To see the other types of publications on this topic, follow the link: Thermal shock behavior.

Dissertations / Theses on the topic 'Thermal shock behavior'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Thermal shock behavior.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Luo, Wenjin. "Thermal Shock Fracture Behaviors of Functionally Graded Ceramics." Fogler Library, University of Maine, 2006. http://www.library.umaine.edu/theses/pdf/LuoW2006.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aksel, Cemail. "Thermal shock behaviour and mechanical properties of magnesia-spinel composites." Thesis, University of Leeds, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yuan, Chen. "Thermal shock behaviour of ceramics with porous and layered structures." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wirtz, Oliver Marius [Verfasser]. "Thermal shock behaviour of different tungsten grades under varying conditions / Oliver Marius Wirtz." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1027766943/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Blissett, Martin James. "Aspects of the thermal shock behaviour of continuous fibre-reinforced glass-ceramic matrix composites." Thesis, University of Surrey, 1995. http://epubs.surrey.ac.uk/843927/.

Full text
Abstract:
The response of samples of unidirectional and cross-ply Nicalon fibre-reinforced calcium aluminosilicate (CAS) to a variety of thermal regimes has been examined using microscopy techniques and retained mechanical property measurements. The degree of matrix damage has been investigated by observation and measurement of cracking features and the results used in simple models in order to relate the occurrence of matrix cracking to stress distributions in the laminates. Thermal shock induced matrix crack damage was first seen to appear on the end faces of the unidirectional [0]16 laminate at a temperature differential of 400 °C and in the transverse plies, parallel to the longitudinal fibre direction, in the [0/90]3s cross-ply composite at a temperature differential of 350 °C. At more severe thermal shocks the next damage in both laminates was cracking in the matrix perpendicular to the fibre direction. The density of matrix cracking was seen to increase, initially, with increasing severity of thermal shock, but then to be less extensive at the highest temperature differentials (800 °C) used in this study. Crack density data for the unidirectional material at increasingly severe thermal shocks were compared with literature data for cracking under quasi-static loading using a simple thermal shock analysis incorporating a stress reduction factor. The effect of matrix cracking on retained mechanical properties has been examined by means of three-point flexure testing and values for Young's modulus, onset of non-linear behaviour and retained strength of the composites have been determined. Multiple thermal shock tests indicated that thermal treatment of previously cracked samples accelerated the rate of deterioration in the retained properties of the composite. It was proposed that the response of the samples to changes in the duration and severity of thermal treatments was consistent with interfacial modifications that have been reported to occur in this composite system at elevated temperatures. The suitability of applying a modified ACK model to predict critical temperature differentials for matrix cracking in the unidirectional laminate and longitudinal plies in the cross-ply composite has been tested. This approach combined applied thermal stresses, calculated using the simple thermal shock formula, with residual stresses, obtained from the model proposed by Powell et at. (1993). This method was found to be valid for the unidirectional material providing that some of the key parameters were determined independently. The use of a tunnelling crack model to predict thermal shock induced matrix cracking in the transverse plies of the cross-ply composite was less successful. This was partially attributed to the observed cracking patterns generated in the cross-ply material by flexure tests not conforming to those expected from stress calculations or reported from tensile tests.
APA, Harvard, Vancouver, ISO, and other styles
6

Mouiya, Mossaab. "Thermomechanical properties of refractory materials, influence of the diffuse microcracking." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0066.

Full text
Abstract:
Les matériaux réfractaires sont largement utilisés dans les applications à haute température mais ne sont pas toujours enclins à résister aux chocs thermiques sévères. Pour résoudre ce problème, une microstructure incorporant des microfissures préexistantes est une solution bien connue pour améliorer la résistance aux chocs thermiques. Néanmoins, une telle microstructure endommagée nécessite une meilleure compréhension pour optimiser son design sans compromettre l'intégrité du matériau. Dans un tel contexte, le Titanate d'Aluminium (Al₂TiO₅, AT) présentant une forte anisotropie de dilatation thermique, constitue un système modèle idéal pour créer un réseau de microfissures adapté afin d'améliorer la flexibilité et le comportement à la rupture. Cette thèse étudie les propriétés thermomécaniques des matériaux réfractaires développés à base d'AT, comprenant des céramiques polycristallines et des composites alumine/AT, en mettant l'accent sur les relations entre la microstructure et les propriétés macroscopiques. Dans le cas de ces deux matériaux, les microfissures préexistantes jouent un rôle clé sur le module de Young, le comportement de dilatation thermique, la réponse contrainte-déformation en traction, l'énergie de rupture et donc la résistance aux chocs thermiques. Un effet d’hystérésis significatif sur le module de Young et l’expansion thermique en fonction de la température témoigne des mécanismes de fermeture-réouverture de microfissures. Des essais de traction uniaxiale ont mis en évidence des lois de comportement non linéaires, impactant l'énergie de rupture et la résistance aux chocs thermiques. En particulier, des essais de traction incrémentale à 850 °C ont montré des comportements antagonistes à la montée ou à la descente en température du fait de l’histoire thermique. Les composites (alumine/AT) avec des 0 à 10 % d’inclusions présentent des microfissures diffuses dues à un différentiel d’expansion thermique. Ils présentent un module de Young réduit, des lois de comportement fortement non linéaires et une déformation à la rupture plus élevée à température ambiante. Les essais de choc thermique effectués par le dispositif innovant ATHORNA pour tous les matériaux à base d'AT étudiés ont confirmé leur résilience sous gradient thermique élevé. Ces résultats fournissent des informations précieuses pour le design de futurs matériaux réfractaires avancés présentant une résistance aux chocs thermiques améliorée
Refractory materials are widely used in high-temperature applications but are not always prone to resist severe thermal shock. To address this problem, microstructure incorporating pre-existing microcracks are already well known to improve thermal shock resistance. Nevertheless, such damaged microstructure needs a better understanding to optimize their design without compromising material integrity. In such context, Aluminum Titanate (Al₂TiO₅, AT) exhibiting a great thermal expansion anisotropy, constitutes an ideal model system for creating a tailored microcracks network in order to improve flexibility and fracture behavior. This thesis investigates the thermomechanical properties of developed AT-based refractory materials, including polycrystalline AT and alumina/AT composites, with emphasis on the relationship between microstructure and macroscopic properties. In both materials, pre-existing microcracks play a key role on Young's modulus, thermal expansion behavior, tensile stress-strain response, fracture energy, and thus thermal shock resistance. A significant hysteretic effect on Young's modulus and thermal expansion as a function of temperature indicates microcracks closure-reopening mechanisms. Uniaxial tensile tests revealed nonlinear stress-strain laws, impacting fracture energy and thermal shock resistance. In particular, incremental tensile tests at 850 °C showed contrasting behaviors during heating and cooling, attributed to thermal history. Composite materials with AT inclusions (0 - 10 wt.%) embedded in an alumina matrix exhibit diffuse microcracking due to thermal expansion mismatch. These composites exhibited reduced Young's modulus, highly nonlinear stress-strain laws, and higher strain to rupture at room temperature. Thermal shock tests performed by the innovative ATHORNA device for all studied AT-based materials confirmed their resilience under high thermal gradients. These findings provide valuable insights for the design of future advanced refractory materials with improved thermal shock resistance
APA, Harvard, Vancouver, ISO, and other styles
7

Aldridge, Matthew. "Aspects of the processing, mechanical properties and thermal shock behaviour of a ductile particle toughened alumina." Thesis, University of Surrey, 1996. http://epubs.surrey.ac.uk/605/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sizemore, Jorg F. "A study of the thermo-mechanical behavior of a plated through-hole under solder shock testing." Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/17631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eiras, Fernández Jesús Nuño. "Studies on nonlinear mechanical wave behavior to characterize cement based materials and its durability." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/71439.

Full text
Abstract:
[EN] The test for determining the resonance frequencies has traditionally been used to investigate the mechanical integrity of concrete cores, to assess the conformity of concrete constituents in different accelerated durability tests, and to ascertain constitutive properties such as the elastic modulus and the damping factor. This nondestructive technique has been quite appealed for evaluation of mechanical properties in all kinds of durability tests. The damage evolution is commonly assessed from the reduction of dynamic modulus which is produced as a result of any cracking process. However, the mechanical behavior of concrete is intrinsically nonlinear and hysteretic. As a result of a hysteretic stress-strain behavior, the elastic modulus is a function of the strain. In dynamic tests, the nonlinearity of the material is manifested by a decrease of the resonance frequencies, which is inversely proportional to the excitation amplitude. This phenomenon is commonly referred as fast dynamic effect. Once the dynamic excitation ceases, the material undergoes a relaxation process whereby the elastic modulus is restored to that at rest. This phenomenon is termed as slow dynamics. These phenomena (fast and slow dynamics) find their origin in the internal friction of the material. Therefore, in cement-based materials, the presence of microcracks and interfaces between its constituents plays an important role in the material nonlinearity. In the context of the assessment of concrete durability, the damage evolution is based on the increase of hysteresis, as a result of any cracking process. In this thesis three different nondestructive techniques are investigated, which use impacts for exciting the resonant frequencies. The first technique consists in determining the resonance frequencies over a range of impact forces. The technique is termed Nonlinear Impact Resonant Acoustic Spectroscopy (NIRAS). It consists in ascertaining the downward resonant frequency shift that the material undergoes upon increasing excitation amplitude. The second technique consists in investigating the nonlinear behavior by analyzing the signal corresponding to a single impact. This is, to determine the instantaneous frequency, amplitude and attenuation variations corresponding to a single impact event. This technique is termed as Nonlinear Resonant Acoustic Single Impact Spectroscopy (NSIRAS). Two techniques are proposed to extract the nonlinear behavior by analyzing the instantaneous frequency variations and attenuation over the signal ring down. The first technique consists in discretizing the frequency variation with time through a Short-Time Fourier Transform (STFT) based analysis. The second technique consists of a least-squares fit of the vibration signals to a model that considers the frequency and attenuation variations over time. The third technique used in this thesis can be used for on-site evaluation of structures. The technique is based on the Dynamic Acousto- Elastic Test (DAET). The variations of elastic modulus as derived through NIRAS and NSIRAS techniques provide an average behavior and do not allow derivation of the elastic modulus variations over one vibration cycle. Currently, DAET technique is the only one capable to investigate the entire range of nonlinear phenomena in the material. Moreover, unlike other DAET approaches, this study uses a continuous wave source as probe. The use of a continuous wave allows investigation of the relative variations of the elastic modulus, as produced by an impact. Moreover, the experimental configuration allows one-sided inspection.
[ES] El ensayo de determinación de las frecuencias de resonancia ha sido tradicionalmente empleado para determinar la integridad mecánica de testigos de hormigón, en la evaluación de la conformidad de mezclas de hormigón en diversos ensayos de durabilidad, y en la terminación de propiedades constitutivas como son el módulo elástico y el factor de amortiguamiento. Esta técnica no destructiva ha sido ampliamente apelada para la evaluación de las propiedades mecánicas en todo tipo de ensayos de durabilidad. La evolución del daño es comúnmente evaluada a partir de la reducción del módulo dinámico, producido como resultado de cualquier proceso de fisuración. Sin embargo, el comportamiento mecánico del hormigón es intrínsecamente no lineal y presenta histéresis. Como resultado de un comportamiento tensión-deformación con histéresis, el módulo elástico depende de la deformación. En ensayos dinámicos, la no linealidad del material se manifiesta por una disminución de las frecuencias de resonancia, la cual es inversamente proporcional a la amplitud de excitación. Este fenómeno es normalmente denominado como dinámica rápida. Una vez la excitación cesa, el material experimenta un proceso de relajación por el cual, el módulo elástico es restaurado a aquel en situación de reposo. Este fenómeno es denominado como dinámica lenta. Estos fenómenos ¿dinámicas rápida y lenta¿ encuentran su origen en la fricción interna del material. Por tanto, en materiales basados en cemento, la presencia de microfisuras y las interfaces entre sus constituyentes juegan un rol importante en la no linealidad mecánica del material. En el contexto de evaluación de la durabilidad del hormigón, la evolución del daño está basada en el incremento de histéresis, como resultado de cualquier proceso de fisuración. En esta tesis se investigan tres técnicas diferentes las cuales utilizan el impacto como medio de excitación de las frecuencias de resonancia. La primera técnica consiste en determinar las frecuencias de resonancia a diferentes energías de impacto. La técnica es denominada en inglés: Nonlinear Impact Resonant Acoustic Spectroscopy (NIRAS). Ésta consiste en relacionar el detrimento que el material experimenta en sus frecuencias de resonancia, con el aumento de la amplitud de la excitación. La segunda técnica consiste en investigar el comportamiento no lineal mediante el análisis de la señal correspondiente a un solo impacto. Ésta consiste en determinar las propiedades instantáneas de frecuencia, atenuación y amplitud. Esta técnica se denomina, en inglés, Nonlinear Single Impact Resonant Acoustic Spectroscopy (NSIRAS). Se proponen dos técnicas de extracción del comportamiento no lineal mediante el análisis de las variaciones instantáneas de frecuencia y atenuación. La primera técnica consiste en la discretización de la variación de la frecuencia con el tiempo, mediante un análisis basado en Short-Time Fourier Transform (STFT). La segunda técnica consiste en un ajuste por mínimos cuadrados de las señales de vibración a un modelo que considera las variaciones de frecuencia y atenuación con el tiempo. La tercera técnica empleada en esta tesis puede ser empleada para la evaluación de estructuras in situ. La técnica se trata de un ensayo acusto-elástico en régimen dinámico. En inglés Dynamic Acousto-Elastic Test (DAET). Las variaciones del módulo elástico obtenidas mediante los métodos NIRAS y NSIRAS proporcionan un comportamiento promedio y no permiten derivar las variaciones del módulo elástico en un solo ciclo de vibración. Actualmente, la técnica DAET es la única que permite investigar todo el rango de fenómenos no lineales en el material. Por otra parte, a diferencia de otras técnicas DAET, en este estudio se emplea como contraste una onda continua. El uso de una onda continua permite investigar las variaciones relativas del módulo elástico, para una señal transito
[CAT] L'assaig de determinació de les freqüències de ressonància ha sigut tradicionalment empleat per a determinar la integritat mecànica de testimonis de formigó, en l'avaluació de la conformitat de mescles de formigó en diversos assajos de durabilitat, i en la terminació de propietats constitutives com són el mòdul elàstic i el factor d'amortiment. Esta tècnica no destructiva ha sigut àmpliament apel·lada per a l'avaluació de les propietats mecàniques en tot tipus d'assajos de durabilitat. L'evolució del dany és comunament avaluada a partir de la reducció del mòdul dinàmic, produït com resultat de qualsevol procés de fisuración. No obstant això, el comportament mecànic del formigó és intrínsecament no lineal i presenta histèresi. Com resultat d'un comportament tensió-deformació amb histèresi, el mòdul elàstic depén de la deformació. En assajos dinàmics, la no linealitat del material es manifesta per una disminució de les freqüències de ressonància, la qual és inversament proporcional a l'amplitud d'excitació. Este fenomen és normalment denominat com a dinàmica ràpida. Una vegada l'excitació cessa, el material experimenta un procés de relaxació pel qual, el mòdul elàstic és restaurat a aquell en situació de repòs. Este fenomen és denominat com a dinàmica lenta. Estos fenòmens --dinámicas ràpida i lenta troben el seu origen en la fricció interna del material. Per tant, en materials basats en ciment, la presència de microfissures i les interfícies entre els seus constituents juguen un rol important en la no linealitat mecànica del material. En el context d'avaluació de la durabilitat del formigó, l'evolució del dany està basada en l'increment d'histèresi, com resultat de qualsevol procés de fisuración. En esta tesi s'investiguen tres tècniques diferents les quals utilitzen l'impacte com a mitjà d'excitació de les freqüències de ressonància. La primera tècnica consistix a determinar les freqüències de ressonància a diferents energies d'impacte. La tècnica és denominada en anglés: Nonlinear Impact Resonant Acoustic Spectroscopy (NIRAS). Esta consistix a relacionar el detriment que el material experimenta en les seues freqüències de ressonància, amb l'augment de l'amplitud de l'excitació. La segona tècnica consistix a investigar el comportament no lineal per mitjà de l'anàlisi del senyal corresponent a un sol impacte. Esta consistix a determinar les propietats instantànies de freqüència, atenuació i amplitud. Esta tècnica es denomina, en anglés, Nonlinear Single Impact Resonant Acoustic Spectroscopy (NSIRAS). Es proposen dos tècniques d'extracció del comportament no lineal per mitjà de l'anàlisi de les variacions instantànies de freqüència i atenuació. La primera tècnica consistix en la discretización de la variació de la freqüència amb el temps, per mitjà d'una anàlisi basat en Short-Time Fourier Transform (STFT). La segona tècnica consistix en un ajust per mínims quadrats dels senyals de vibració a un model que considera les variacions de freqüència i atenuació amb el temps. La tercera tècnica empleada en esta tesi pot ser empleada per a l'avaluació d'estructures in situ. La tècnica es tracta d'un assaig acusto-elástico en règim dinàmic. En anglés Dynamic Acousto-Elastic Test (DAET). Les variacions del mòdul elàstic obtingudes per mitjà dels mètodes NIRAS i NSIRAS proporcionen un comportament mitjà i no permeten derivar les variacions del mòdul elàstic en un sol cicle de vibració. Actualment, la tècnica DAET és l'única que permet investigar tot el rang de fenòmens no lineals en el material. D'altra banda, a diferència d'altres tècniques DAET, en este estudi s'empra com contrast una ona contínua. L'ús d'una ona contínua permet investigar les variacions relatives del mòdul elàstic, per a un senyal transitori. A més, permet la inspecció d'elements per mitjà de l'accés per una sola cara.
Eiras Fernández, JN. (2016). Studies on nonlinear mechanical wave behavior to characterize cement based materials and its durability [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/71439
TESIS
Premiado
APA, Harvard, Vancouver, ISO, and other styles
10

Allard, Bénédicte. "Influence de la microstructure sur le comportement à la rupture et la résistance au choc thermique des matériaux carbones : Influence of microstructure on fracture behaviour and thermal shock resistance of carbon-based materials." Lyon, INSA, 1990. http://www.theses.fr/1990ISAL0097.

Full text
Abstract:
Les matériaux carbones industriels sont constitues d'un agglomérat de grains et de liant. Les grains sont a base d'anthracite calcine ou de matériaux graphite; le liant est du brai de houille. Cuits a environ 1100#oc, ces produits sont ensuite employés comme revêtements dans les fours et hauts fourneaux et comme cathodes dans les cuves d'électrolyse de l'aluminium. Ils sont donc soumis à des sollicitations mécaniques et thermiques. L'objet de ce travail est l'étude des mécanismes d'endommagement sous contrainte mécanique et thermique, de ces matériaux. En particulier nous avons analyse l'effet de la microstructure sur la résistance à la propagation de fissures de divers produits. Le suivi de l'émission acoustique en cours d'essai de rupture a permis de préciser certaines influences des différentes phases de la microstructure, notamment en ce qui concerne la nature des grains et le taux d'anthracite. Ces analyses ont été complétées par des observations microscopiques des chemins de fissuration et des faciès de rupture. Nous avons pu ainsi dégager les caractéristiques schématiques de la microstructure de matériaux carbones présentant un faible et une forte résistance à la propagation de fissure. Par ailleurs, en vue de classer les matériaux en terme de résistance au choc thermique, nous avons mis au point un test base sur un impact laser tire au centre de disques. L'émission acoustique enregistrée pendant et après l'impact est associe à l'évolution et à la micro fissuration des produits soumis à des températures de cuisson. Il ne se produit pas réellement d'endommagement du au choc thermique de cette méthode n'est donc pas satisfaisante. Une comparaison des matériaux par les différents critères théoriques de résistance au choc thermique est effectuée et il semble au vu des applications concernées qu'on doive rechercher une bonne résistance à l'endommagement sous choc thermique
Industrial carbon-based materials are composed of grains and binder. The grains are based on calcined anthracite or coming from graphite materials; the binder is coal-tar pitch. The materials are heattreated at around 1100°C. They are used as linings in chemical and blast furnaces and as cathodes in aluminium smelters. Consequently they are submitted to severe mechanical and thermal conditions. This work is concerned with the study of damage mechanisms under mechanical and thermal stresses in theses materials. The effect of microstructure on crack growth resistance of a wide variety of materials bas been analysed. The complementary study of acoustic emission occurring during fracture tests bas shown some particular influence of microstructure, especially grain nature and anthracite content. These results have been confirmed with microscopic observations of crack pathes and crack surfaces. A model of the schematic microstructure of carbon materials having a weak and a strong crack growth resistance, proposed. Besides a thermal shock procedure bas been studied, in order to be able to classify carbon materials in terms of their thermal shock resistance. It is based on a laser bit at the centre of discs. Acoustic emission recorded during and after laser bit is related to the materials transformation and micro cracking, as the materials are submitted to temperatures higher th an their processing one. No real thermal shock damage occurs and consequently this test is not satisfactory. A comparison of the different materials with the various theoretical thermal shock parameters is made and it seems that, in view of the kind of applications considered, it is the thermal shock damage resistance that bas to be improved
APA, Harvard, Vancouver, ISO, and other styles
11

Tarragó, Cifre Jose María. "Damage tolerance of cemented carbides under service-like conditions." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/403888.

Full text
Abstract:
Hardmetal industry is continuously seeking for high-performance products at reduced costs. In addition, it is strongly struggled by the high and volatile prices of raw materials. At this juncture, producers and end-users are deeply concerned in increasing the performance and enhancing service-life and reliability of engineering products, and replacing current constituents by alternative and less critical materials. Premature and unexpected fracture, together with wear, is the main damage phenomenon limiting the life in most cemented carbide applications. In the vast majority of cases such ruptures stem from the combination of high monotonic and cyclic stresses, together with different damage-related features associated with harsh service conditions, such as corrosion, and thermal shock. Therefore, relevant consideration of fracture toughness and fatigue resistance is required if reliability and lifetime of hardmetals applications is to be increased. Following the above ideas, the purpose of this thesis is to improve the performance and increase the reliability of cemented carbides in rupture-limited applications on the basis of enhanced damage tolerance and reduced fatigue sensitivity through an optimal microstructural design. Within this framework, this investigation is composed of three main subjects covering different aspects related to the performance of hardmetals under service-like conditions. The first two sections are devoted to conduct a comprehensive study on the influence of the microstructure on fracture and fatigue behaviour of hardmetals. The aim of the third section is to evaluate microstructural effects on the tolerance of cemented carbides to service-like damage, induced either by localised corrosion or thermal shock. Main contribution to toughness in cemented carbides derives from plastic stretching of crack-bridging ductile enclaves at the crack wake, referred to as the multiligament zone. Hence, the development of a multiligament zone implies the existence of a rising crack growth resistance (R-curve) behaviour in cemented carbides. This effectiveness of this toughening mechanism is intimately related to the microstructural characteristics. Within this context, the first section of this thesis is dedicated to carry out a detailed investigation of fracture mechanics and mechanisms in cemented carbides, and to propose a relation to capture microstructural effects on the R-curve characteristics of these materials. Strength reduction of hardmetals under the application of cyclic stresses is related to the inhibition of the crack-tip bridging mechanism. For WC¿Co cemented carbides, the degradation of bridging ligaments is mainly associated with an accumulation of the fcc to hcp phase transformation. However, this mechanism does not apply for Ni binders; therefore, it remains unclear if effective fatigue susceptibility of Co-base hardmetals is comparable to that of cemented carbides consisting of alternative binders. Moreover, hardmetals exhibit crack-deflection as an additional toughening mechanism, but contrary to the case of crack-bridging, it is immune to fatigue loads. The effective action of this toughening mechanism is speculated to increase with rising carbide mean grain size. Hence, the second part of this thesis is devoted to study and understand the fatigue sensitivity of cemented carbides consisting of binders with deformation mechanisms beyond phase transformation as well as medium/coarse microstructures. Finally, the third section of this thesis consists of a systematic study on the influence of the microstructure on damage-related features induced by either thermal shock or corrosion, in order to set out guidelines for optimal microstructural design. In doing so, the structural integrity of damaged cemented carbides is assessed on the basis of residual strength, and microstructural effects on damage tolerance are captured by means of considering induced damage level as a critical parameter.
Por un lado, la industria del metal duro está sumergida en una búsqueda constante de materiales de altas prestaciones a un coste reducido. Por el otro lado, las materias primas tienen precios altos y volátiles, que comprometen la estabilidad del mercado. En esta coyuntura, los productores y los usuarios finales están muy interesados, tanto en aumentar el rendimiento, incrementar la vida útil y mejorar la fiabilidad de estos productos, como en su sustitución por materiales alternativos y considerados menos críticos. En este contexto, el desgaste y la ruptura prematura son los dos principales mecanismos que limitan la vida útil de las aplicaciones de metal duro. En la gran mayoría de los casos las rupturas prematuras derivan de la combinación de altas tensiones, tanto monótonas como cíclicas, con el daño inducido durante la vida en servicio, como la corrosión, y el choque térmico. Por lo tanto, con el fin de aumentar fiabilidad en estas aplicaciones, es necesario entender los mecanismos de daño y fallo en estos materiales. Así, el propósito de esta tesis es mejorar el rendimiento y aumentar la fiabilidad de los carburos cementados a partir del desarrollo de materiales con una mayor tolerancia al daño y una menor sensibilidad a fatiga, a través de un óptimo diseño microestructural. La presente investigación se compone de tres partes que abarcan diferentes aspectos relacionados con el desempeño de los metales duros en condiciones de servicio. Las dos primeras secciones están dedicadas a realizar un estudio general sobre la influencia de la microestructura en el comportamiento a fractura y fatiga del metal duro. El objetivo de la tercera sección es evaluar los efectos microestructurales en la tolerancia al daño de los carburos cementados, ya sea inducido por corrosión o por choque térmico. El principal mecanismo de tenacidad en los carburos cementados reside en el estiramiento plástico de ligamentos metálicos de puenteo que se forman detrás de la punta de la grieta, llamada la zona de multiligamentos. El desarrollo del mecanismo de puenteo implica un incremento de la resistencia a fractura a medida que aumenta la longitud de la grieta. Este mecanismo es conocido como curva-R y su eficacia está íntimamente relacionada con las características microestructurales del material. Así, la primera parte de esta tesis doctoral está dedicada a llevar a cabo una investigación detallada de los mecanismos de fractura en los carburos cementados, y a proponer una relación que permita captar los efectos microestructurales en las características de curva-R de estos materiales. Por otro lado, la segunda parte de la tesis está dedicada a estudiar la influencia de la microestructura, incluyendo tanto el tamaño de grano de la fase carburo como el contenido de la fase ligante y su naturaleza química, en la sensibilidad a fatiga de los carburos cementados. Así, se ha prestado una atención particular en estudiar el comportamiento a fatiga de los carburos cementados con base níquel y en su comparación con los de base cobalto. Por otro lado, también se ha estudiado la influencia del tamaño de grano en la deflexión de grieta como un mecanismo adicional de aumento de tenacidad, inmune a las solicitaciones cíclicas. Por último, la tercera sección de esta tesis consiste en un estudio sistemático de la influencia de la microestructura de los carburos cementados en su tolerancia al daño, inducido tanto por corrosión como por choque térmico, con el fin de establecer las directrices para un diseño microestructural óptimo. De este modo, la integridad estructural de carburos cementados se evalúa sobre la base de su resistencia residual a flexión después de la inducción de daño
APA, Harvard, Vancouver, ISO, and other styles
12

Khlifi, Imad. "Optimisation of optical methods for strain field measurements dedicated to the characterisation of the fracture behaviour of refractories : Application to magnesia based materials." Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0123.

Full text
Abstract:
Les briques de magnésie-spinelle et magnésie-hercynite sont fréquemment utilisées dans les fours rotatifs de cimenterie pour leur tenue aux chocs thermiques venant d’une résistance accrue à la propagation de fissures conférée par leur microstructure. Les réseaux de microfissures résultant du différentiel de dilatation thermique entre la matrice magnésienne et les agrégats de spinelle/hercynite favorisent l'activation de mécanismes dissipatifs d’énergie au sein de la zone d’élaboration de la rupture (FPZ) lors d’un chargement mécanique. Dans cette étude, le comportement à la rupture de matériaux modèles à base de magnésie a été étudié en couplant une méthode de corrélation d'images numériques (2P-DIC) adaptée aux problématiques de fissuration avec l’essai de « Wedge Splitting » (WST). Le couplage judicieux de ces méthodes innovantes a fourni des mesures précises des propriétés de rupture et a mis en évidence des mécanismes de rupture caractéristiques, tels que la bifurcation de fissures. L’étude des relations propriété-microstructure a démontré l’impact des microfissures introduites volontairement au sein du matériau sur le comportement thermomécanique de la magnésie-spinelle et la magnésie-hercynite. Malgré des propriétés élastiques et dilatométriques assez similaires entre les inclusions de spinelle et d’hercynite, des mécanismes de microfissuration différents ont été observés, en particulier pour la magnésie-hercynite. En effet, la diffusion entre la magnésie et l’hercynite pendant le frittage a conduit à la formation de solutions solides de spinelles autour des agrégats d'hercynite. Ces solutions solides ont contribué à leur tour à la création de nombreuses microfissures fines par l’effet d’un différentiel de dilatation thermique avec la magnésie. Initialement présents dans la microstructure, les réseaux de microfissures favorisent l’augmentation de l'énergie de rupture des matériaux modèles pendant le WST. De plus, l’analyse des champs de déformation mesurée par 2P-DIC a révélé d’importantes bifurcation de la fissure principale pour les matériaux magnésie-hercynite. Le couplage de la 2P-DIC avec l’essai du WST a démontré que les réseaux de microfissures favorisaient le développement de la FPZ, qui induisait à son tour une augmentation notable de l’énergie de rupture. Dans une approche affinée des courbes-R, des énergies de rupture effectives ont été calculées à l'aide des longueurs de fissure mesurées par 2P-DIC. Cela a permis d'établir des liens étroits entre le développement de la FPZ et une résistance accrue à la propagation de la fissure. Les tendances observées à température ambiante lors des essais de WST ont été confirmées à l’aide d’essais de cyclage dans un nouveau banc de chocs thermiques
Magnesia-spinel and magnesia-hercynite bricks destined for thermal shock applications in cement rotary kilns often show an enhanced crack propagation resistance due to an engineered microstructure design. In these materials, microcrack networks resulting from the thermal expansion mismatch between magnesia matrix and spinel/hercynite aggregates promote the activation of energy dissipating mechanisms within the so-called Fracture Process Zone (FPZ) during loading. In this research, the fracture behaviour of magnesia-based model materials was investigated by coupling a refined Digital Image Correlation method (2P-DIC) with the Wedge Splitting Test (WST). The coupling of these advanced characterisation methods has proven to be very effective in measuring important fracture parameters accurately and in highlighting characteristic fracture mechanisms, such as crack-branching. The investigation of microstructure-property relationships underlined the impact of thermally induced microcracks on the thermomechanical behaviour of magnesia-spinel and magnesia-hercynite materials. Despite the rather similar elastic and dilatometric properties of spinel and hercynite single constituents, peculiar microcracking patterns were observed, especially in magnesia-hercynite. In fact, extensive diffusion between magnesia and hercynite during sintering led to the formation of spinel solid solutions around hercynite aggregates. As a result of thermal expansion mismatch with magnesia, these solid solutions contributed to creating numerous fine microcracks confined within the diffusion zone. Initially present within the microstructure, microcrack networks promote an increase of the specific fracture energy during WST experiments. Moreover, the analysis of strain fields measured by 2P-DIC revealed extensive crack branching for magnesia-hercynite materials. In essence, 2P-DIC and WST measurements showed that microcrack networks promoted the development of the FPZ, which in turn induced higher fracture energies. In a refined R-curve approach, effective fracture energies were calculated using crack lengths measured by 2P-DIC, which helped establish strong links between FPZ development and an enhanced crack propagation resistance. The tendencies observed at room temperature during WST experiments were confirmed during thermal cycling experiments using a novel thermal shock device
APA, Harvard, Vancouver, ISO, and other styles
13

Tseng, Ting-Kang, and 曾亭綱. "CFD Investigating the Pressure Thermal Shock Behavior in Pressurized Water Reactor." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/73707979145768826771.

Full text
Abstract:
碩士
國立清華大學
工程與系統科學系
102
Pressurized thermal shock (PTS) is a key issue of the vessel integrity for pressurized water reactor (PWR) during a transient accident. It would lead to loss of coolant and subsequent rescue problems when the pressure vessel damaged due to PTS condition. The CFD (computational Fluid Dynamics) is selected in this project to simulate and calculate the detail of flow behavior in the part of downcomer of Maanshan nuclear power plant (NPP) in order to improve the flow analysis error of RETRAN and RELAP5 in the past. The analysis process and validation is based on the data from ROCOM facility test to ensure the accuracy of model establishment of Maanshan power plant. After one year operation, the validation of analytical techniques and establishment of Maanshan power plant analytical model are successfully completed. The analysis of temperature distribution in the pressure vessel is also calculated with the information of MSLB accident. It shows that the geometry of neutron shielding plate and hot and cold loops inside the downcomer would lead to higher cooling rate in some parts of pressure vessel wall in the results. The data for upper project of analyzing fracture mechanics is compiled in this study in addition to analysis and discussion. This research is not only to improve current model but to investigate the selected case of accident in the future in order to assist the upper project completing the PTS of Maanshan power plant analysis program.
APA, Harvard, Vancouver, ISO, and other styles
14

Chi-HangKao and 高基航. "Effects of TiO2 content on thermal shock and tribological behavior of Al2O3 APS coatings." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/48579700626627614903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tang, Kai-Lin, and 湯凱霖. "Effects of ZnO on the Dielectric Properties and Thermal Shock Behaviors of Sintered ZnS-SiO2." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/333ky5.

Full text
Abstract:
碩士
國立臺北科技大學
材料科學與工程研究所
96
Zinc oxide- silicon dioxide (ZnS-SiO2) composite is prepared by hot press at 1060℃ in vacuum. Various pressures are used to obtain samples of different densities. A linear relationship is observed between dielectric permittivity and sintering density. The measured permittivity at 13.56MHz frequency is found to range from 6.3 to 8.03 which are higher than the estimated values for composite materials by the Bruggeman and Lichtenecker equations. The large grain boundary area arising from nano-size grains contributes to the increase of permittivity. Specimens with additions of 0.5-5 wt% zinc oxide are also made to compare with non-ZnO added specimens. ZnO appears to decrease the density of specimens slightly. However, ZnO addition can stabilize the high temperature ZnS phase. Additions of zinc oxide also increase the permittivity by forming nano-size Zn2SiO4 willemite phase at the surfaces of SiO2 particles. Thermal shock behaviors of these samples are also studied. The thermal shock parameters R'' and R'' are calculated, and they correspond well with the retained strength after thermal shock. Decrease of strength is caused by transfer of intragranular to intergranular fracture. Addition of zinc oxide can improve the interface strength of zinc sulfide-silicon dioxide composite ceramics. 1% zinc oxide added specimen demonstrates the best thermal shock resistance due to the balance between fracture toughness and interface strength.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography