Academic literature on the topic 'Thermo-fluid dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermo-fluid dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermo-fluid dynamics"

1

Yamagami, Shigemasa, Tetta Hashimoto, and Koichi Inoue. "OS23-6 Thermo-Fluid Dynamics of Pulsating Heat Pipes for LED Lightings(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 283. http://dx.doi.org/10.1299/jsmeatem.2015.14.283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ushida, Akiomi, Shuichi Ogawa, Tomiichi Hasegawa, and Takatsune Narumi. "OS23-1 Pseudo-Laminarization of Dilute Polymer Solutions in Capillary Flows(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 278. http://dx.doi.org/10.1299/jsmeatem.2015.14.278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nagura, Ryo, Kanji Kawashima, Kentaro Doi, and Satoyuki Kawano. "OS23-3 Observation of Electrically Induced Flows in Highly Polarized Electrolyte Solution(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 280. http://dx.doi.org/10.1299/jsmeatem.2015.14.280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

YANAGISAWA, Shota, Masaru OGASAWARA, Takahiro ITO, Yoshiyuki TSUJI, Seiji YAMASHITA, Takashi BESSHO, and Manabu ORIHASHI. "OS23-11 The Mechanism of Enhancing Pool Boiling Efficiency by Changing Surface Property(Thermo-fluid dynamics(3),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 288. http://dx.doi.org/10.1299/jsmeatem.2015.14.288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamaguchi, Yukio, and Kenji Amagai. "OS23-7 Development of Binary Refrigeration System Using CO2 Coolant for Freezing Show Case(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 284. http://dx.doi.org/10.1299/jsmeatem.2015.14.284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aoshima, Yuki, and Hiroaki Hasegawa. "OS23-2 The Behavior of a Non-Circular Synthetic Jet Issued into a Turbulent Boundary Layer(Thermo-fluid dynamics(1),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 279. http://dx.doi.org/10.1299/jsmeatem.2015.14.279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shakouchi, Toshihiko, Ryosuke Ozawa, Fumi Iwasaki, Koichi Tsujimoto, and Toshitake Ando. "OS23-5 Flow and Heat Transfer of Petal Shaped Double Tube : Water and Air-Water Bubbly Flows(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 282. http://dx.doi.org/10.1299/jsmeatem.2015.14.282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suzuki, Takashi, Toyoki Fukuda, Akihiko Mitsuishi, and Kenzo Kitamura. "OS23-9 An Experimental Investigation of The Surface-smoothness Effects upon Evaporation of Droplet on Heated Surface(Thermo-fluid dynamics(3),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 286. http://dx.doi.org/10.1299/jsmeatem.2015.14.286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mizushima, Yuki, and Takayuki Saito. "OS23-10 Time-resolved visualization for bubble nucleation induced by femtosecond pulse laser in water and acetone(Thermo-fluid dynamics(3),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 287. http://dx.doi.org/10.1299/jsmeatem.2015.14.287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kataoka, Yoji, Tetsuro Tsuji, and Satoyuki Kawano. "OS23-8 A Microfluidic Device for Visualization of Thermophoresis Using In-plane Two Adjacent Plates at Different Temperatures(Thermo-fluid dynamics(2),OS23 Thermo-fluid dynamics,FLUID AND THERMODYNAMICS)." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 285. http://dx.doi.org/10.1299/jsmeatem.2015.14.285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Thermo-fluid dynamics"

1

Vu, Henry H. "Thermo-fluid dynamics of flash atomizing sprays and single droplet impacts." Diss., [Riverside, Calif.] : University of California, Riverside, 2010. http://proquest.umi.com/pqdweb?index=0&did=2019869981&SrchMode=2&sid=4&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1274205996&clientId=48051.

Full text
Abstract:
Thesis (Ph. D.)--University of California, Riverside, 2010.
Includes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed May 18, 2010). Includes bibliographical references. Also issued in print.
APA, Harvard, Vancouver, ISO, and other styles
2

Bertozzi, Barbara. "Feasibility study for understanding ice cave microclimate through thermo-fluid dynamics approaches." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
Ice caves are classified as sporadic permafrost phenomena and consist of lava tubes or cave systems in which perennial ice forms. Ice within caves can be very old and can carry important information on permafrost conditions, climate changes and past climates. Until now, these systems have been investigated mainly with an experimental approach. A critical topic in ice cave studies is the understanding of how the internal environment interacts with the external and how these systems react to changes in the external conditions. In this thesis, a new numerical approach to understand ice cave microclimate is proposed. Numerical studies can contribute greatly to a better understanding of the processes involved in the formation and preservation of the ice in cave. Furthermore, computational fluid dynamic methods can be a valuable support to define new experimental setups and to interpret experimental results. The cave studied in this work is Leupa ice cave, located in Friuli Venezia Giulia region. Air flows inside Leupa ice caves were characterized with an integrated approach using both experimental and numerical methods. A general approach was initially adopted and three representative days were identified to investigate which circulation patterns can develop under different environmental conditions. The comparison of numerical and experimental data permitted to evaluate the quality of the simulations and to identify the main problematics that need to be investigated further. Deeper investigations were then performed for a single day to investigate the temperature and boundary conditions effect on the flow thermo-dynamics inside the cave. New insights on the fluid-dynamic behavior of Leupa ice cave are achieved, showing that numerical methods could represent a powerful tool to study ice caves, improving and integrating the information that could be obtained from standard experimental measurements.
APA, Harvard, Vancouver, ISO, and other styles
3

Viljoen, Carel Frederik. "Thermo-hydraulic analysis of the PBMR used fuel tank using computational fluid dynamics / Carel Frederik Viljoen." Thesis, North-West University, 2003. http://hdl.handle.net/10394/276.

Full text
Abstract:
The Pebble Bed Modular Reactor (PBMR) is a 4th generation nuclear reactor based on the HTR-Modul of Siemens currently being developed by Eskom in South Africa. The major safety characteristics of the PBMR are the fuel design and physical dimensions that make it an inherently safe reactor. This means that the reactor will not melt down like a typical Light Water Reactor (LWR) when cooling of the reactor is lost. The thermo-hydraulic analysis of the Used Fuel Tank (UFT) is of great importance in the safety analysis of the PBMR. The UFT is one of two types of tanks that will be used to store fuel that has been in the reactor for a finite time. The fuel would therefore contain fission products and would generate decay heat. This decay heat should be removed to limit the temperature of the fuel. The temperature of the fuel should be limited to prevent the release of fission products to the environment. The temperature limit on the fuel during storage is required to ensure that the graphite in the fuel does not oxidize in the presence of oxygen. The fuel is normally kept in a helium environment, but it must be shown that the fuel is safe when there is air ingress into the system. The purpose of this study is therefore to determine the temperature distribution in the fuel and the components of the used fuel tank for different scenarios. This includes the forced cooling of the tanks and the possibility of cooling the tanks with natural convection. Computational Fluid Dynamics (CFD) was used to model the various heat transfer mechanisms present. This includes convection heat transfer between the gases and the solids, conduction through the solids and thermal radiation between most of the surfaces. The effect of natural convection was also included, as the pipes through the tank cause result in high mass flow through these pipes due to the buoyancy effect. The results show that the fuel temperature will not exceed the allowable limit during forced cooling if the Heating, Ventilation and Air-conditioning (HVAC) is supplied at 6 kg/s. The possibility of cooling the tanks with passive means during upset events looks promising, but it is dependant on the design of the chimneys. The chimney cross-flow area was the most significant factor influencing the air mass flow through the system. The chimney design and the rest of the system not included in this study should be analysed in detail before the passive operation of the system can be guaranteed.
Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2004.
APA, Harvard, Vancouver, ISO, and other styles
4

Ahmed, Nisaar. "Thermo-fluid modelling of electrical generator frames under forced convection in an oscillating water column environment." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31363.

Full text
Abstract:
This PhD involved computational fluid dynamic simulations of finned generators cooling under forced convection in an oscillating water column environment. Various design changes to the upstream Wells turbine and its effect on the consequent cooling of the generator were investigated. Simulations were run in steady-state to obtain an initial condition, thereafter, unsteady simulations revealed a steadying of heat transfer over the course of multiple blade rotation cycles. This justified the use of steady-state for the remaining simulations over a range of flow coefficients. The results revealed that the heat transfer from the generator increased for tighter blade tip clearances, thicker blade profiles and greater turbine solidity. The heat transfer was found to increase with rising flow rate coefficient, which was adjusted by increasing the inlet velocity whilst maintaining the angular velocity of the turbine at a constant 2000 RPM. Additionally, the variation of turbine angular velocity at a fixed flow rate coefficient was investigated, the heat transfer was also found to increase with angular velocity, albeit by a far lesser extent. The inclusion of the Wells turbine upstream of the generator was investigated initially and was found to increase heat transfer due to the resulting impingement of airflow across the generator. In all design scenarios in which the heat transfer increases, there is also an observed increase in the mass flow rate of air, radially, towards the generator.
APA, Harvard, Vancouver, ISO, and other styles
5

Trabadela, Ramirez Alfonso [Verfasser], Hans-Josef [Akademischer Betreuer] Allelein, Rafael [Akademischer Betreuer] Macián-Juan, and Herbert [Akademischer Betreuer] Olivier. "High-temperature reactor code package thermo-fluid dynamics development / Alfonso Trabadela Ramirez ; Hans-Josef Allelein, Rafael Macián-Juan, Herbert Olivier." Aachen : Universitätsbibliothek der RWTH Aachen, 2020. http://d-nb.info/1230061193/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garicano, Mena Jesus. "On the computation of heat flux in hypersonic flows using residual distribution schemes." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209174.

Full text
Abstract:
In this dissertation the heat flux prediction capabilities of Residual Distribution (RD) schemes for hypersonic flow fields are investigated. Two canonical configurations are considered: the flat plate and the blunt body (cylinder) problems, with a preference for the last one. Both simple perfect gas and more complex thermo-chemical non-equilibrium (TCNEQ) thermodynamic models have been considered.

The unexpected results identified early in the investigation lead to a thorough analysis to identify the causes of the unphysical hypersonic heating.

The first step taken is the assessment of the quality of flow field and heat transfer predictions obtained with RD methods for subsonic configurations. The result is positive, both for flat plate and cylinder configurations, as RD schemes produce accurate flow solutions and heat flux predictions whenever no shock waves are present, irrespective of the gas model employed.

Subsonic results prove that hypersonic heating anomalies are a consequence of the presence of a shock wave in the domain and/or the way it is handled numerically.

Regarding hypersonic flows, the carbuncle instability is discarded first as the cause of the erroneous stagnation heating. The anomalies are shown next to be insensitive to the kind and level of dissipation introduced via the (quasi-)positive contribution P to blended B schemes. Additionally, insufficient mesh resolution locally over the region where the shock wave is captured numerically is found to be irrelevant.

Capturing the bow shock in a manner that total enthalpy is preserved immediately before and after the numerical shock wave is, on the contrary, important for correct heating prediction.

However, a carefully conceived shock capturing term is, by itself, not sufficient to guarantee correct heating predictions, since the LP scheme employed (be it stand-alone in a shock fitting context or combined into a blended scheme for a shock capturing computation) needs to be immune to spurious recirculations in the stagnation point.

Once the causes inducing the heating anomalies identified, hypersonic shocked flows in TCNEQ conditions are studied.

In order to alleviate the computational effort necessary to handle many species non-equilibrium (NEQ) models, the extension of an entropic (or symmetrizing) variables formulation RD to the nS species, two temperature TCNEQ model is accomplished, and the savings in computational time it allows are demonstrated.

The multi-dimensional generalization of Roe-like linearizations for the TCNEQ model is addressed next: a study on the existence conditions of the linearized state guaranteeing discrete conservation is conducted.

Finally, the new dissipative terms derived for perfect gas are adapted to work under TCNEQ conditions; the resulting numerical schemes are free of the temperature undershoot and Mach number overshoot problem afflicting standard CRD schemes.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
7

Hurry, Aakash Shaun. "Biomimicry for the shape optimisation of heat exchangers: Exploring hydrodynamic profiles inspired by shark denticles." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2024. https://ro.ecu.edu.au/theses/2792.

Full text
Abstract:
This research provides an outlook on the use of biomimicry across disciplines, with a particular focus on the application of metal Additive Manufacturing (AM) to fabricate more efficient fin geometries for heat exchangers. By using functional modelling, a denticle from a shortfin mako shark was identified as geometry for a novel 3D fin for a heat exchanger. The shape of the denticle is streamlined and is known to reducing drag; therefore, indicating a possibility of enhancing fluid-to-solid contact for enhanced heat transfer when used as a fin. Initially, the thermo-hydraulic performance of the denticle was numerically evaluated with respect to a rectangular fin, cylindrical fin, and an NACA 0030 fin, using conjugate-heat-transfer simulations on ANSYS-Fluent. Then, A Markforged Metal X printer was used to fabricate the denticle fin with stainless steel 17- 4PH. Thermal and pressure drop experiments were performed to evaluate the thermos-hydraulic performance of the denticle relative to a rectangular fin. Further, a multi-objective gradient based optimisation was performed on the denticle fin by using ANSYS-Fluent. Results demonstrated that over the range of tested Reynolds numbers, 3.9x104 < Re ≤ 9.2x104, mean thermal performance factors of 1.33 and 1.09 were noted for the shape optimised denticle with respect to the rectangular fin, and initial denticle fin, respectively. Finally, the effect of using bio-inspired surface texturing as a technique to further enhance the thermo-hydraulic performance of a single NACA 63-015 fin was investigated experimentally. A mean thermal performance factor of 1.11 was noted for the range of tested Reynolds numbers, which demonstrated that the addition surface textures in the form of shark denticles to a NACA 63-015 profile increased the thermos-hydraulic performance of the fin compared to a smooth one.
APA, Harvard, Vancouver, ISO, and other styles
8

Perraud, Sylvain. "Thermo-hydraulique d'un écoulement horizontal d'hélium superfluide diphasique." Phd thesis, Université Joseph Fourier (Grenoble), 2007. http://tel.archives-ouvertes.fr/tel-00291090.

Full text
Abstract:
Ce travail concerne l'étude thermohydraulique d'un écoulement d'hélium superfluide diphasique en conduite horizontale, comparable à celui mis en œuvre dans le refroidissement des aimants supraconducteurs du LHC au Cern. On montre que pour des vitesses de vapeur de quelques 3 à 4 m.s\mun, la phase liquide initialement stratifiée subit une atomisation qui se traduit par la présence d'un brouillard de gouttelettes transporté par la phase vapeur. Ceci a pu être montré en hélium superfluide comme en hélium normal sans différence majeure sur l'atomisation. Grâce à différents instruments et dispositifs de visualisation, plusieurs corrélations ont pu être mesurées entre la fraction de gouttelettes entraînées et la capacité frigorifique de l'écoulement diphasique, et ceci en fonction de paramètres expérimentaux comme le niveau liquide, la vitesse de la vapeur, ou encore sa densité.
APA, Harvard, Vancouver, ISO, and other styles
9

Esteves, Nicolas. "Modélisation thermique et aéraulique des alternateurs pour les simulations de l’espace sous capot d’un véhicule automobile." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI124.

Full text
Abstract:
Le but de ces travaux est de créer un modèle aérothermique, avec un temps de calcul court, d’un alternateur automobile intégré au sein d’une simulation complète d’un environnement sous-capot d’un véhicule. La prise en compte de leur influence au sein d'un comportement moteur est recherchée. Un modèle simplifié permettant la simulation du comportement aéraulique et thermique d’un alternateur a été développé. Il utilise une approche nodale afin de simuler les phénomènes thermiques et aérauliques du système. Différents algorithmes et une interface homme-machine permettent un paramétrage facile et rapide, et une implémentation automatique du modèle. En effet, le paramétrage du réseau nodal est fait automatiquement, l’utilisateur doit seulement rentrer les différents paramètres du système : dimensions, caractéristiques matériaux, pertes thermiques... Cela nous permet d’avoir aussi un modèle adaptable facilement à tout type d’alternateur. Le comportement aéraulique de l’alternateur est simulé via des coefficients de convection, intégrés au réseau nodal. Ces coefficients sont déterminés via des corrélations en fonction du nombre de Reynolds de l’écoulement. Pour chaque zone de l’écoulement d’air dans l’alternateur, ces corrélations ont été identifiées via une modélisation CFD de l’alternateur, lui-même validé par des essais aérauliques sur banc expérimental. Le modèle a été vérifié et validé via des essais expérimentaux thermiques. Il présente une erreur moyenne inférieure à 10%, et fonctionne sur l’ensemble des régimes d’utilisation. Il présente un temps de calcul de l’ordre de 2 minutes. Le modèle a été intégré dans une simulation simplifiée d’un environnement sous-capot. Une méthodologie de couplage a été développée, permettant l’intégration des données du modèle simplifié, au sein des simulations sous-capot. Ces simulations modélisent le comportement thermique des environnements sous-capot ainsi que le compartiment aéraulique. Les flux d’air sont simulés et le couplage du modèle simplifié permet d’intégrer l’influence thermique de l’alternateur, au sein de l’environnement sous-capot, ainsi que l’impact aéraulique de ce dernier. La méthodologie de couplage permet d’importer les valeurs de températures et de débits, estimées par le modèle simplifié, au sein du maillage d’une CAO de l’alternateur. Ces travaux sont en cours d’intégration dans les processus numériques du Groupe PSA. Différentes perspectives sont en cours d’étude, afin d’utiliser ce modèle sur d’autres éléments du sous-capot, ou d’autres machines tournantes, comme des moteurs électriques présents sur les véhicules hybrides et électriques
The objective of the thesis is to create a thermal model of an alternator, with a quickly time run. This model will integrate the influence of the alternator inside an under-hood simulation. A simplify model able to simulate the aerodynamic and thermal behaviour has developed. It use a nodal approach to simulate the aerodynamic and thermal behaviour. Different algorithms and an user’s interface able to a quickly set up and a automatically implementation. Indeed, the nodal, approach was realized automatically by the model, the user inform the dimensions of the alternator, the materials characteristics and the thermal losses. Thanks to we have a model that use with any automobile alternator. The aerodynamic of the alternator is simulate with convection coefficient via the nodal approach. These coefficients are estimated with correlations based on Reynolds of the flow. The CFD simulation of the alternator identified these correlations. The CFD model has been validate with an aerodynamics tests. The model is checked and validate by thermal tests. It has an average error lower than 10% and work to any regime of the use. The time run is equal to 2 minutes. The modal has been integrate inside an under-hood simulation. A coupling methodology has been developed to allow the integration of the data, like the temperatures and the flowrate was estimate by the simplify model, inside an under-hood simulation. The under-hood simulation modelling the aerodynamic and thermal behaviour of the engine compartment. Therefore, the coupling methodology allow integrating the aerodynamic and thermal influence of the alternator inside the compartment. The work is actually in progress inside the numerical processes of the PSA group. Many perspectives are studied, to use the model on other under-hood elements, or other electric machine, like the electric engines used inside the hybrid vehicles
APA, Harvard, Vancouver, ISO, and other styles
10

Saigre, Thomas. "Modélisation mathématique, simulation et réduction d’ordre de flux oculaires et leurs interactions : construire le jumeau numérique de l'oeil." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD052.

Full text
Abstract:
Le corps humain est un système complexe, et l'œil humain n’y fait pas exception. Malgré les avancées médicales, de nombreuses questions pathologiques subsistent. Les modèles mathématiques et computationnels complètent les études cliniques en dévoilant des mécanismes physiopathologiques complexes.L'œil, accessible de manière non invasive, offre des marqueurs biologiques utiles pour diagnostiquer des maladies. Comprendre son comportement, ses pathologies et les traitements associés est donc essentiel.Cette thèse explore la modélisation et la simulation des flux oculaires, notamment le transfert de chaleur et le flux d’humeur aqueuse. Ces approches nécessitent des validations cliniques rigoureuses et tiennent compte de nombreux paramètres, spécifiques au patient ou externes. Une analyse de sensibilité globale évalue leur impact pour guider les cliniciens. Ces analyses, coûteuses en calculs, bénéficient de méthodes de réduction de modèle certifiées, permettant des simulations précises et plus rapides, favorisant l’intégration des modèles dans la pratique clinique
The human body is a complex system, and the human eye is no exception. Despite medical advances, many pathological questions remain. Mathematical and computational models complement clinical studies by revealing complex pathophysiological mechanisms.The eye, which can be accessed non-invasively, offers useful biological markers for diagnosing diseases. Understanding its behavior, pathologies and associated treatments is therefore essential.This thesis explores the modeling and simulation of ocular flows, notably heat transfer and aqueous humor flow. These approaches require rigorous clinical validation and take into account numerous parameters, both patient-specific and external. A global sensitivity analysis assesses their impact to guide clinicians. These computationally-intensive analyses benefit from certified model reduction methods, enabling accurate and faster simulations, favoring the integration of models into clinical practice
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Thermo-fluid dynamics"

1

Nikrityuk, Petr A. Computational Thermo-Fluid Dynamics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527636075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Astarita, Tommaso, and Giovanni Maria Carlomagno. Infrared Thermography for Thermo-Fluid-Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29508-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Astarita, Tommaso. Infrared Thermography for Thermo-Fluid-Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ishii, Mamoru, and Takashi Hibiki. Thermo-Fluid Dynamics of Two-Phase Flow. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7985-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ishii, Mamoru, and Takashi Hibiki. Thermo-Fluid Dynamics of Two-Phase Flow. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29187-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ishii, M. Thermo-fluid dynamics of two-phase flow. 2nd ed. New York: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Johannes Petrus Bernardus Nicolaas Derks. Cold fluid driven crack propagation: Thermo-mechanical behaviour of rock caverns. Delft, The Netherlands: Delft University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Whitelaw, J. H. Thermo- and Fluid Dynamic Processes in Diesel Engines 2: Selected Papers from the THIESEL 2002 Conference, Valencia, Spain, 11-13 September 2002. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

F, Poli͡a︡kov A., ed. Thermo- and laser anemometry. New York: Hemisphere Pub. Corp., 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Whitelaw, James H., Francisco Payri, and José M. Desantes, eds. Thermo- and Fluid-dynamic Processes in Diesel Engines. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04925-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Thermo-fluid dynamics"

1

Astarita, Tommaso, and Giovanni Maria Carlomagno. "Introduction and historical grounding." In Infrared Thermography for Thermo-Fluid-Dynamics, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29508-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Astarita, Tommaso, and Giovanni Maria Carlomagno. "Physical background." In Infrared Thermography for Thermo-Fluid-Dynamics, 5–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29508-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Astarita, Tommaso, and Giovanni Maria Carlomagno. "IR Scanner." In Infrared Thermography for Thermo-Fluid-Dynamics, 23–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29508-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Astarita, Tommaso, and Giovanni Maria Carlomagno. "Heat Flux sensors." In Infrared Thermography for Thermo-Fluid-Dynamics, 49–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29508-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Astarita, Tommaso, and Giovanni Maria Carlomagno. "Restoration of thermal images." In Infrared Thermography for Thermo-Fluid-Dynamics, 83–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29508-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Astarita, Tommaso, and Giovanni Maria Carlomagno. "Some practical considerations." In Infrared Thermography for Thermo-Fluid-Dynamics, 101–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29508-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Astarita, Tommaso, and Giovanni Maria Carlomagno. "Applications." In Infrared Thermography for Thermo-Fluid-Dynamics, 129–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29508-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ishii, Mamoru, and Takashi Hibiki. "Two-Fluid Model." In Thermo-Fluid Dynamics of Two-Phase Flow, 155–216. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29187-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ishii, Mamoru, and Takashi Hibiki. "Two-fluid Model." In Thermo-Fluid Dynamics of Two-Phase Flow, 155–216. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7985-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ishii, Mamoru, and Takashi Hibiki. "One-Dimensional Two-Fluid Model." In Thermo-Fluid Dynamics of Two-Phase Flow, 419–30. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-29187-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermo-fluid dynamics"

1

Rajalakshmi, B., V. Alekhya, Sorabh Lakhanpal, Irfan Khan, Maha Chasib Munshid, and Ramya Maranan. "Advanced Simulation and Optimization Strategies in Thermo-Fluid Dynamics: A Deep Learning Approach to Enhancing Heat Transfer in Evaporative Cooling Systems." In 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, 1–6. IEEE, 2024. http://dx.doi.org/10.1109/otcon60325.2024.10688198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cardone, G. "Quantitative infrared thermography in thermo-fluid-dynamics." In 1998 Quantitative InfraRed Thermography. QIRT Council, 1998. http://dx.doi.org/10.21611/qirt.1998.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Passarella, D. N., R. L-Cancelos, I. Vieitez, F. Varas, and E. B. Martín. "THERMO-FLUID-DYNAMICS QUENCHING MODEL: EFFECT ON MATERIAL PROPERTIES." In 10th World Congress on Computational Mechanics. São Paulo: Editora Edgard Blücher, 2014. http://dx.doi.org/10.5151/meceng-wccm2012-19499.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grilli, Muzio, Stefan Hickel, Nikolaus Adams, Georg Hammerl, Caroline Danowski, and Wolfgang Wall. "An innovative approach to thermo-fluid-structure Interaction Based on an Immersed Interface Method and A Monolithic Thermo-Structure Interaction Algorithm." In 42nd AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-3267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lan, Eymon, and Shanbin Shi. "Coupled Modeling and Prediction of Cryogenic Propellant Thermo-Fluid Dynamics." In Nuclear and Emerging Technologies for Space (NETS 2023). Illinois: American Nuclear Society, 2023. http://dx.doi.org/10.13182/nets23-41658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mohan, Abhay, Abhilash Suryan, Deog Hee Doh, and Heuy Dong Kim. "Thermo-Fluid Dynamics of the Effects of Water Spray on Air Compression Process." In European Conference on Turbomachinery Fluid Dynamics and hermodynamics. European Turbomachinery Society, 2017. http://dx.doi.org/10.29008/etc2017-104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nasuti, Francesco, Emanuele Martelli, and Marcello Onofri. "Thermo-Fluid-Dynamics Analysis of Film Cooling in Overexpanded Rocket Nozzles." In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-5207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

GRAHAM, R., J. ADAMCZYK, and H. ROHLIK. "Computational thermo-fluid dynamics contributions to advanced gas turbine engine design." In 23rd Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gopinathrao, Naveen Prasad, Christophe Mabilat, and Sohail Alizadeh. "Non-Deterministic Thermo-Fluid Analysis of a Compressor Rotor-Stator Cavity." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pérez-Drago, G., J. Faure, P. Leandri, and G. A. Pérez-Cruz. "Cantarell Giant Oilfield Fault-Thrust Kinematic Evolution and Synchronous Thermo-Fluid Dynamics." In 82nd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202112971.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thermo-fluid dynamics"

1

Froehle, P., A. Tentner, and C. Wang. Modeling and analysis of transient vehicle underhood thermo - hydrodynamic events using computational fluid dynamics and high performance computing. Office of Scientific and Technical Information (OSTI), September 2003. http://dx.doi.org/10.2172/834718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography