Journal articles on the topic 'Thermionics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Thermionics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
ZHANG, C. "EFFECT OF INELASTIC SCATTERING OF HOT ELECTRONS ON THERMIONIC COOLING IN A SINGLE-BARRIER STRUCTURE." International Journal of Modern Physics B 14, no. 14 (June 10, 2000): 1451–57. http://dx.doi.org/10.1142/s0217979200001503.
Full textKhoshaman, Amir H., Harrison D. E. Fan, Andrew T. Koch, George A. Sawatzky, and Alireza Nojeh. "Thermionics, Thermoelectrics, and Nanotechnology: New Possibilities for Old Ideas." IEEE Nanotechnology Magazine 8, no. 2 (June 2014): 4–15. http://dx.doi.org/10.1109/mnano.2014.2313172.
Full textMarti, Antonio. "Analysis of the Thermodynamic Consistency of the Richardson–Duhmann Model for Thermionic Converters." Energies 13, no. 5 (March 1, 2020): 1087. https://doi.org/10.3390/en13051087.
Full textHumphrey, T. E., M. F. O’Dwyer, C. Zhang, and R. A. Lewis. "Solid-state thermionics and thermoelectrics in the ballistic transport regime." Journal of Applied Physics 98, no. 2 (July 15, 2005): 026108. http://dx.doi.org/10.1063/1.1977191.
Full textMarshall, Paul. "Making Old Television Technology Make Sense." VIEW Journal of European Television History and Culture 8, no. 15 (October 27, 2019): 32. http://dx.doi.org/10.18146/2213-0969.2019.jethc163.
Full textHuang, Sunchao, Matthew Sanderson, Yan Zhang, and Chao Zhang. "High efficiency and non-Richardson thermionics in three dimensional Dirac materials." Applied Physics Letters 111, no. 18 (October 30, 2017): 183902. http://dx.doi.org/10.1063/1.5006277.
Full textKhoshaman, Amir H., Andrew T. Koch, Mike Chang, Harrison D. E. Fan, Mehran Vahdani Moghaddam, and Alireza Nojeh. "Nanostructured Thermionics for Conversion of Light to Electricity: Simultaneous Extraction of Device Parameters." IEEE Transactions on Nanotechnology 14, no. 4 (July 2015): 624–32. http://dx.doi.org/10.1109/tnano.2015.2426149.
Full textInayat, Usman, Shaukat Iqbal, and Tareq Manzoor. "Theoretical Investigation of Two-Dimensional Nonlinear Radiative Thermionics in Nano-MHD for Solar Insolation: A Semi-Empirical Approach." Computer Modeling in Engineering & Sciences 130, no. 2 (2022): 751–76. http://dx.doi.org/10.32604/cmes.2022.018665.
Full textCheekatamarla, Praveen. "Role of On-Site Generation in Carbon Emissions and Utility Bill Savings under Different Electric Grid Scenarios." Energies 15, no. 10 (May 10, 2022): 3477. http://dx.doi.org/10.3390/en15103477.
Full textVoronovich, D. A. "Thermionic properties of lutetium borides single crystals." Functional materials 21, no. 3 (September 30, 2014): 266–73. http://dx.doi.org/10.15407/fm21.03.266.
Full textJi, Cong, and Fan Gu. "Influence of Thermionic Emission on He Ionization and Plasma Enhancement in Thermionic Energy Conversion." Energies 16, no. 18 (September 5, 2023): 6435. http://dx.doi.org/10.3390/en16186435.
Full textKoeck, F. A. M., J. M. Garguillo, John R. Smith, Y. J. Tang, G. L. Bilbro, and Robert J. Nemanich. "Vacuum Thermionic Energy Conversion Based on Nanocrystalline Diamond Films." Advances in Science and Technology 48 (October 2006): 83–92. http://dx.doi.org/10.4028/www.scientific.net/ast.48.83.
Full textZhu, Weiwei, Cong Ji, and Fan Gu. "Effects of heat transfer on characteristics of thermionic energy converter." Canadian Journal of Physics 96, no. 12 (December 2018): 1247–58. http://dx.doi.org/10.1139/cjp-2017-0435.
Full textMahan, G. D. "Thermionic refrigeration." Journal of Applied Physics 76, no. 7 (October 1994): 4362–66. http://dx.doi.org/10.1063/1.357324.
Full textIsmanov, Y., N. Dzhamankyzov, T. Tynyshova, and A. Kainazarov. "Increasing the Efficiency of Thermoelectric Conversion of Solar Energy." Bulletin of Science and Practice 10, no. 10 (October 15, 2024): 85–97. http://dx.doi.org/10.33619/2414-2948/107/11.
Full textAlekseev, Pavel A., Georgiy E. Lazarenko, Vladimir A. Linnik, and Aleksandr P. Pyshko. "The concept of a thermionic reactor-converter with evaporative heat transfer." Nuclear Energy and Technology 8, no. 3 (September 27, 2022): 179–85. http://dx.doi.org/10.3897/nucet.8.93907.
Full textAlekseev, Pavel A., Georgiy E. Lazarenko, Vladimir A. Linnik, and Aleksandr P. Pyshko. "The concept of a thermionic reactor-converter with evaporative heat transfer." Nuclear Energy and Technology 8, no. (3) (September 27, 2022): 179–85. https://doi.org/10.3897/nucet.8.93907.
Full textSitnikov, Maksim N., Anton M. Kharkov, and Sergey S. Aplesnin. "Thermal emission and pyroelectric current in manganese chalcogenides." Siberian Aerospace Journal 25, no. 2 (July 27, 2024): 264–71. http://dx.doi.org/10.31772/2712-8970-2024-25-2-264-271.
Full textKania, Bartosz. "DIGITAL APPROACH TO THERMIONIC EMISSION CURRENT TO VOLTAGE CONVERSION FOR HIGH-VOLTAGE SOURCES OF ELECTRONS." Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 12, no. 4 (December 30, 2022): 78–81. http://dx.doi.org/10.35784/iapgos.3255.
Full textGawkowski, Kamil, and Jarosław Sikora. "Selected methods of converting solar energy into electricity - comparative analysis." E3S Web of Conferences 49 (2018): 00029. http://dx.doi.org/10.1051/e3sconf/20184900029.
Full textGalstian, I. Ye, E. G. Len, E. A. Tsapko, H. Yu Mykhailova, V. Yu Koda, M. O. Rud, M. Ya Shevchenko, V. I. Patoka, M. M. Yakymchuk, and G. O. Frolov. "Low-Temperature Thermionic Converters Based on Metal–Nanostructured Carbon Composites." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 42, no. 4 (June 30, 2020): 451–70. http://dx.doi.org/10.15407/mfint.42.04.0451.
Full textOhkochi, Takuo, Takayuki Muro, Eiji Ikenaga, Kazuaki Togawa, Akira Yasui, Masato Kotsugi, Masaki Oura, and Hitoshi Tanaka. "Multilateral surface analysis of the CeB6 electron-gun cathode used at SACLA XFEL." Journal of Synchrotron Radiation 28, no. 6 (October 18, 2021): 1729–36. http://dx.doi.org/10.1107/s1600577521009656.
Full textWilson, S. T., S. Fargher, R. Foster, M. Malek, M. Needham, A. Scarff, and G. D. Smith. "Characterisation of the temperature-dependent dark rate of Hamamatsu R7081-100 10” photomultiplier tubes." Journal of Instrumentation 18, no. 08 (August 1, 2023): P08017. http://dx.doi.org/10.1088/1748-0221/18/08/p08017.
Full textTymofyeyev, V. I., and H. V. Yaremenko. "Simulation of a field-effect transistor on nanofilaments." Electronics and Communications 15, no. 5 (March 29, 2010): 5–8. http://dx.doi.org/10.20535/2312-1807.2010.58.5.284263.
Full textLarsson, Magnus, Vadim B. Antonyuk, A. G. Mal shukov, Zhongshui Ma, and K. A. Chao. "Thermionic current reversal." Journal of Physics A: Mathematical and General 35, no. 35 (August 20, 2002): L531—L534. http://dx.doi.org/10.1088/0305-4470/35/35/102.
Full textHETRICK, ROBERT E., and A. L. SCHAMP. "Thermionic Gas Sensor." Combustion Science and Technology 96, no. 1-3 (January 1994): 23–31. http://dx.doi.org/10.1080/00102209408935344.
Full textZhang, Xin, Zhuolin Ye, Shanhe Su, and Jincan Chen. "Thermionic-Thermoradiative Converters." IEEE Electron Device Letters 39, no. 9 (September 2018): 1429–32. http://dx.doi.org/10.1109/led.2018.2859797.
Full textPerng, D. C., D. A. Crewe, and A. D. Feinerman. "Micromachined thermionic emitters." Journal of Micromechanics and Microengineering 2, no. 1 (March 1, 1992): 25–30. http://dx.doi.org/10.1088/0960-1317/2/1/006.
Full textMahan, G. D., and L. M. Woods. "Multilayer Thermionic Refrigeration." Physical Review Letters 80, no. 18 (May 4, 1998): 4016–19. http://dx.doi.org/10.1103/physrevlett.80.4016.
Full textTrotabas, B., and R. Gueroult. "Trade-off in perpendicular electric field control using negatively biased emissive end-electrodes." Plasma Sources Science and Technology 31, no. 2 (February 1, 2022): 025001. http://dx.doi.org/10.1088/1361-6595/ac4847.
Full textKlyuev, Alexey V., Arkady V. Yakimov, and Irene S. Zhukova. "1/f Noise in Ti–Au/n-Type GaAs Schottky Barrier Diodes." Fluctuation and Noise Letters 14, no. 03 (June 29, 2015): 1550029. http://dx.doi.org/10.1142/s0219477515500297.
Full textRosul, Md Golam, Doeon Lee, David H. Olson, Naiming Liu, Xiaoming Wang, Patrick E. Hopkins, Kyusang Lee, and Mona Zebarjadi. "Thermionic transport across gold-graphene-WSe2 van der Waals heterostructures." Science Advances 5, no. 11 (November 2019): eaax7827. http://dx.doi.org/10.1126/sciadv.aax7827.
Full textÖzden, Şadan, Cem Tozlu, and Osman Pakma. "Temperature Dependent Electrical Transport in Al/Poly(4-vinyl phenol)/p-GaAs Metal-Oxide-Semiconductor by Sol-Gel Spin Coating Method." International Journal of Photoenergy 2016 (2016): 1–5. http://dx.doi.org/10.1155/2016/6157905.
Full textXie, Kan, Steven Allen Hartz, and Virginia M. Ayres. "Thermionic Field Emission Transport at Nanowire Schottky Barrier Contacts." MRS Proceedings 1785 (2015): 19–25. http://dx.doi.org/10.1557/opl.2015.605.
Full textLowke, J. J., and J. C. Quartel. "Use of Transport Coefficients to Calculate Properties of Electrode Sheaths of Electric Arcs." Australian Journal of Physics 50, no. 3 (1997): 539. http://dx.doi.org/10.1071/p96089.
Full textZhang, Xin, Yee Sin Ang, Lay Kee Ang, and Jincan Chen. "Concentrated thermionic solar cells using graphene as the collector: theoretical efficiency limit and design rules." Nanotechnology 33, no. 6 (November 16, 2021): 065404. http://dx.doi.org/10.1088/1361-6528/ac3459.
Full textPromros, Nathaporn, Suguru Funasaki, Motoki Takahara, Ryūhei Iwasaki, Mahmoud Shaban, and Tsuyoshi Yoshitake. "Diode Parameters of Mesa Structural n-Type Nanocrystalline FeSi2/p-Type Si Heterojunctions Prepared by Lift-Off Photolithography." Advanced Materials Research 1103 (May 2015): 91–96. http://dx.doi.org/10.4028/www.scientific.net/amr.1103.91.
Full textZuber, J. W., and C. Zhang. "Anisotropic thermionic response of Weyl semimetals with application in thermionic cooling." Journal of Applied Physics 128, no. 12 (September 28, 2020): 125101. http://dx.doi.org/10.1063/5.0025078.
Full textBORDAS, C., B. BAGUENARD, B. CLIMEN, F. LÉPINE, F. PAGLIARULO, M. A. LEBEAULT, and J. WILLS. "TIME AND ENERGY-RESOLVED THERMIONIC EMISSION IN CARBON CLUSTERS." International Journal of Modern Physics B 19, no. 15n17 (July 10, 2005): 2899–909. http://dx.doi.org/10.1142/s0217979205031882.
Full textIsmanov, Yu, N. Dzhamankizov, T. Tynyshova, and A. Abdulaev. "Photon Amplification of Thermoelectronic Solar Energy Converters." Bulletin of Science and Practice 10, no. 4 (April 15, 2024): 403–12. http://dx.doi.org/10.33619/2414-2948/101/45.
Full textVoronovych, Daniil, Anatoliy Taran, Oksana Podshyvalova, Natalya Shitsevalova, Volodymyr Filipov, and Anatoliy Dukhnenko. "Thermionic Emission of Yttrium Dodecaboride Single Crystal." Solid State Phenomena 289 (April 2019): 47–52. http://dx.doi.org/10.4028/www.scientific.net/ssp.289.47.
Full textToledo, J., A. Post, and J. F. Plaza. "Measurement of the C12A7:e- thermionic emission enhancement due to photon exposure." Journal of Physics: Conference Series 2526, no. 1 (June 1, 2023): 012111. http://dx.doi.org/10.1088/1742-6596/2526/1/012111.
Full textКнатько, М. В., та М. Н. Лапушкин. "Вольт-амперная характеристика термоионной эмиссии Na с поверхности Na-=SUB=-x-=/SUB=-Au". Письма в журнал технической физики 49, № 5 (2023): 26. http://dx.doi.org/10.21883/pjtf.2023.05.54666.19356.
Full textPan, J., A. Gaibrois, M. Marripelly, J. Leung, S. Suko, M. Lee, and T. Knight. "Effects of Very High Workfunction Metals or Metal Alloys (NiCr) on High Switching Speed, HV Schottky Diodes for Mixed Signal or RF ASIC." MRS Advances 5, no. 37-38 (2020): 1937–46. http://dx.doi.org/10.1557/adv.2020.336.
Full textKumar, Niraj, Anjana Kumari, Manisha Samarth, Rajiv Kumar, and Tarun Dey. "Analytical Studies of Metal Insulator Semiconductor Schottky Barrier Diodes." Material Science Research India 11, no. 2 (November 3, 2014): 121–27. http://dx.doi.org/10.13005/msri/110205.
Full textZhong, Yujie, Hao Wu, Xiandi Li, Jiamao Gao, Wei Jiang, Ya Zhang, and Giovanni Lapenta. "Numerical characterization of the breakdown process of dc-driven micro-discharges sustained by thermionic emission." Journal of Physics D: Applied Physics 55, no. 21 (February 25, 2022): 215203. http://dx.doi.org/10.1088/1361-6463/ac4fd4.
Full textKnatko M.V. and Lapushkin M.N. "Current-voltage characteristic of the thermal ion emission of Na from the Na-=SUB=-x-=/SUB=-Au surface." Technical Physics Letters 49, no. 3 (2023): 21. http://dx.doi.org/10.21883/tpl.2023.03.55677.19356.
Full textShakouri, Ali, and John E. Bowers. "Heterostructure integrated thermionic coolers." Applied Physics Letters 71, no. 9 (September 1997): 1234–36. http://dx.doi.org/10.1063/1.119861.
Full textXuan, X. C. "Combined thermionic-thermoelectric refrigerator." Journal of Applied Physics 92, no. 8 (October 15, 2002): 4746–50. http://dx.doi.org/10.1063/1.1509101.
Full textRasor, N. S. "Thermionic energy conversion plasmas." IEEE Transactions on Plasma Science 19, no. 6 (1991): 1191–208. http://dx.doi.org/10.1109/27.125041.
Full text