Journal articles on the topic 'Thermal stability'

To see the other types of publications on this topic, follow the link: Thermal stability.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Thermal stability.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Gudzenko, O. V. "Thermal stability of Cryptococcus albidus ?-L-rhamnosidase." Ukrainian Biochemical Journal 87, no. 3 (June 27, 2015): 23–30. http://dx.doi.org/10.15407/ubj87.03.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ribeiro, Helena C. T., and Octavio Henrique O. Pavan. "Baculovirus thermal stability." Journal of Thermal Biology 19, no. 1 (February 1994): 21–24. http://dx.doi.org/10.1016/0306-4565(94)90005-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

TASAKI, Kenji, Toru KURIYAMA, Hidefumi INOTSUME, Tetsuji OKAMURA, Hidemi HAYASHI, Masataka IWAKUMA, and Kazuo FUNAKI. "Thermal Stability of Conduction-cooled HTS Coils- Thermal Stability Analysis -." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 40, no. 10 (2005): 412–19. http://dx.doi.org/10.2221/jcsj.40.412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dr M. K. Hilal, Dr M. K. Hilal. "Thermal Stability and Sintering Behaviour of Hydroxyapatite and Zirconia." Indian Journal of Applied Research 4, no. 5 (October 1, 2011): 432–39. http://dx.doi.org/10.15373/2249555x/may2014/134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vidal, Olivier. "Experimental study of the thermal stability of pyrophyllite, paragonite, and clays in a thermal gradient." European Journal of Mineralogy 9, no. 1 (December 30, 1996): 123–40. http://dx.doi.org/10.1127/ejm/9/1/0123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Skibińska, Agnieszka. "Stabilność termooksydacyjna smarów plastycznych." Nafta-Gaz 77, no. 7 (July 2021): 471–79. http://dx.doi.org/10.18668/ng.2021.07.06.

Full text
Abstract:
This review article deals with a particular property of lubricating greases – resistance to oxidation. This property, also referred to as oxidative or thermal oxidation stability, has a decisive influence on the quality and duration of lubricating greases service life in friction nodes, bearings and lubrication systems. Lubricating greases are colloidal systems in which the thickener creates an elastic three-dimensional network, maintaining the liquid phase. The structure of lubricating greases, division of greases into types, depending on the thickener used, is presented. The basic additives in lubricating greases are described, and the group of used antioxidant additives is discussed in detail. Under operating conditions, the grease is subject to factors that cause its destruction – shear stress, pressure, loads, changing operating conditions, especially temperature changes. The types of lubricating greases degradation are presented, as well as methods and techniques of aging processes evaluation. During operation, the grease fulfilling its basic functions in the lubrication system is primarily exposed to high temperatures. The predominant aging process which directly affects the service life of the grease is oxidation. The oxidation process is discussed, with the specification of its four stages: initiation, propagation, chain branching and termination. One of the methods of preventing the oxidation process is the selection of appropriate improvers. Thermal oxidation stability of greases can be modified by introducing appropriate antioxidants, the selection of which depends on the type of grease thickener and the operating temperature of the grease. The published literature review from over the last ten years shows how diverse are the ways of modifying thermal oxidation stability of greases and the methods of assessing this property.
APA, Harvard, Vancouver, ISO, and other styles
7

Bannach, Gilbert, Rafael R. Almeida, Luis G. Lacerda, Egon Schnitzler, and Massao Ionashiro. "Thermal stability and thermal decomposition of sucralose." Eclética Química Journal 39, no. 4 (January 30, 2018): 21. http://dx.doi.org/10.26850/1678-4618eqj.v39.4.2009.p21-26.

Full text
Abstract:
Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.
APA, Harvard, Vancouver, ISO, and other styles
8

Bannach, Gilbert, Rafael R. Almeida, Luis G. Lacerda, Egon Schnitzler, and Massao Ionashiro. "Thermal stability and thermal decomposition of sucralose." Eclética Química 34, no. 4 (December 2009): 21–26. http://dx.doi.org/10.1590/s0100-46702009000400002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yankin, A. M., L. B. Vedmid’, O. M. Fedorova, and V. F. Balakirev. "Thermal stability of HoMnO3." Bulletin of the Russian Academy of Sciences: Physics 74, no. 5 (May 2010): 617–18. http://dx.doi.org/10.3103/s1062873810050096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Köster, Uwe, and Bernd Schuhmacher. "Thermal Stability of Quasicrystals." Materials Science Forum 22-24 (January 1987): 505–16. http://dx.doi.org/10.4028/www.scientific.net/msf.22-24.505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yokouchi, T., N. Miho, Y. Jinbo, Y. Izumi, and H. Yoshino. "Thermal stability of apocalmodulin." Seibutsu Butsuri 40, supplement (2000): S114. http://dx.doi.org/10.2142/biophys.40.s114_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Folly, Patrick. "Thermal Stability of Explosives." CHIMIA International Journal for Chemistry 58, no. 6 (June 1, 2004): 394–400. http://dx.doi.org/10.2533/000942904777677759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Shitaka, Y., K. Sano, H. Hai, K. Maeda, Y. Maeda, and M. Miki. "Thermal stability of Tropomyosin." Seibutsu Butsuri 41, supplement (2001): S61. http://dx.doi.org/10.2142/biophys.41.s61_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Klinkova, L. A., V. I. Nikolaichik, N. V. Barkovskii, and V. K. Fedotov. "Thermal stability of Bi2O3." Russian Journal of Inorganic Chemistry 52, no. 12 (December 2007): 1822–29. http://dx.doi.org/10.1134/s0036023607120030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Yuvchenko, A. P., N. R. Prokopchuk, E. A. Dikusar, V. M. Zelenkovskii, L. P. Filanchuk, and K. L. Moiseichuk. "Thermal Stability of Peroxyalkynes." Russian Journal of General Chemistry 74, no. 7 (July 2004): 1031–37. http://dx.doi.org/10.1023/b:rugc.0000045859.01585.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

BISCHOF, J. C. "Thermal Stability of Proteins." Annals of the New York Academy of Sciences 1066, no. 1 (December 1, 2005): 12–33. http://dx.doi.org/10.1196/annals.1363.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Blake, R. D., and S. G. Delcourt. "Thermal stability of DNA." Nucleic Acids Research 26, no. 14 (July 1, 1998): 3323–32. http://dx.doi.org/10.1093/nar/26.14.3323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Andrievskii, Rostislav A. "Thermal stability of nanomaterials." Russian Chemical Reviews 71, no. 10 (October 31, 2002): 853–66. http://dx.doi.org/10.1070/rc2002v071n10abeh000723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Lee, Sea-Hoon, and Hidehiko Tanaka. "Thermal Stability of Al3BC3." Journal of the American Ceramic Society 92, no. 9 (September 2009): 2172–74. http://dx.doi.org/10.1111/j.1551-2916.2009.03171.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hagiwara, T., M. Yamaura, and K. Iwata. "Thermal stability of polyaniline." Synthetic Metals 25, no. 3 (September 1988): 243–52. http://dx.doi.org/10.1016/0379-6779(88)90249-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kulkarni, Vaman G., Larry D. Campbell, and William R. Mathew. "Thermal stability of polyaniline." Synthetic Metals 30, no. 3 (June 1989): 321–25. http://dx.doi.org/10.1016/0379-6779(89)90654-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chandrakanthi, Nayana, and M. A. Careem. "Thermal stability of polyaniline." Polymer Bulletin 44, no. 1 (February 17, 2000): 101–8. http://dx.doi.org/10.1007/s002890050579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Irwin, W. J., and M. Iqbal. "Thermal stability of bropirimine." International Journal of Pharmaceutics 41, no. 1-2 (January 1988): 41–48. http://dx.doi.org/10.1016/0378-5173(88)90133-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Simon, J., F. Barla, Anna Kelemen-Haller, F. Farkas, and Márta Kraxner. "Thermal stability of polyurethanes." Chromatographia 25, no. 2 (February 1988): 99–106. http://dx.doi.org/10.1007/bf02259024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Menéndez-Arias, Luis, and Patrick Argosf. "Engineering protein thermal stability." Journal of Molecular Biology 206, no. 2 (March 1989): 397–406. http://dx.doi.org/10.1016/0022-2836(89)90488-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Matschei, Thomas, and Fredrik P. Glasser. "Thermal stability of thaumasite." Materials and Structures 48, no. 7 (November 6, 2014): 2277–89. http://dx.doi.org/10.1617/s11527-014-0309-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Shabaev, Albert S., Azamat A. Zhansitov, and S. Yu Khashirova. "Thermal Stability of Polyetherketones." Materials Science Forum 935 (October 2018): 31–35. http://dx.doi.org/10.4028/www.scientific.net/msf.935.31.

Full text
Abstract:
The thermal stability of polyether ketone, polyetheretherketone, polyarylene ketone at 400-500 °C was studied by gas chromatography. It was found out that the thermal destruction of polyetherketones and polyetheretherketones begins with the rupture of the ketone group, and polyarylene ketones with the detachment of the methyl group and the rupture of the ether linkage of the diane fragment.
APA, Harvard, Vancouver, ISO, and other styles
28

Borodin, V. I., and V. A. Trukhacheva. "Thermal stability of fullerenes." Technical Physics Letters 30, no. 7 (July 2004): 598–99. http://dx.doi.org/10.1134/1.1783414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Stetzer, M. R., P. A. Heiney, J. E. Fischer, and A. R. McGhie. "Thermal stability of solidC60." Physical Review B 55, no. 1 (January 1, 1997): 127–31. http://dx.doi.org/10.1103/physrevb.55.127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jones, R. D., and K. Rose. "Thermal stability of InN." Journal of Physics and Chemistry of Solids 48, no. 6 (January 1987): 587–90. http://dx.doi.org/10.1016/0022-3697(87)90057-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kaiser, M., and U. Ticmanis. "Thermal stability of diazodinitrophenol." Thermochimica Acta 250, no. 1 (February 1995): 137–49. http://dx.doi.org/10.1016/0040-6031(94)01960-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Sawhney, S. S. "Thermal stability of melanin." Thermochimica Acta 247, no. 2 (December 1994): 377–80. http://dx.doi.org/10.1016/0040-6031(94)80137-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Tiţa, Dumitru, Adriana Fuliaş, and Bogdan Tiţa. "Thermal stability of ketoprofen." Journal of Thermal Analysis and Calorimetry 111, no. 3 (January 20, 2012): 1979–85. http://dx.doi.org/10.1007/s10973-011-2147-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tiţa, Bogdan, Eleonora Marian, Adriana Fuliaş, Tunde Jurca, and Dumitru Tiţa. "Thermal stability of piroxicam." Journal of Thermal Analysis and Calorimetry 112, no. 1 (February 12, 2013): 367–74. http://dx.doi.org/10.1007/s10973-013-2979-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Talbot, P. C., and I. D. R. Mackinnon. "Thermal stability of HgSrO2." Journal of Materials Science Letters 13, no. 18 (1994): 1377–80. http://dx.doi.org/10.1007/bf00624501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Truong, Van-Tan, Brian C. Ennis, Terrence G. Turner, and Charles M. Jenden. "Thermal stability of polypyrroles." Polymer International 27, no. 2 (1992): 187–95. http://dx.doi.org/10.1002/pi.4990270213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Carrasco, F., D. Dionisi, A. Martinelli, and M. Majone. "Thermal stability of polyhydroxyalkanoates." Journal of Applied Polymer Science 100, no. 3 (2006): 2111–21. http://dx.doi.org/10.1002/app.23586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Brandau, Duane T., Latoya S. Jones, Christopher M. Wiethoff, Jason Rexroad, and C. Russell Middaugh. "Thermal Stability of Vaccines." Journal of Pharmaceutical Sciences 92, no. 2 (February 2003): 218–31. http://dx.doi.org/10.1002/jps.10296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kirchner, F., A. Mayer-Figge, F. Zabel, and K. H. Becker. "Thermal stability of Peroxynitrates." International Journal of Chemical Kinetics 31, no. 2 (1999): 127–44. http://dx.doi.org/10.1002/(sici)1097-4601(1999)31:2<127::aid-kin6>3.0.co;2-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Dekker, M., K. Hennig, and R. Verkerk. "Differences in Thermal Stability of Glucosinolates in Five Brassica Vegetables." Czech Journal of Food Sciences 27, Special Issue 1 (June 24, 2009): S85—S88. http://dx.doi.org/10.17221/1079-cjfs.

Full text
Abstract:
The thermal stability of individual glucosinolates within five different Brassica vegetables was studied at 100°C for different incubation times up to 120 minutes. Three vegetables that were used in this study were <I>Brassica oleracea</I> (red cabbage, broccoli and Brussels sprouts) and two were <I>Brassica rapa</I> (pak choi and Chinese cabbage). To rule out the influence of enzymatic breakdown, myrosinase was inactivated prior to the thermal treatments. The stability of three glucosinolates that occurred in all five vegetables (gluconapin, glucobrassicin and 4-methoxyglucobrassicin) varied considerably between the different vegetables. The degradation could be modeled by first order kinetics. The rate constants obtained varied between four to twenty fold between the five vegetables. Brussels sprouts showed the highest degradation rates for all three glucosinolates. The two indole glucosinolates were most stable in red cabbage, while gluconapin was most stable in broccoli. These results indicate the possibilities for plant breeding to select for cultivars in which glucosinolates are more stable during processing.
APA, Harvard, Vancouver, ISO, and other styles
41

YASHAWANTHA, Kyathanahalli Marigowda, and A. Venu VINOD. "Experimental investigation on thermal conductivity and stability of water-graphite nanofluid." Journal of Thermal Engineering 7, no. 7 (November 19, 2021): 1743–51. http://dx.doi.org/10.18186/thermal.1025968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ouis, Nora, Assia Belarbi, Salima Mesli, and Nassira Benharrats. "Improvement of Electrical Conductivity and Thermal Stability of Polyaniline-Maghnite Nanocomposites." Chemistry & Chemical Technology 17, no. 1 (March 27, 2023): 118–25. http://dx.doi.org/10.23939/chcht17.01.118.

Full text
Abstract:
A new nanocomposite based on conducting polyaniline (PANI) and Algerian montmorillonite clay dubbed Maghnite is proposed to combine conducting and thermal properties (Mag). The PANI-Mag nanocompo-sites samples were made by in situ polymerization with CTABr (cetyl trimethyl ammonium bromide) as the clay galleries' organomodifier. In terms of the PANI-Mag ratio, the electrical and thermal properties of the obtained nanocomposites are investigated. As the amount of Maghnite in the nanocomposite increases, thermal stability improves noticeably, as measured by thermal gravimetric analysis. The electric conductivity of nanocomposites is lower than that of free PANI. As the device is loaded with 5 % clay, the conductivity begins to percolate and decreases by many orders of magnitude. The findings show that the conductivity of nanocomposites is largely independent of clay loading and dispersion.
APA, Harvard, Vancouver, ISO, and other styles
43

Wu, Cheng-Wei, Xue Ren, Wu-Xing Zhou, Guofeng Xie, and Gang Zhang. "Thermal stability and thermal conductivity of solid electrolytes." APL Materials 10, no. 4 (April 1, 2022): 040902. http://dx.doi.org/10.1063/5.0089891.

Full text
Abstract:
Compared with liquid organic lithium-ion batteries, solid-state lithium-ion batteries have higher safety performance, so they are expected to become the next generation of energy storage devices and have attracted extensive research attention. The thermal management of the battery is a multi-coupling problem. Battery safety, cycle life, and even electrochemical reactions are all related to it. This Perspective presents the commonly used solid-state electrolytes and recent studies on their thermal stability and thermal transport properties. The thermal decomposition temperature and thermal conductivity are summarized, and we also present the summary and a brief outlook. This Perspective provides a reference for how to design and select high thermal conductive electrolyte materials, which is important for further advancement of solid-state lithium-ion batteries.
APA, Harvard, Vancouver, ISO, and other styles
44

Tanabe, K., and K. Sugawara-Tanabe. "Stability of thermal HFB and dissipative thermal RPA." Nuclear Physics A 649, no. 1-4 (March 1999): 205–8. http://dx.doi.org/10.1016/s0375-9474(99)00062-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, Jie, Shibo Li, Boxiang Yao, Jing Zhang, Xiaogang Lu, and Yang Zhou. "Thermal stability and thermal shock resistance of Fe2AlB2." Ceramics International 44, no. 13 (September 2018): 16035–39. http://dx.doi.org/10.1016/j.ceramint.2018.06.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Klyuchnikov, O. R., and Yu Yu Nikishev. "Thermal stability and thermal decomposition of N-oxides." Chemistry of Heterocyclic Compounds 31, no. 11 (November 1995): 1367–69. http://dx.doi.org/10.1007/bf01168633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Singh Bora, Pushkar, Zeomar Nitão Diniz, Vicente Queiroga Neto, and José Marcelino Oliveira Cavalheiro. "Sterculia striata seed kernel oil: Characterization and thermal stability." Grasas y Aceites 59, no. 2 (June 12, 2008): 160–65. http://dx.doi.org/10.3989/gya.2008.v59.i2.505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

M. Hanna, Walid, and Farghalli A. Mohamed. "Effect Of Diamantane On The Thermal Stability Of Cryomilled Aluminum Alloy." Advanced Materials Letters 10, no. 5 (February 1, 2019): 361–65. http://dx.doi.org/10.5185/amlett.2019.2282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Karandashov, Oleg, and Viacheslav Avramenko. "Studies of Thermal Stability of Epoxy Compounds for Glass-Fiber Pipes." Chemistry & Chemical Technology 11, no. 1 (March 15, 2017): 61–64. http://dx.doi.org/10.23939/chcht11.01.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Khovanets’, Galyna, Оlena Makido, Viktoria Kochubei, Тetyana Sezonenko, Yuriy Medvedevskikh, and Vladyslav Voloshynets. "THERMAL STABILITY OF ORGANIC-INORGANIC COMPOSITES BASED ON DIMETHACRYLATE-TETRAETHOXYSILANE SYSTEM." Chemistry & Chemical Technology 11, no. 2 (June 15, 2017): 158–65. http://dx.doi.org/10.23939/chcht11.02.158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography