaced by more sustainable alternatives such as biosurfactants, biobased surfactants, biopolymers, natural oils. This replacement of traditional ingredients by more sustainable alternatives however is not trivial as re-building the performance of traditional ingredients is highly challenging. This is specifically true of oil-in-water and water-in-oil based emulsion systems which constitute a large majority of cosmetic products. The stability, texture/rheology/sensory has to be re-engineered in these sustainable formulations. This re-engineering of the formulations however does additionally present opportunities to build in new performance attributes and to additionally engineeer in smart or stimuli responsive behavior.This study will report on the formulation design of several novel sustainable emulsion systems-a thermo-responsive whey protein/chitosan oil-in-water emulsion system, a glycolipid/silica particle water-in-oil emulsion system, a thermo-responsive methylcellulose/chitosan hydrogel system incorporating an EGF (epidermal growth factor). The ability to tune the rheology and rheological response to external stimuli to deliver performance benefits will be illustrated.
APA, Harvard, Vancouver, ISO, and other styles
7

Bae, Woo Kyun, Lothar Hennighausen, Ji Hee Lee, Dae Eun Kim, Jun Eul Hwang, Hyun Jeong Shim, Sang Hee Cho, In-Kyu Park, and Ik-Joo Chung. "Abstract 4344: Intraperitoneal administration of docetaxel loaded in thermo-responsive conjugated linoleic acid-incorporated poloxamer hydrogel for the suppression of peritoneal dissemination of gastric cancer." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography