Dissertations / Theses on the topic 'Thermal modification'

To see the other types of publications on this topic, follow the link: Thermal modification.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Thermal modification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Perry, Paul Anthony. "Plasticisation and thermal modification of starch." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Melissa, Agustin. "Thermal Stabilization of Nanocellulose by Chemical Modification." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225674.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第20449号
農博第2234号
新制||農||1050(附属図書館)
学位論文||H29||N5070(農学部図書室)
京都大学大学院農学研究科森林科学専攻
(主査)教授 矢野 浩之, 教授 木村 恒久, 教授 髙野 俊幸
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
3

Boonstra, Michiel. "A two-stage thermal modification of wood." Thesis, Nancy 1, 2008. http://www.theses.fr/2008NAN10002/document.

Full text
Abstract:
La modification thermique est une façon efficace de améliorer la stabilité dimensionnelle et la durabilité biologique du bois. Un effet non souhaite est la réduction des propriétés mécaniques du bois, due principalement à l’effet de la haute température (150°-280°C) utilisée. Les effets du traitement thermique sur le propriétés du bois ont été présentées et discutées en cette thèse en relation avec les changements soit au niveau anatomiques soit au niveau moléculaire. Les résultats présentes ont été bases sur de la recherche effectuées au niveau de un procédé industriel de traitement thermique du bois sur de conditions de chauffage relativement douces (< 200°C) comprenant de un traitement en milieu humide suivi de un traitement en milieu sec. Plusieurs changements ou modifications des constituants principaux du bois (cellulose, hémicelluloses et lignine) en conséquence du traitement thermique semblent influencer des importantes propriétés macroscopiques du bois telle que sa stabilité dimensionnelle, sa résistance mécanique et sa durabilité aux attaques biologiques. Bien que l’effet du traitement thermique sur la structure anatomique du bois est limité, les changement qui ne dérivent influencent les propriétés du bois. La thèse donne une base plus complète à la compréhension au traitement thermique du bois qui en toute probabilité contribue à une utilisation plus contrôlée de son utilisation en service
Thermal modification or heat treatment is an effective method to improve the dimensional stability and biological durability of wood. An undesired side effect is the reduction of mechanical properties of wood, mainly due to the high temperatures involved (150-280°C). In this thesis the effects of heat treatment on wood properties are discussed in relation to anatomical and molecular changes found in wood after heat treatment. The results are based on investigations of a full-scale industrial heat treatment method under relative mild conditions (< 200°C) including a moist and dry treatment stage. Several changes and/or modifications of the main components of wood (cellulose, hemicelluloses and lignin) appear to be involved in the effects of heat treatment on important wood properties like dimensional stability, strength/stiffness and biological durability. Although the effect of heat treatment on the anatomical structure of wood is limited, changes have been found affecting the properties of wood. This thesis provides a better understanding of thermal modification, which probably contributes to a more controlled use of heat-treated wood in service conditions
APA, Harvard, Vancouver, ISO, and other styles
4

Dagbro, Ola. "Studies on Industrial-Scale Thermal Modification of Wood." Doctoral thesis, Luleå tekniska universitet, Träteknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26624.

Full text
Abstract:
Wood as a raw material is useful for many purposes even though some properties are less than optimal, for example, dimensional stability and durability. These characteristics can however be improved by different treatment methods. Environmental awareness has led to an increased demand for environmentally friendly processes like thermal modification that does not add any chemicals to the wood in contrast to, for example, CCA-impregnated wood.This thesis mainly focuses on thermally modified wood from species such as pine, spruce and birch. The thesis present studies of physical attributes such as color, and chemical analysis of water-soluble compounds and degradation products. Treatment intensity is compared between two different industrial processes referred as Thermowood and WTT, which use respectively superheated steam and pressurized steam as heating media.Thermal modification processes darken the color of wood throughout its cross-section. The formation of darker color is related to a degradation processes that takes place during thermal modification. During thermal modification wood is exposed to temperatures between 160 - 220°C, and the temperature causes physical and chemical transformations that change some of the wood properties. Dimensional stability and durability are typically improved, but mechanical strength properties are usually negatively affected by the treatment.The studied wood species were Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and Birch (Betula pendula L.). Treatments using pressurized steam were carried out under temperatures of 160°C, 170°C and 180°C, and treatments using superheated steam at normal air pressure were carried out at temperatures of 190°C and 212°C. Results showed that similar L* (lightness) can be reached at lower temperatures using pressurized steam compared to superheated steam. The residual moisture content after completed thermal modification was approximately 10% higher in wood treated with the pressurized steam process. It was found that despite an approximately 25°C lower treatment temperature, birch modified in pressurized steam was more acidic compared to birch modified in superheated steam. This will likely have further consequences, requiring more research concerning surface treatment and fixation.The thesis also includes the development of an industrial-quality control procedure based on nondestructive color measurements verified in industrial environment. Treatment intensity in industry is today certified by inspection of documented process schedule and measuring the temperature and time of the process. Quality control in this context refers to the measurement of wood color as an indirect measure of treatment intensity. The color in our study was measured using L*C*H color space. The study shows that it is possible for quality control purposes to measure the color of thermally modified wood from the surfaces of planed boards instead of sawdust or board cross sections that have been used in other studies.The thesis has a final section about academia-industry collaboration that describes how trust building was established through a fruitful relationship involving academia and regional wood products industry in northern Sweden. The study presents an example of a successful research and development alliance between university and a group of small- and medium-sized enterprises (SMEs). This alliance has been a great example on international collaboration involving researchers originating from Finland, China, Bangladesh, Spain, Russia and Sweden. Through an in-depth multi-year study of how the research cooperation developed, the paper describes how the involved companies successfully entered into a new segment of the market.
För godkännande; 2016; 20160314 (olahof); Nedanstående person kommer att disputera för avläggande av teknologie doktorsexamen. Namn: Ola Dagbro Ämne: Träfysik/Wood Physics Avhandling: Studies on Industrial-Scale Thermal Modification of Wood Opponent: Associate Professor Lidia Gurau, Faculty of Wood Engineering, Transilvania University, Brasov, Romania. Ordförande: Professor Diego Elustondo, Avd för träteknologi, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet, Luleå. Tid: Torsdag 16 juni, 2016 kl 10.00 Plats: Luleå tekniska universitet, Campus Skellefteå
APA, Harvard, Vancouver, ISO, and other styles
5

Boonstra, Michiel Van Acker Joris Pizzi Antonio. "A two-stage thermal modification of wood Une modification thermique du bois en deux étapes /." S. l. : S. l. : Nancy 1 ; Gent University, 2008. http://www.scd.uhp-nancy.fr/docnum/SCD_T_2008_0002_BOONSTRA.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alkac, Dilek. "Modification Of Magnetic Properties Of Siderite By Thermal Treatment." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608729/index.pdf.

Full text
Abstract:
Obtaining high magnetic susceptibility phases from Hekimhan&
#8211
Deveci siderite orevia preliminary thermal treatment has been the basic target of the thesis study.Thermal decomposition characteristics of samples, determined bythermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC), were referenced in advancement of thestudy. Heat treatment experiments, particularly roasting, were carried out byconventional heating and microwave heating. Results showed that roasting of Hekimhan&
#8211
Deveci siderite samples could not be achieved by microwave energywhilst conventional heating experiments recorded success. Subsequentlow&
#8211
intensity magnetic separation of roasted samples gave recovery above 90%, where low&
#8211
intensity magnetic separation of run&
#8211
of&
#8211
mine sample had failed. Formation of high magnetic susceptibility phases was verified by magneticsusceptibility balance and x&
#8211
ray diffraction analysis (XRD), on roasted samples. Statistical modeling was applied to determine the optimum conditions of roastingin conventional heating system
based on heating temperature, time of heating, particle size as factors.It was concluded that roasting at T= 560 º
C, for t= 45 minutes was adequate toobtain desired results. Particle size was noted to be not much effective on the process as other factors at the studied size range. Kinetics (E, n) and reaction mechanism for the thermal decomposition in conventional heating system were evaluated with different solid&
#8211
state reaction models by interpretation of the model graphs.Three&
#8211
dimensional diffusion reaction models reported to characterize the thermal decomposition well, with values of activation energy (E), E= 85.53 kJ/mol (Jander)
E= 85.49 kJ/mol, (Ginstling&
#8211
Brounshtein).
APA, Harvard, Vancouver, ISO, and other styles
7

Jones, Jeffrey R. "Modification of poly(ethylene terephthalate) through thermal and photochemical crosslinking." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/30045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mabb, John Ashley. "Modification of Atrium Design to Improve Thermal and Daylighting Performance." Queensland University of Technology, 2001. http://eprints.qut.edu.au/15780/.

Full text
Abstract:
The inclusion of a central court or atrium within a building is a popular design due to its aesthetic, open appearance. The greater penetration of natural light aids in the reduction in use of artificial lighting during the day. Care must be taken to balance the solar heat gain against the daylight penetration. This balance is critical for the reduction of the electrical energy load of the building, whilst maintaining a high level of comfort for the occupants. In the tropics modifications to atrium building designs are necessary to diminish high elevation direct solar heat gain. Traditionally, shading the window apertures or lowering the transmission through the glazing was used. These solutions limit the view and reduce the light level. The use of angular selective glazing upon atria allows the rejection of high elevation direct sunlight whilst redirecting and therefore improving low elevation skylight penetration. Tilted angular selective glazing used upon adjoining spaces to atria help vertical light in the atrium well to be redirected horizontally deep into the space. These effects reduce overheating which would normally restrict the use of atria in warmer environments as well as improve illumination penetration into adjoining spaces. The research showed that under clear sky conditions the modified glazing gave a lower temperature in the middle of the day within the atrium well. A more even distribution of illuminance across the course of the day was found and a higher level of illuminance was achieved within the well and its adjoining spaces under clear skies. These effects were simulated using computer algorithms. The algorithms were verified by field data collected from the QUT Daylighting Research Test Building located at the Brisbane Airport Bureau of Meteorology site where two simultaneously monitored model (1:10 scale) atriums were studied for several months.
APA, Harvard, Vancouver, ISO, and other styles
9

Fredi, Giulia. "Multifunctional polymer composites for thermal energy storage and thermal management." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/265328.

Full text
Abstract:
Thermal energy storage (TES) consists in storing heat for a later use, thereby reducing the gap between energy availability and demand. The most diffused materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin waxes, which accumulate and release a high amount of latent heat through a solid-liquid phase change, at a nearly constant temperature. To avoid leakage and loss of material, PCMs are either encapsulated in inert shells or shape-stabilized with porous materials or a nanofiller network. Generally, TES systems are only a supplementary component added to the main structure of a device, but this could unacceptably rise weight and volume of the device itself. In the applications where weight saving and thermal management are both important (e.g. automotive, portable electronics), it would be beneficial to embed the heat storage/management in the structural components. The aim of this thesis is to develop polymer composites that combine a polymer matrix, a PCM and a reinforcing agent, to reach a good balance of mechanical and TES properties. Since this research topic lacks a systematic investigation in the scientific literature, a wide range of polymer/PCM/reinforcement combinations were studied in this thesis, to highlight the effect of PCM introduction in a broad range of matrix/reinforcement combinations and to identify the best candidates and the key properties and parameters, in order to set guidelines for the design of these materials. The thesis in divided in eight Chapters. Chapter I and II provide the introduction and the theoretical background, while Chapter III details the experimental techniques applied on the prepared composites. The results and discussion are then described in Chapters IV-VII. Chapter IV presents the results of PCM-containing composites having a thermoplastic matrix. First, polyamide 12 (PA12) was melt-compounded with either a microencapsulated paraffin (MC) or a paraffin powder shape-stabilized with carbon nanotubes (ParCNT), and these mixtures were used as matrices to produce thermoplastic laminates with a glass fiber fabric via hot-pressing. MC was proven more suitable to be combined with PA12 than ParCNT, due to the higher thermal resistance. However, also the MC were considerably damaged by melt compounding and the two hot-pressing steps, which caused paraffin leakage and degradation, as demonstrated by the relative enthalpy lower than 100 %. Additionally, the PCM introduction decreased the mechanical properties of PA12 and the tensile strength of the laminates, but for the laminates containing MC the elastic modulus and the strain at break were not negatively affected by the PCM. Higher TES properties were achieved with the production of a semi-structural composite that combined PA12, MC and discontinuous carbon fibers. For example, the composite with 50 wt% of MC and 20 wt% of milled carbon fibers exhibited a total melting enthalpy of 60.4 J/g and an increase in elastic modulus of 42 % compared to the neat PA. However, the high melt viscosity and shear stresses developed during processing were still responsible for a not negligible PCM degradation, as also evidenced by dynamic rheological tests. Further increases in the mechanical and TES properties were achieved by using a reactive thermoplastic matrix, which could be processed as a thermosetting polymer and required considerably milder processing conditions that did not cause PCM degradation. MC was combined with an acrylic thermoplastic resin and the mixtures were used as matrices to produce laminates with a bidirectional carbon fabric, and for these laminates the melting enthalpy increased with the PCM weight fraction and reached 66.8 J/g. On the other hand, the increased PCM fraction caused a rise in the matrix viscosity and so a decrease in the fiber volume fraction in the final composite, thereby reducing the elastic modulus and flexural strength. Dynamic-mechanical investigation evidenced the PCM melting as a decreasing step in ’; its amplitude showed a linear trend with the melting enthalpy, and it was almost completely recovered during cooling, as evidenced by cyclic DMA tests. Chapter V presents the results of PCM-containing thermosetting composites. A further comparison between MC and ParCNT was performed in a thermosetting epoxy matrix. First, ParCNT was mixed with epoxy and the mixtures were used as matrices to produce laminates with a bidirectional carbon fiber fabric. ParCNT kept its thermal properties also in the laminates, and the melting enthalpy was 80-90 % of the expected enthalpy. Therefore, ParCNT performed better in thermosetting than in thermoplastic matrices due to the milder processing conditions, but the surrounding matrix still partially hindered the melting-crystallization process. Therefore, epoxy was combined with MC, but the not optimal adhesion between the matrix and the MC shell caused a considerable decrease in mechanical strength, as also demonstrated by the fitting with the Nicolais-Narkis and Pukanszky models, both of which evidenced scarce adhesion and considerable interphase weakness. However, the Halpin-Tsai and Lewis-Nielsen models of the elastic modulus evidenced that at low deformations the interfacial interaction is good, and this also agrees with the data of thermal conductivity, which resulted in excellent agreement with the Pal model calculated considering no gaps at the interface. These epoxy/MC mixtures were then reinforced with either continuous or discontinuous carbon fibers, and their characterization confirmed that the processing conditions of an epoxy composite are mild enough to preserve the integrity of the microcapsules and their TES capability. For continuous fiber composites, the increase in the MC fraction impaired the mechanical properties mostly because of the decrease in the final fiber volume fraction and because the MC phase tends to concentrate in the interlaminar region, thereby lowering the interlaminar shear strength. On the other hand, a small amount of MC enhanced the mode I interlaminar fracture toughness (Gic increases of up to 48 % compared to the neat epoxy/carbon laminate), as the MC introduced other energy dissipation mechanisms such as the debonding, crack deflection, crack pinning and micro-cracking, which added up to the fiber bridging. Chapter VI introduces a fully biodegradable TES composite with a thermoplastic starch matrix, reinforced with thin wood laminae and containing poly(ethylene glycol) as the PCM. The wood laminae successfully acted as a multifunctional reinforcement as they also stabilized PEG in their inner pores (up to 11 wt% of the whole laminate) and prevent its leakage. Moreover PEG was proven to increase the stiffness and strength of the laminate, thereby making the mechanical and TES properties synergistic and not parasitic. Finally, Chapter VII focused on PCM microcapsules. The synthesis of micro- and nano-capsules with an organosilica shell via a sol-gel approach clarified that the confinement in small domains and the interaction with the shell wall modified the crystallization behavior of the encapsulated PCM, as also evidenced by NMR and XRD studies and confirmed by DSC results. In the second part of Chapter VII, a coating of polydpamine (PDA) deposited onto the commercial microcapsules MC. The resulting PDA coating was proven effective to enhance the interfacial adhesion with an epoxy matrix, as evidenced by SEM micrographs. XPS demonstrated that the PDA layer was able to react with oxirane groups, thereby evidencing the possibility of forming covalent bond with the epoxy matrix during the curing step.
APA, Harvard, Vancouver, ISO, and other styles
10

Papini, Fabio. "Synthesis and modification of hydrotalcite as a thermal stabiliser for poly(vinylchloride)." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/8562.

Full text
Abstract:
In recent years there has been considerable interest in the use of synthetic hydrotalcites as stabilisers for poly(vinyl chloride) (PVC). Hydrotalcites are essentially hydrated magnesium-aluminium-hydroxy-carbonates: a typical formula being Mg6Al2(OH)16CO3.4H2O. Substitution of a divalent by a trivalent cation in the brucite structure creates a positive charge that needs to be counterbalanced by the presence of an anion, and this is usually carbonate. Hence, hydrotalcites are anionic clays, as opposed to the more common montmorillonite-like clays or so called cationic clays. These double-layered hydroxides have the capacity to undergo anion exchange reactions and so the carbonate can be substituted for other anions such as chloride, sulphate or nitrate. The characteristic of anion exchange means that, commercially, synthetic hydrotalcites are used for catalysis, ion scavenging, purification processes and the stabilisation of PVC formulations. This thesis present result of a project to synthesise and modify hydrotalcites to produce ultra-fine particles in recognition of the fact that the benefits of hydrotalcite could be enhanced with smaller particle sizes. The work has proceeded via two routes: firstly, by experiments to modify and intercalate the hydrotalcite with a surfactant in a way analogous to that used to montmorillonite clays, and secondly by novel synthesis methods. Two different synthesis reactions were used: one based on Urea and the second by a controlled pH method. Different drying technologies were used to obtain the optimum particle morphology and size. It was found that ultra-fine hydrotalcite particles gave an improvement in PVC thermal stability, although addition of higher levels of the hydrotalcites caused a reversal in this trend. The Haake Rheometer was used extensively to study the behaviour of the polymer clay nanocomposite formulations and to investigate the pros and cons of the addition of nanometre particles. Further work using an autoclave has resulted in particles of nanometre-sized dimensions with enhanced crystallinity and very high surface area which are promising for future work on PVC clay nanocomposites.
APA, Harvard, Vancouver, ISO, and other styles
11

Liangruksa, Monrudee. "Nanoscale thermal transport for biological and physical applications." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/29770.

Full text
Abstract:
Nanotechnology has made it possible to create materials with unique properties. This development offers new opportunities and overcomes challenges for many thermal transport applications. Yet, it requires a more fundamental scientific understanding of nanoscale transport. This thesis emphasizes how simulation, mathematical, and numerical methods can lead to more grounded studies of nanoscale thermal transport for biological and physical applications. For instance, magnetic fluid hyperthermia (MFH), an emerging cancer treatment, is a noninvasive method to selectively destroy a tumor by heating a ferrofluid-impregnated malignant tissue with minimal damage to the surrounding healthy tissue. We model the problem by considering an idealized spherical tumor that is surrounded by healthy tissue. The dispersed magnetic nanoparticles in the tumor are excited by an AC magnetic field to generate heat. The temperature distribution during MFH is investigated through a bioheat transfer relation which indicates that the P\'eclet, Joule, and Fourier numbers are the more influential parameters that determine the heating during such a thermotherapy. Thus, we show that a fundamental parametric investigation of the heating of soft materials can provide pathways for optimal MFH design. Since ferrofluid materials themselves play a key role in heating, we examine six materials that are being considered as candidates for MFH use. These are simulated to investigate the heating of ferrofluid-loaded tumors. We show that iron-platinum, magnetite, and maghemite are viable MFH candidates since they are able to provide the desired heating of a tumor which will destroy it while keeping the surrounding healthy tissues at a relatively safe temperature. Recent advances in the synthesis and nanofabrication of electron devices have lead to diminishing feature sizes. This has in turn increased the power dissipation per unit area that is required to cool the devices, leading to a serious thermal management challenge. The phonon thermal conductivity is an important material property because of its role in thermal energy transport in semiconductors. A higher thermal conductivity material is capable of removing more heat since higher frequency phonons are able to travel through it. In this thesis, the effects of surface stress on the lattice thermal conductivity are presented for a silicon nanowire. Based on a continuum approach, a phonon dispersion relation is derived for a nanowire that is under surface stress and the phonon relaxation time is employed to subsequently determine its thermal conductivity. The surface stress is found to significantly influence the phonon dispersion and thus the Debye temperature. Consequently, the phonon thermal conductivity decreases with increasing surface stress. Different magnitudes of surface stress could arise from various material coatings and through different nanofabrication processes, effects of which are generally unclear and not considered. Our results show how such variations in surface stress can be gainfully used in phonon engineering and to manipulate the thermal conductivity of a nanomaterial. The thermal transport during thermoelectric cooling is also an important property since thermoelectric devices are compact, reliable, easy to control, use no refrigerants and require lower maintenance than do more traditional refrigeration devices. We focus on the Thomson effect that occurs when there is a current flow in the presence of a temperature gradient in the material, and investigate its influence on an intrinsic silicon nanowire cooler. The temperature dependence of the Thomson effect has a significant influence on the cooling temperature. We also consider thermal nonequilibrium between electrons and phonons over the carrier cooling length in the nanowire. The results show that a strong energy exchange between electrons and phonons lowers the cooling performance, suggesting useful strategies for thermoelectric device design.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
12

Trinh, Pham Thi Doan. "Chemical/thermal modification of poly(vinyl alcohol) film for enhanced water vapour barrier properties." Thesis, Sheffield Hallam University, 2015. http://shura.shu.ac.uk/20225/.

Full text
Abstract:
Within the packaging industry, the increasing demand for sustainable packaging is driving research towards renewable coating materials for paper or paperboard with high barrier properties against gas, water vapour and odours. Poly(vinyl alcohol) (PVOH), a water soluble and biodegradable polymer, is a real option for sustainable packaging when applied as either a coating for paper and paperboard packaging or an independent packaging film. Since its application is limited in high humid environments, several modification methods including chemical crosslinking with glutaraldehyde (GA), salt treatment with sodium sulphate solution, heat treatment and nanoclay incorporation have been investigated in order to improve its barrier to water vapour and also thermal stability and mechanical properties. An extensive range of crosslinking times between GA and PVOH have been assessed. The crosslinked PVOH and salt treated films show an improvement in water vapour barrier properties by 60-70%. Whereas, heat treatment and clay addition show an improvement of 20-57%, in which the water vapour barrier properties increase with increasing heat treatment temperatures (40°C to 180°C) or clay contents (5 to 20 wt%). Additionally, crosslinking PVOH/Clay films with GA improves their water vapour barrier properties comparable to those of crosslinked PVOH films. Apart from the heat treated films, all the modified PVOH films possess higher thermal stability than neat PVOH films as evidenced by thermogravimetric analysis measurements. Combinations between heat treatment and crosslinking with GA as well as crosslinking on one side of PVOH films have been investigated. The films annealed at 180°C prior to crosslinking on both sides do not dissolve in hot water (90°C) even with short crosslinking time (5 minutes) and their water vapour barrier properties derive mainly from their enhanced crystallinity. The respective one-side crosslinked PVOH films show comparable water vapour barrier properties and thermal stability, but were dissolvable in hot water. The diffusion of crosslinking solution into the PVOH films has been studied using in-situ FTIR. It has been shown that the crosslinking solution can rapidly penetrate and diffuse from the top to the bottom of the film (50-60 ?m).The crystallinity of PVOH films after subjection to different modification methods have been investigated using various techniques, including FTIR, Raman and XRD. It has been shown that the crystallinity increases with heat treatment whilst decreases after crosslinking with GA. On the contrary, treating PVOH films with sodium sulphate solution for different lengths of time did not change the crystallinity of the films. When clay is present in PVOH films with 5 wt%, the crystallinity is not affected but increases slightly and significantly with 10 and 20 wt% clay loading, respectively.
APA, Harvard, Vancouver, ISO, and other styles
13

Kalan, Steven V. "Surface Modification of Silicon Through Thermal Annealing and Rinsing of Solvent Cast Polystyrene Films." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1316651768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wang, Xue. "Thermal Resistance Of Surface Modified, Dispersion Controlled CNT Foams." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1460425184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Clark, John Graham. "The modification of Waxy Oil for preparing a potential feedstock for needle coke production." Thesis, University of Pretoria, 2011. http://hdl.handle.net/2263/26510.

Full text
Abstract:
This research study determines the potential to increase substantially the anisotropy of a coke from an aliphatic Waxy Oil produced by Sasol Synfuels at Secunda, South Africa. Experimental modifications included filtration, distillation and thermal treatment, followed by distillation with the aim of producing a carbonised product similar to needle coke. The substantial concentration of an iron oxide catalyst (up to 2%) in Waxy Oil is increased by an order of magnitude upon carbonisation and calcination due to low coke yield and reactivity factors. The catalyst also promotes oxidative polymerisation of the residue, acts as a barrier to mesophase formation and promotes multi-phase graphitisation. Filtration of Waxy Oil using a 0.5 ìm sintered metal filter reduces the ash content to 0.006% and increases the anisotropy of the carbonised product to 54% flow domains compared with 22% for the carbonised product of virgin Waxy Oil. Thermal treatment followed by distillation of Waxy Oil reduces the effect of organic reactivity promoters (mainly multi-alkylated aliphatics/aromatics and oxygenates), while increasing the concentration of thermally stable (C18 to C30) normal alkanes to 85% compared with 38% in the filtered Waxy Oil. Compared with the filtered Waxy Oil, thermally stabilised Waxy Oil reduces the amount of the pre-carbonisation residue (from 98.7 to 43.0%), while “static” carbonisation thereof increases the green coke yield (from 19.8 to 36.3%) and increases the anisotropicity (from 54 to 100% flow domains). The carbonisation mechanism of filtered and thermally treated Waxy Oil involves initial cracking of high molecular weight normal alkanes (C18 to C30), thus concentrating the molecular weight of normal alkanes (C18 to C22). This is followed by a slow cyclisation step involving both self condensation and cyclo addition reactions to form two- to six-ring cyclo-alkanes or hydro-aromatics. The hydro-aromatics are dehydrogenated rapidly to form methyl and di-methyl three- to six-ring substituted aromatics. Further thermal degradation dealkylates these molecules to form stable four- to six-ring “pre-mesogens”. The mesospheres are nucleated from the isotropic matrix and grow to more than 0.050 mm in diameter, with a volume of 2.61 x 10-3 mm3. Subsequent coalescence of the mesospheres produces mesospheres with diameters of over 0.200 mm and volumes of 41.82 x 10-3 mm3. The resultant microstructure of the solid carbon is composed of flow domains more than 400 ìm in length. Although needle cokes have historically been produced from aromatic residues, this research is the first to show that a coke with a similar microstructure can be produced from a totally aliphatic residue. The research thus provides potential for the development of a needle coke from a totally unique Waxy Oil residue with negligible sulphur (< 0.008%) and nitrogen (< 0.09%) contents. This is the first academic study of the chemistry of Waxy Oil.
Thesis (PhD)--University of Pretoria, 2011.
Chemical Engineering
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
16

Lane, Paul David. "Nanoscale surface modification studied by reflection anisotropy spectroscopy." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/5660.

Full text
Abstract:
The development and control of nanoscale properties is a major goal in science and technology; for the development of such technologies it is important that there are experimental techniques which allow the monitoring of development processes in real time and in a range of environments. With this in mind much effort has been invested in the development of surface sensitive optical probes. One such technique, reflection anisotropy spectroscopy (RAS), has been applied successfully to a number of different problems since its development in the mid 1980’s. RAS as a surface specific technique is very sensitive to small changes to surface morphology, electronic structure and molecular orientation. This makes RAS a useful technique to study nanoscale changes occurring at surfaces and it is applied here to three such systems, in an attempt to develop a better understanding of both the systems and the technique. Surface defects arising from thermal processing and etching of the sample are considered and are found to have a significant effect on both the electronic structure and the morphology of the surface. The time and temperature dependences of the RAS signatures allow the monitoring of surface dynamic processes. The deposition of a monolayer of adsorbate molecules onto the surface allows a new interface to be created. Monitoring the evolution of this surface during deposition provides information about both the substrate surface and the adsorba te covered surface; a theoretical framework has been outlined to show how the sources of anisotropy from multiple thin film layers combine to give a RAS signal. Azimuth dependent RAS (ADRAS) is known to provide information on surface symmetry and can be used to determine molecular orientation. There are also a number of other angles which affect the RA spectrum from a sample. A tilted molecule causes a breakdown in surface symmetry; this work shows how such an effect can be observed.
APA, Harvard, Vancouver, ISO, and other styles
17

Johnson, Richard Kwesi. "TEMPO-oxidized Nanocelluloses: Surface Modification and use as Additives in Cellulosic Nanocomposites." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/29342.

Full text
Abstract:
The process of TEMPO-mediated oxidation has gained broad usage towards the preparation of highly charged, carboxyl-functionalized polysaccharides. TEMPO-oxidized nanocelluloses (TONc) of high surface charge and measuring 3 to 5 nm in width have been recently prepared from TEMPO-oxidized pulp. This study examines as-produced and surface-hydrophobized TONc as reinforcing additives in cellulosic polymer matrices. In the first part of the work, covalent (amidation) and non-covalent (ionic complexation) coupling were compared as treatment techniques for the hydrophobization of TONc surfaces with octadecylamine (ODA). Subsequently, TONc and its covalently coupled derivative were evaluated as nanofiber reinforcements in a cellulose acetate butyrate (CAB) matrix. The properties of the resulting nanocomposites were compared with those of similarly prepared ones reinforced with conventional microfibrillated cellulose (MFC). It was found that both ionic complexation and amidation resulted in complete conversion of carboxylate groups on TONc surfaces. As a result of surface modification, the net crystallinity of TONc was lowered by 15 to 25% but its thermal decomposition properties were not significantly altered. With respect to nanocomposite performance, the maximum TONc reinforcement of 5 vol % produced negligible changes to the optical transmittance behavior and a 22-fold increase in tensile storage modulus in the glass transition region of CAB. In contrast, hydrophobized TONc and MFC deteriorated the optical transmittance of CAB by ca 20% and increased its tensile storage modulus in the glass transition region by only 3.5 and 7 times respectively. These differences in nanocomposite properties were attributed to homogeneous dispersion of TONc compared to aggregation of both the hydrophobized derivative and the MFC reference in CAB matrix. A related study comparing TONc with MFC and cellulose nanocrystals (CNC) as reinforcements in hydroxypropylcellulose (HPC), showed TONc reinforcements as producing the most significant changes to HPC properties. The results of dynamic mechanical analysis and creep compliance measurements could be interpreted based on similar arguments as those made for the CAB-based nanocomposites. Overall, this work revealed that the use of TONc (without the need for surface hydrophobization) as additives in cellulosic polymer matrices leads to superior reinforcing capacity and preservation of matrix transparency compared to the use of conventional nanocelluloses.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
18

White, Lauren. "The Modification of Silica Aerogel Materials for Contemporary Use." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4204.

Full text
Abstract:
Aerogel materials have had limited utility due to their fragility, geometrical limitations, fabrication costs and protracted fabrication times. The objective of this project was to eliminate these limitations. Native, cross-linked and hybrid aerogel monoliths have been fabricated using a newly developed one-pot method without the need for solvent exchange. The key to this technique is the use of an ethanol–water azeotrope mixture, which contains 4.4% water by volume, as both a gelation and supercritical drying solvent. The small water content allows for drying at temperatures close to the supercritical temperature of the dry solvent, where reactions such as silica dissolution and polymer degradation are negligible. This improvement on conventional fabrication processes is of particular importance since it decreases the total duration of aerogel fabrication from five days to one day. Cross-linked silica aerogel monoliths were fabricated using one-pot hydrolysis-condensation wet chemistry methods as well as a rapid photogelation method. Both native silica and cross-linked aerogel components were made with a minimum dimension of up to 3.6 cm and in customizable shapes. Fabrication of homogeneous aerogels using these methods required a maximum of one day, as demonstrated in this work. Finally, LEDs and Laser irradiation were both used to selectively embed cross-linked aerogel into a larger native silica component to provide reinforcement and/or a surface which can be used for labeling or affixing the aerogel component to another surface.
APA, Harvard, Vancouver, ISO, and other styles
19

Islamoglu, Erol Hamza. "Thermal Analysis Of Eutectic Modified And Grain Refined Aluminum-silicon Alloys." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606503/index.pdf.

Full text
Abstract:
A series of AlSi9Mg alloys were prepared and tested to reveal the effect of addition sequence and timing of grain refiner and eutectic modifier. AlSr10 master alloy was used as an modification reagent, and also for grain refiner AlTi5B master alloy was used. The depression at the eutectic temperature due to the addition of modifier and decrease in the amount of undercooling at the liquidus due to the presence of grain refiner were examined by the cooling curves which were obtained by the Alu-Therm instrument, which is the aluminum thermal analyzer of the Heraeus Electro-Nite. The alloys that were both modified and grain refined were subsequently poured as tensile test specimen shapes in permanent die casting mould for four times at 60 minutes time intervals, meanwhile thermal analysis of the alloys were also made. In this work the effect of grain refinement and modification agent, also the determination of the optimum time to pour after adding these agents were studied by aluminum thermal analyzer. The parameters obtained from this analyzer are compared with the microstructures
to see the effect of these agents on mechanical properties, hardness, tensile strength and percent elongation values were investigated. In this study the possibility of predicting the mechanical properties prior to casting by thermal analysis method was examined by regression analysis method. By this method relationship between thermal analysis parameters and mechanical properties was established.
APA, Harvard, Vancouver, ISO, and other styles
20

Daba, Bedada Tadessa. "Effects of Solvent Engineering and Chemical Modification on the Activity and Stability of Wheat β-Amylase." Kyoto University, 2014. http://hdl.handle.net/2433/188753.

Full text
Abstract:
Kyoto University (京都大学)
0048
新制・課程博士
博士(農学)
甲第18315号
農博第2040号
新制||農||1020(附属図書館)
学位論文||H26||N4822(農学部図書室)
31173
京都大学大学院農学研究科食品生物科学専攻
(主査)教授 保川 清, 教授 安達 修二, 教授 入江 一浩
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
21

Zaeni, Akhmad Materials Science &amp Engineering Faculty of Science UNSW. "Modification of fly ash colour from grey black to near white and incoporation of fly ash in polypropylene polymer." Publisher:University of New South Wales. Materials Science & Engineering, 2009. http://handle.unsw.edu.au/1959.4/43755.

Full text
Abstract:
Particulate filled polymer composites are gaining growing acceptance in the commodity industry because the properties can be adjusted according to the industry's requirements. As particulate filler, fly ash is ready to compete with other particular fillers in polymer composites industries. Although fly ash is a cheap material but the fact that fly ash is grey-black in colour, limits the application of fly ash only to product where colour is not important. As such, a method was needed to be developed to increase the whiteness of fly ash without reducing the advantages of it as a cheap material. In this research, twelve commercially provided fly ash samples from Australian thermal power stations were investigated with respect to composition. Seven of them were thermally modified and further investigated and characterized with respect to colour, size, size distribution, and density. Of these seven fly ashes a particular grade was modified to a whiteness of 93.3 in L*a*b* scale (using barium sulfate as standard), without changing other inherent properties such as particle size and density. By comparison L*a*b* value for Omy carb 20, based on calcium carbonate is 96.9. The whiteness of fly ash was increased using a one stage thermal method ensuring the related cost of production would be not a major hurdle. The next aspect of the thesis involved incorporating as-received and heat treated fly ash samples in isotactic polypropylene up to 80 parts of fly ash per hundred resins (phr), demonstrating that fly ash content in polypropylene composites can be quite high with properly maintained combination of mechanical properties -- in particular up to 200 % improvement in Young's modulus and 63 % gain in notched impact properties, as explained in the thesis. Whilst the Young's modulus properties of the fly ash PP composites match very well with Kerner model, they lie in between the Rule of Mixture series and parallel. The tensile strength properties obtained in this research are at least 25 % higher than those predicted by Nielsen, Landon and Nicolais; whereas the strain to failure values are between 25 - 50 % higher than those predicted by Nielsen, and Smith. Whilst tensile strength of the fly ash filled polypropylene composites were less than the original polypropylene samples, as normally reported in the literature, in this thesis surface modification of fly ash particles by using 10% vinyl triethoxy silane (VTES) coupling agent gave a nominal increase in tensile strength especially at higher fly ash content. The final aspect involved study of oxidation behavior of fly ash filled polypropylene composites. Fillers, including fly ash can shorten the life time of polymers from both chemical as well as physical factors. As-received fly ash contains iron based impurities which may catalyze the anti oxidant in polypropylene, therefore reducing the service life time of the polymer. In this work, thermal treatment studies showed that the iron in fly ash can be changed to a chemically inert material so the effective service life of the polymer will only be influenced by physical factors. Therefore thermal treatment of fly ash not only increases the whiteness but also it reduces the risk of the filler on the life time of the polymer, and hence the composites.
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, Jing. "Mechanisms of lifetime improvement in Thermal Barrier Coatings with Hf and/or Y modification of CMSX-4 superalloy substrates." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3423.

Full text
Abstract:
In modern turbine engines for propulsion and energy generation, thermal barrier coating (TBCs) protect hot-section blades and vanes, and play a critical role in enhancing reliability, durability and operation efficiency. In this study, thermal cyclic lifetime and microstructural degradation of electron beam physical vapor deposited (EB-PVD) Yttria Stabilized Zirconia (YSZ) with (Ni,Pt)Al bond coat and Hf- and/or Y- modified CMSX-4 superalloy substrates were examined. Thermal cyclic lifetime of TBCs was measured using a furnace thermal cycle test that consisted of 10-minute heat-up, 50-minute dwell at 1135C, and 10-minute forced-air-quench. TBC lifetime was observed to improve from 600 cycles to over 3200 cycles with appropriated Hf- and/or Y alloying of CMSX-4 superalloys. This significant improvement in TBC lifetime is the highest reported lifetime in literature with similar testing parameters. Beneficial role of reactive element (RE) on the durability of TBCS were systematically investigated in this study. Photostimulated luminescence spectroscopy (PL) was employed to non-destructively measure the residual stress within the TGO scale as a function of thermal cycling. Extensive microstructural analysis with emphasis on the YSZ/TGO interface, TGO scale, TGO/bond coat interface was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning electron microscopy (STEM) as a funcion of thermal cycling including after the spallation failure. Focused ion beam in-situ lift-out (FIB-INLO) technique was employed to prepare site-specific TEM specimens. X-ray diffraction (XRD) and secondary ion mass spectroscopy (SIMS) were also employed for phase identification and interfacial chemical analysis. While undulation of TGO/bond coat interface (e.g., rumpling and ratcheting) was observed to be the main mechanism of degradation for the TBCs on baseline CMSX-4, the same interface remained relatively flat (e.g., suppressed rumpling and ratcheting) for durable TBCs on Hf- and/or Y-modified CMSX-4. The fracture paths changed from the YSZ/TGO interface to the TGO/bond coat interface when rumpling was suppressed. The geometrical incompatibility between the undulated TGO and EB-PVD YSZ lead to the failure at the YSZ/TGO interface for TBCs with baseline CMSX-4. The magnitude of copressive residual stress within the TGO scale measured by PL gradually decreased as a function of thermal cycling for TBCs with baseline CMSX-4 superalloy substrates. This gradual decrease corrsponds well to the undulation of the TGO scale that may lead to relaxation of the compressive residual stress within the TGO scale. For TBCs with Hf- and/or Y-modified CMSX-4 superalloy substrates, the magnitude of compressive residual stress within the TGO scale remained relatively constant throughout the thermal cycling, although PL corresponding to the stress-relief caused by localized cracks at the TGO/bond coat interface and within the TGO scale was observed frequently starting 50% of lifetime. A slightly smaller parabolic growth constant and grain size of the TGO scale was observed for TBCs with Hf- and/or Y- modified CMSX-4. Small monoclinic HfO2 precipitates were observed to decorate grain boundaries and the triple pointes within the alpha-Al2O3 scale for TBCs with Hf- and/or Y-modified CMSX-4 substrates. Segregation of Hf/Hf4+ at the TGO/bond coat interfaces was also observed for TBCs with Hf- and/or Y-modified CMSX-4 superalloys substrates. Adherent and pore-free YSZ/TGO interface was observed for TBCs with Hf- and/or Y-modified CMSX-4, while a significant amount of decohesion at the YSZ/TGO interface was observed for TBCs with baseline CMSX-4. The beta-NiAl(B2) phase in the (Ni,Pt)Al bond coat was observed to partially transform into gama prime-Ni3Al (L12) phase due to depletion of Al in the bond coat during oxidation. More importantly, the remaining beta-NiAl phase transformed into L10 martensitic phase upon cooling even though there was no significant difference in these phase transformations for all TBCs. Results from these microstructural observations are documented to elucidate mechanisms that suppress the rumpling of the TGO/bond coat interface, which is responsible for superior performance of EB-PVD TBCs with (Ni,Pt)Al bond coat and Hf- and/or Y-modified CMXS-4 superalloy.
Ph.D.
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Materials Science & Engr PhD
APA, Harvard, Vancouver, ISO, and other styles
23

Reza, S. M. Mohsin. "Design modification for the modular helium reactor for higher temperature operation and reliability studies for nuclear hydrogen production processes." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Qi, Letian, and Lihong Fu. "Effects of Choline Chloride, Urea and Their Deep Eutectic Solvents on the Modification of Leather - 155." Verein für Gerberei-Chemie und -Technik e. V, 2019. https://slub.qucosa.de/id/qucosa%3A34305.

Full text
Abstract:
Content: The application of split leather is an important issue in leather industry as most of them was not properly treated and wasted. In this study the application of choline chloride (ChCl), urea (U) and corresponding deep eutectic solvents (DES) on the modification of thermal stability and mechanical strength of mink split leather was investigated. TGA and DSC results indicated DES treatment enhanced thermal stability of split leather, and ChCl treatment reduced the stability. While, U treatment provided a kinetic inhibition during the thermal-decomposition. In terms of the mechanical strength, both ChCl and U treatment reduced burst intensity and extended height. While, after DES treatment the burst intensity and extended height increased significantly. In terms of the dosage, 7% DES provided best performance. Results mentioned above illustrated that DES formed by simply mixing ChCl and U provided strong interaction with fiber, enhanced the crosslinks. A hypothesis of [Ch(Urea)]+[Cl(Urea)]- type structure was proposed, as it enabled DES forming strong hydrogen bonds with functional groups on leather fiber, enhancing the crosslinks and therefore improving the thermal stability and mechanical strength. The DES treatment on leather fibers improved their overall performance and thereby broaden their applications. Take-Away: 1. DES obtained by mixing ChCl and urea presented very different effect in leather treatment, as the thermal stability and physical strength of leather improved significantly after the DES treatment. 2. A hypothesis of [Ch(Urea)]+[Cl(Urea)]- type structure was proposed, illustrating a formation of strong hydrogen bonds between DES and functional groups on leather fiber. This enhances the crosslinks and therefore improves the thermal and mechanical strength of leather.
APA, Harvard, Vancouver, ISO, and other styles
25

Pazat, Alice. "Chemical Modification of Graphite-based Derivates and Their Uses in Elastomer Nanocomposites." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1050/document.

Full text
Abstract:
L'objectif de la thèse a été d'explorer différentes voies de dispersion de charges graphitiques dans des élastomères de type polyisoprène dans le but d'améliorer les propriétés mécaniques et barrière. Pour augmenter les interactions entre le graphite et l'élastomère et donc diminuer les interactions entre charges, les charges graphitiques ont été modifiées chimiquement. Le graphite a été préalablement oxydé pour obtenir du graphite oxydé (GO) contenant des groupements époxyde, hydroxyle et acide carboxylique, susceptibles de servir comme sites d'ancrage de molécules et de chaînes polymères. Afin d'améliorer la compatibilité du GO avec la matrice polyisoprène, des amines et des alkoxysilanes ainsi que des chaînes polyisoprène ont été greffées sur le GO. Des taux de greffage variant de 4 à 50 % en poids ont été obtenus selon la technique de fonctionnalisation utilisée. Une expansion thermique du GO a aussi été étudiée et a conduit à la formation d'une structure graphitique poreuse. Des composites polyisoprène contenant 15 pce de ces charges graphitiques modifiées ont ensuite été préparés et ont montré une diminution de la perméabilité à l'air (-70 % pour les composites graphite traité thermiquement, par rapport à ceux chargés uniquement en noir de carbone) ainsi qu'une amélioration des propriétés mécaniques. Enfin, l'utilisation de liquides ioniques comme agents dispersants a été étudiée. Des composites caoutchouc-graphite avec 1 % en poids de liquides ioniques ont montré un renforcement plus élevé (+ 25 % pour la contrainte à 300 % d'élongation) tout en conservant un allongement à la rupture similaire par rapport à des composites contenant uniquement du noir de carbone
The aim of this study was the investigation of various dispersion methods for graphite-based fillers in elastomers such as polyisoprene, to enhance mechanical and barrier properties. To increase graphite-rubber interactions and so decrease filler-filler aggregation, graphite-based fillers have been chemically modified. Graphite was previously oxidized into graphite oxide (GO), bearing epoxide, hydroxyl and carboxylic acid groups, which could further act as anchor sites for molecules and polymer chains. To increase the compatibility between GO and the polymeric matrix, amines and alkoxysilanes, as well as polymer chains, were grafted on GO. Grafting contents between 4-50 wt% were obtained, depending on the functionalization technique which was used. A thermal modification path of GO was also investigated and led to the formation of porous graphite structure. Polyisoprene composites containing 15 phr of these graphite-based fillers were prepared and showed decreased air permeability (-70 % for composites containing thermally-treated graphite filler, as compared to those containing carbon black only) as well as enhanced tensile properties. Finally, the use of ionic liquids as dispersing agents was investigated. Natural rubber – graphite composites with 1 wt% of ionic liquid displayed enhanced reinforcement (+ 25 % for the stress at 300 % strain) while maintaining similar strain at break to composites containing carbon black only
APA, Harvard, Vancouver, ISO, and other styles
26

Sharma, Kartikeya. "Structural modifications of polyester fibres induced by thermal and chemical treatments to obtain high-performance fibres." Thesis, KTH, Fiber- och polymerteknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296254.

Full text
Abstract:
Del A: Polyetylentereftalat fibrer I detta arbete presenteras olika metoder för att framställa monofilament av polyetylentereftalat (PET) (diameter: 30-50 µm) med en radiell gradient. Nyutvecklad Raman-spektroskopiteknik har använts för att kartlägga dessa inducerade radiella gradienter i t.ex. kristallinitet. På liknande sätt har FTIR-ATR teknik modifierats och anpassats för att studera ytegenskaperna hos dessa filament. Industriella filamentprover och egna smältspunna PET-filament har framgångsrikt modifierats med användning av olika termiska och kemiska behandlingar för att erhålla fibrer med förbättrade mekaniska egenskaper och minskad fibrillering. De strukturella förändringar som uppträdde i filamenten på mikroskopisk nivå karakteriserades med bl a infraröd analys, termisk analys, Raman-mikroskopi och röntgenteknik (SAXS och WAXD). Tester av fibrilleringsegenskaper utfördes av industriella partners med egenutvecklad teknik följt av testning av masterbatch-fibrer på en vävningssimulator. Resultaten i laboratorieskala avslöjade fibrernas strukturella anisotropi och radiella gradienter, vilka visade en minskad fibrillering med en viss inverkan på de mekaniska egenskaperna.  Del B: Poly(3-hydroxybutyrat) fibrer Detta arbete presenterar studier av poly(3-hydroxybutyrat) (P3HB) fibrer med reversibla strukturförändringar. Tidigare studier har visat att kristallisationen hos P3HB fibrer i huvudsakligen sker i ortorombisk α-kristallform. Stress-anlöpning resulterar dock i en förändring i beteendet hos P3HB-materialet. Strukturen hos P3HB fibrer består av amorfa och kristallina regioner samt en mesofas. Mesofasen antas vara belägen mellan α-kristallerna och uppträder som starkt orienterade bindningskedjor, s k “tie-chains”. Denna studie syftar till att observera effekten av stress-anlöpning på mesofasen och dess beroende av anlöpningsförhållandena. Förändringarna i mesofasen observeras med en anpassad och polariserad Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) samt med Differential Scanning Calorimetry (DSC). Resultaten från ATR-FTIR visar att mesofasen är närvarande i spunna och högt stress-anlöpta fibrer, medan den är frånvarande i fibrer som är lågt stress-anlöpta. Mesofasen kan emellertid återupptas i lågt stress-anlöpta fibrer genom dragning. In situ ATR-FTIR användes för att studera förändringarna i materialbeteendet under en dragningsprocess för att observera periodiciteten i förekomsten av mesofasen. Det visade sig att förekomsten av mesofasen är en starkt reversibel process som observeras som en funktion av topparnas intensitet i ATR-FTIR.
Part A: Poly(ethylene terephthalate) fibres In this work, various methods to produce Poly(ethylene terephthalate) (PET) monofilaments (diameter: 30-50µm) with a radial gradient are presented along with a newly developed Raman spectroscopy technique to map these induced radial gradients in e.g. crystallinity. On similar lines, FTIR-ATR technique has been modified and adapted to study the surface properties of these fine filaments. Industrial filament samples and in-house melt-spun PET filaments have been successfully modified using various thermal and chemical treatments to obtain fibres with improved mechanical properties and reduced fibrillation. The structural changes occurring in the filaments on the microscopic level were characterized using infrared analysis, thermal analysis, Raman microscopy and X-ray techniques (SAXS and WAXD) among others. The fibrillation properties were tested by the industrial partners using a technique developed in-house followed by testing of masterbatch fibres on a weaving simulator. Lab-scale results revealed the structural anisotropy and radial gradient maps of the fibres which also demonstrated reduced fibrillation with some impact on mechanical properties also being observed. Part B: Poly(3-hydroxybutyrate) fibres This work presents studies on poly(3-hydroxybutyrate) (P3HB) fibres with reversible structural changes. Previously reported literature shows that crystallization of P3HB fibres takes place majorly in the orthorhombic α-crystal form. However, the stress-annealing results in a change of the material behaviour of P3HB. P3HB fibres compose of amorphous regions, crystalline regions and mesophase in their structure. The mesophase is supposed to be located in between the α-crystals of the material as highly oriented tie-chains. This study targets to observe the effect of stress-annealing of the mesophase present in the P3HB fibres and its dependence on the annealing conditions. The changes in the mesophase content are observed with the help of a highly adapted polarized Attenuated Total Reflection Fourier Transform Infrared spectroscopy (ATR-FTIR) and Differential Scanning Calorimetry (DSC). The presented results from polarized ATR-FTIR show that the mesophase is present in as-spun and high stress annealed fibres while it is absent in fibres annealed with low stress. However, the mesophase can be re-obtained in low stress annealed fibres through tensile drawing. In-situ ATR-FTIR was utilized to study the changes in the material behaviour during a tensile drawing process to observe the cyclicity in the occurrence of the mesophase. It was found that the existence of mesophase is a highly reversible process observed as a function of the peak intensities of the polarized ATR-FTIR spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles
27

Starke, Robert. "Research on thermal modification of African alpine bamboo (Yushania alpina [K. Schumann] Lin) in terms of woven strand board (WSB) product development in Ethiopia." Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-173554.

Full text
Abstract:
’African Bamboo PLC’ has the vision to become the first and the leading bamboo-based floorboard producer in Africa with export markets in Europe and America. African alpine bamboo (Yushania alpina), common in the highlands of Ethiopia, was used to develop woven strand board (WSB) products. Research on thermal modification was part of the product development. Samples were mainly collected in Tetechia (6°33‘ 34‘‘ N 38°32‘25‘‘ W, 2,650-2,700 m a.s.l.), located in the Sidama region. Three culms each of two, three, four and five years of age were harvested. Samples were taken from the middle of each internode to determine the moisture content and density. Samples used to assess the effects of thermal modification were cut next to them. Further test specimens from different areas and other species such as the lowland bamboo (Oxytenanthera abyssinica) were also investigated. The thermal treatment was applied in a kiln with steam as an inert blanket to reduce oxidative processes. Eight modifications were performed at temperatures of 160 °C, 180 °C, 200 °C and 220 °C, at durations of three or five hours each. Mass loss, sorption behaviour, impact resistance, resistance to indentation and contents of chemical components were analysed for the modified and unmodified samples. Yushania alpina is a thin-walled bamboo with a maximum diameter of 6 cm, moisture content of up to 150 % and densities of between 0.5 g/cm² and 0.8 g/cm². Moisture content, diameter and wall thickness decreased from the bottom to the top of the culms, whereas density increased. Two year old bamboo had the lowest and three year the highest density. The mass loss followed an exponential trend, with about 2 % loss at 160 °C and 16 % at 220 °C. This mainly reflected the degradation of hemicellulose, which was fully removed at 220 °C. Extractive contents, at less than 5 %, fluctuated. Lignin amounted to 30 % and increased appreciably. Cellulose reached contents of about 45 % and decreased slightly at high temperatures. The chemical change, which was based more on the temperature than on the duration of treatment, influenced the sorption behaviour and mechanical properties most of all. The equilibrium moisture content was reduced by between 10 % to 40 %, depending on the climate and modification temperature chosen. This reduction stabilised between temperatures of 200 °C and 220 °C. The impact resistance of untreated bamboo was 3.8 J/cm², compared to only 1.4 J/cm² for modified samples. Resistance also differed between samples from the outer and inner part of the culm in the transverse section. The resistance to indentation declined also. Unmodified samples had 47 N/mm², compared to only 20 N/mm² for strongly modified samples. The results of the analysis and the experience gained indicate that temperatures between 180 °C and 200 °C, held for three hours, lead to the best results for woven strand board production using Ethiopian highland bamboo
’African Bamboo PLC’ setzt sich zum Ziel, als erstes Unternehmen Holzwerkstoffe aus Bambus nach Europa und Amerika zu exportieren. Afrikanischer Hochgebirgsbambus (Yushania alpina), welcher vor allem im Hochland von Äthiopien vorkommt, wurde dazu verwendet ”woven strand boards” (WSB) zu entwickeln. Untersuchungen zur thermischen Modifizierung waren dabei Bestandteil der Produktentwicklung. Die dafür notwendigen Bambusproben wurden hauptsächlich in Tetechia (6°33‘34‘‘ N 38°32‘25‘‘ W, 2650-2700 m ü. NN), einem Dorf in Sidama, entnommen. Es wurden dazu je drei Bambushalme der Altersklassen zwei, drei, vier und fünf Jahre geerntet. Proben für die Bestimmung von Holzfeuchte und Dichte wurden in der Mitte jedes Internodiums entnommen. Diese spielten als Referenzprobe eine große Rolle. Neben den Referenzprobekörpern wurden die jeweiligen Stücke für die thermische Behandlung heraus gesägt, wobei dies nach einer bestimmten Systematik erfolgte. Neben den Proben aus Tetechia wurden für die Untersuchungen zudem Proben aus anderen Gebieten und von einer anderen Art, dem Tieflandbambus (Oxytenanthera abyssinica), hinzugefügt. Die thermische Modifizierung erfolgte unter Wasserdampf, welcher oxidative Prozesse verhinderte. Insgesamt erfolgten acht Modifizierungen bei Temperaturen von 160 °C, 180 °C, 200 °C und 220 °C und einer jeweiligen Haltezeit von drei oder fünf Stunden. In Anbetracht der unbehandelten und behandelten Proben wurden der Masseverlust, die Bruchschlagarbeit, der Eindruckswiderstand und die chemische Zusammensetzung analysiert. Yushania alpina ist ein dünnwandiger Bambus mit Durchmessern bis zu 6 cm, Holzfeuchten bis 150 % und Dichten zwischen 0,5 g/cm² und 0,8 g/cm². Holzfeuchte, Durchmesser und Wandstärke verringerten sich mit der Halmhöhe, wobei die Dichte hingegen anstieg. Zweijähriger Bambus hatte die geringsten und dreijähriger Bambus die höchsten Dichten. Der Masseverlust folgte einem expontiellem Verlauf mit Werten von 2 % bei 160 °C und 16 % bei 220 °C. Er widerspiegelte den Abbau der Hemicellulose, welche bei 220 °C schon nicht mehr vorhanden war. Exktraktgehalte fluktuierten mit Werten unter 5 %. Der Ligningehalt lag bei ungefähr 30 % und stieg merklich an. Der Cellulosegehalt erreichte Werte von etwa 45 %, wobei die Cellulose bei höheren Temperaturen leicht abgebaut wurde. Die chemischen Veränderungen, welche maßgeblich von der angewandten Temperatur statt der Behandlungsdauer beeinflusst wurden, wirkten sich auf das Sorptionsverhalten und mechanische Eigenschaften aus. Je nach ausgesetztem Klima und erfolgter Modifikation wurde die Ausgleichsfeuchte der Proben um 10 % bis 40 % reduziert. Die Abnahme der Ausgleichsfeuchte stabilisierte sich im Temperaturbereich von 200 °C bis 220 °C. Die Bruchschlagarbeit des unbehandelten Bambus betrug 3,8 J/cm², die des behandelten nur 1,4 J/cm². Die Bruchschlagarbeit variierte unabhängig von der Modifikation zwischen dem inneren und äußeren Abschnittes innerhalb des Halmquerschnitts. Der Eindruckswiderstand nahm mit der thermischen Behandlung ebenfalls ab. Unbehandelte Proben hatten 47 N/mm², während die modifizierten Proben nur noch 20 N/mm² aufwiesen. Anhand der Ergebnisse und erworbenen Erfahrungen lies sich schlussfolgern, dass Temperaturen zwischen 180 °C und 200 °C bei einer Haltezeit von drei Stunden für die thermische Modifizierung von Äthiopischem Hochlandbambus in Bezug auf die Entwicklung von ”woven strand boards” empfehlenswert waren
APA, Harvard, Vancouver, ISO, and other styles
28

Cademartori, Pedro Henrique Gonzalez de, and Pedro Henrique Gonzalez de Cademartori. "Propriedades tecnológicas da madeira termorretificada de três espécies de Eucalyptus." Universidade Federal de Pelotas, 2012. http://repositorio.ufpel.edu.br/handle/ri/1303.

Full text
Abstract:
Made available in DSpace on 2014-08-20T13:34:25Z (GMT). No. of bitstreams: 1 Dissertacao Pedro Henrique Gonzalez de Cademartori.pdf: 2886719 bytes, checksum: 352a362f9db748d742e87be22ddaa1b0 (MD5) Previous issue date: 2012-12-17
This study aimed to evaluate physicomechanical and chemical behaviour of Eucalyptus grandis, Eucalyptus saligna e Eucalyptus cloeziana thermally modified wood. To achieve this, six trees of each species were randomly selected and samples measuring 1.6 x 1.6 x 25cm were prepared. The samples were thermally modified through exposure to nine treatments in an oven and in an autoclave steriliser. The process conditions in the oven were: temperatures between 180 and 240ºC and time of exposure of 4h, whereas for the treatments in autoclave a constant temperature (127°C) and pressure (1.5kgf/cm²) were used for 1h. The evaluation of the physical properties was done through the performance of weight loss, equilibrium moisture content, stability dimensional and specific gravity tests. Colour changes and wettability were measured by colorimetric and contact angle techniques, respectively. Regarding mechanical properties, thermally modified wood was evaluated through the performance of static bending tests and non-destructive ultrasonic tests. Chemical modifications were qualitatively measured through infrared spectroscopy (ATR-IR). The main results showed that thermal treatments significantly influenced weight loss, equilibrium moisture content and dimensional stability. On the other hand, specific gravity did not show a great behaviour in order to explain the influence of thermal treatments on wood. A gradual darkening in both radial and tangential sections was observed, mainly due to a high reduction of L* after treatment 2 (180°C), since a* and b* showed distinct behaviour. Generally, stiffness remained constant when related to the control treatment, whereas mechanical strength decreased significantly, mainly after the treatments 6, 7, 8 and 9. The use of the non-destructive ultrasound technique obtained coefficients of determination between 0.66 and 0.80 for the relationship MOE x Ed. The wettability of thermally modified wood presented the best results in the treatments 2, 3, 4 and 5 for all the species, with the contact angle increasing and remaining with high stability as a function of time of exposure. Infrared spectroscopy showed modifications in different peaks, mainly related to the hemicelluloses and crystallinity of the structure, representing thermal degradation of the material as a function of temperature of treatment. Therefore, the thermal treatments reduced hygroscopicity and modified the colour of the wood. The mechanical strength was reduced significantly and the ultrasound was efficient in order to estimate the modulus of elasticity. Wettability decreased significantly as a function of the thermal treatments and infrared spectroscopy (ATR-IR) demonstrated to be an excellent tool for the qualitative analysis of chemical modifications due to thermal treatments.
O presente estudo objetivou avaliar o comportamento físico, mecânico e químico das madeiras de Eucalyptus grandis, Eucalyptus saligna e Eucalyptus cloeziana submetidas a diferentes tratamentos de termorretificação. Para tal, selecionaram-se ao acaso seis árvores de cada espécie para a confecção de corpos de prova com dimensões de 1,6 x 1,6 x 25cm. Submeteram-se os corpos de prova a nove tratamentos de termorretificação a partir da utilização de uma estufa e uma autoclave de esterilização. As condições de processo para os tratamentos em estufa foram temperatura entre 180 e 240°C e tempo de exposição de 4h, enquanto que a temperatura dos tratamentos em autoclave permaneceu constante em 127°C e pressão de 1,5 kgf/cm² durante 1h. A avaliação das propriedades físicas foi realizada por meio de ensaios de perda de massa, teor de umidade de equilíbrio, estabilidade dimensional e massa específica. Verificaram-se as alterações na coloração e molhabilidade por meio das técnicas de colorimetria e ângulo de contato, respectivamente. Mecanicamente, o material foi avaliado por meio de ensaios de flexão estática e ultrassom. As modificações químicas foram avaliadas qualitativamente por espectroscopia no infravermelho (ATR-IR). Os principais resultados mostraram significativa influência da termorretificação na perda de massa, teor de umidade de equilíbrio e estabilidade dimensional. Por outro lado, a massa específica não apresentou comportamento capaz de explicar a influência da termorretificação. Observou-se escurecimento gradual na madeira das três espécies em ambas as seções, em que se ressalta uma forte redução do L* após o tratamento 2 (180°C), diferentemente do a* e b* que apresentaram comportamento distinto. Verificou-se que, enquanto a rigidez da madeira termorretificada manteve-se inalterada quando relacionada ao tratamento de referência, a resistência do material foi significativamente reduzida, principalmente após os tratamentos 6, 7, 8 e 9. Já a utilização da técnica não destrutiva de ultrassom permitiu a obtenção de coeficientes de determinação entre 0,66 e 0,80 para a relação MOE x Ed. A molhabilidade da madeira termorretificada apresentou os melhores resultados para os tratamentos 2, 3, 4 e 5 na madeira das três espécies, em que o ângulo de contato elevou-se e manteve-se com maior estabilidade ao longo do tempo. A técnica de ATR-IR identificou modificações nos picos relacionados, principalmente as hemiceluloses e também à cristalinidade da estrutura, incitando a degradação térmica do material conforme o aumento da temperatura. Dessa maneira, concluiu-se que os tratamentos empregados foram suficientes para reduzir a higroscopicidade, bem como modificar os tons de cor para cada temperatura utilizada. A resistência mecânica foi significativamente reduzida e, ao mesmo tempo, o ultrassom mostrou-se eficiente quanto à predição do módulo de elasticidade. A molhabilidade da madeira reduziu significativamente conforme o emprego dos tratamentos. A ATR-IR mostrou-se como uma excelente ferramenta de análise qualitativa das modificações químicas ocorridas durante a termorretificação.
APA, Harvard, Vancouver, ISO, and other styles
29

Mubarok, Mahdi. "Valorization of beech wood through development of innovative and environmentally friendly chemical modification treatments." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0141.

Full text
Abstract:
Dans cette étude, l’amélioration des propriétés physiques et de sa durabilité aux agents de dégradation biologique du hêtre européen (Fagus sylvatica) a été réalisée au moyen de différents traitements. Les premiers types de traitements sont basés sur l'imprégnation de dérivés vinyliques de glycérol ou de polyglycérol en tant qu'additif suivi d’une étape de modification thermique réalisée dans un réacteur ouvert (OHT) ou fermé (HPS). Le deuxième type de traitement repose sur la poly-estérification in situ du sorbitol et de l'acide citrique à différentes concentrations et températures de durcissement en système ouvert. Diverses propriétés de durabilité physique, chimique, mécanique et biologique des bois modifiés ont été évaluées. Les résultats montrent que certains traitements peuvent améliorer de manière significative les propriétés de durabilité physique et biologique du bois contre les agents de pourriture blanche, brune et molle et surtout vis-à-vis de l’attaque des termites comparativement au bois non traité ou modifié thermiquement uniquement
In this study, improvement of physical and biological durability properties of European beech (Fagus sylvatica) has been performed through different bulking impregnation treatments. The first modification was based on the impregnation of vinylic derivatives of glycerol or polyglycerol as additive followed with different thermal modification conditions in the opened system (OHT) or in the closed system (HPS). The second modification was based on the in-situ polyesterification of sorbitol and citric acid at different concentrations and curing temperatures in the opened system. Various physical, chemical, mechanical, and biological durability properties of the modified woods were evaluated, including certain properties during modification. The results have disclosed that certain treatments can improve significantly physical and biological durability properties of wood against decay (white rot, brown rot, and soft rot fungi) and termites attacks in comparison to untreated wood or thermally modified woods
APA, Harvard, Vancouver, ISO, and other styles
30

Shahverdi, Ali. "Synthesis of chemically-modified single-walled carbon nanotubes by counter-current ammonia gas injection into the induction thermal plasma process." Thèse, Université de Sherbrooke, 2013. http://hdl.handle.net/11143/6630.

Full text
Abstract:
Résumé : Les nanotubes de carbone mono-parois (SWCNTs) sont très peu dispersibles dans les solvants et ils ont besoin d'être chimiquement modifiés avant leur utilisation dans beaucoup d'applications. Ce travail se concentre sur la synthèse du matériau des SWCNTs chimiquement modifié par une approche in situ. Les objectifs principaux de cette recherche sont : I) explorer le procédé chimique in situ pendant la synthèse des SWCNTs et 2) examiner de manière approfondie l'effet de l'environnement réactif sur les SWCNTs. Les effets du type de catalyseur et son contenu sur le produit fini des SWCNTs, synthétisé par plasma thermique inductif (PTI), ont été étudiés pour remplacer le cobalt (Co) toxique dans la matière première. À cet égard, trois mélanges de catalyseurs différents (c.-à-d. Ni-Y203, Ni-Co-Y203, et Ni-Mo-Y203) ont été utilisés. Les résultats expérimentaux ont montré que le type de catalyseur affecte la qualité des SWCNTs. Une qualité similaire peut être produite lorsque la même quantité de Co est remplacée par le Ni. En outre, des résultats observés dans les travaux expérimentaux ont été explicités par les résultats des calculs thermodynamiques. La therrnogravimétrie (TG) a été utilisée tout au long du travail pour caractériser les échantillons de SWCNTs. La TG a tout d'abord été normalisée par l'étude des effets des trois principaux paramètres instrumentaux (rampe de température, RT, la masse initiale de l'échantillon, MI, et le débit de gaz, D) sur le T, et largeur à mi-hauteur (LMH) obtenu à partir de graphiques TG et TG dérivés de noir de carbone, respectivement. Par conséquent, un plan factoriel à deux niveaux a été prévu. L'analyse statistique a montré que l'effet de RT, MI, et à un degré moindre D est significatif sur la LMH et négligeable sur Tonss. Une méthodologie a ensuite été développée sur la base de la synthèse des SWCNT en utilisant le système PTI, à travers une approche chimique in situ. L'ammoniac (NH3) a été choisi et injecté à contre-courant dans le réacteur PTI à trois débits différents et en utilisant quatre types de buses différentes. La simulation numérique a indiqué un meilleur mélange du NH3 dans le réacteur PTI lorsqu'une buse particulière a été utilisée. Les résultats expérimentaux montrent l'augmentation d'intensité de D-bande dans les spectres Raman d'échantillons SWCNTs lors de l'injection du NH3. Le NH3 pourrait augmenter la teneur en azote du produit fini de SWCNTs jusqu'à 10 fois. L'échantillon des SWCNTs traitée avec 15% vol de NH3 a montré une dispersion accrue dans le diméthylformamide et l'isopropanol. Les nanostructures de carbone en forme d'oignon et plane, ont aussi été observées. Une caractérisation complémentaire sur l'échantillon des SWCNTs traités par NH3 à 15% vol., a indiqué une modification de la surface des nanotubes, où des tubes métalliques ont montré une plus grande réactivité avec NH3 que les semi-conducteurs. Le modèle, y compris le champ d'écoulement thermique du réacteur et la cinétique de décomposition thermique de NH3 a suggéré une modification de surface des SWCNTs en deux étapes dans laquelle les nanotubes réagissent premièrement avec les espèces intermédiaires de H et de NH2. Le NH3 s'adsorbe ensuite chimiquement sur les nanotubes. Le modèle a également suggéré que les espèces intermédiaires comme le NNH et le N2H2 jouent un rôle principalement en conduisant la décomposition du NH3 plutôt que la modification chimique des SWCNTs. // Abstract : Pristine single-walled carbon nanotubes (SWCNTs) are poorly dispersible and insoluble in many solvents and need to be chemically modified prior to their use in many applications. This work is focused on the investigation of the synthesis of chemically modified SWCNTs material through an in situ approach. The main objectives of the presented research are: I) to explore the in situ chemical process during the synthesis of SWCNT and 2) to closely examine the effect of a reactive environment on SWCNTs. Effects of the catalyst type and content on the SWCNTs final product, synthesized by induction thermal plasma (1TP), were studied to replace toxic cobalt (Co) in the feedstock. In this regard, three different catalyst mixtures (i.e. Ni-Y203, Ni-Co-Y203, and Ni-Mo-Y203) were used. Experimental results showed that the catalyst type affects the quality of the SWCNT final product. Similar quality SWCNTs can be produced when the same amount of Co was replaced by Ni. Moreover, the results observed in this experimental work were further explained by thermodynamic calculation results. Thermogravimetry (TG) was used throughout the work to characterize the SWCNTs product. TG was firstly standardized by studying the effects of three main instrumental parameters (temperature ramp, TR, initial mass of the sample, 1M, and gas flow rate, FR) on the Lise, and full-width half maximum (FWHM) obtained from TG and derivative TG graphs of carbon black, respectively. Therefore, a two-level factorial statistical design was performed. The statistical analysis showed that the effect of TR, IM, and to a lower extent, FR, is significant on FWHM and insignificant on T01, 1. A methodology was then developed based upon the SWCNTs synthesis using the 1TP system, through an in situ chemistry approach. Ammonia (NH3) was selected and counter-currently injected into the ITP reactor at three different flow rates and by four different nozzle designs. Numerical simulation indicated a better mixing of NH3 in the ITP reactor when a certain nozzle was used. The experimental results showed the increase of D-band intensity in the Raman spectra of SWCNT samples upon the NH3 injection. NH3 could increase the nitrogen content of the SWCNTs final product up to 10 times. The SWCNTs sample treated with 15 vol% NH3 showed an enhanced dispersibility in Dimethylformamide and Isopropanol. Onion-like and planar carbon nanostructures were also observed. Complementary characterization on the SWCNT samples treated by 15 vol% NH3 indicated the surface modification of nanotubes. Metallic tubes showed a higher reactivity with NH3 than semiconducting ones. The model including the reactor thermo-flow field and NH3 thermal decomposition kinetics suggested a two-step SWCNT surface modification in which nanotubes firstly react with H and NH2 intermediates and later, NH3 chemisorbs on the nanotubes. The model also suggested that the intermediate species, like NNH and N2H2, play a rote primarily in driving the NH3 decomposition rather than the chemical modification of SWCNTs. [symboles non conformes]
APA, Harvard, Vancouver, ISO, and other styles
31

Speyer, Lucie. "Élaboration de mousses de graphène par voie solvothermale et modification de leurs propriétés physico-chimiques." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0120/document.

Full text
Abstract:
Les matériaux de type graphène suscitent depuis une dizaine d’années un grand engouement de la part de la communauté scientifique en raison de leurs propriétés remarquables. Les mousses de graphène, notamment, offrent la restitution d’une partie des propriétés du graphène combinée à une surface accessible élevée, et sont particulièrement intéressantes dans certains domaines d’application tels que l’énergie. Ce travail de thèse s’attache à l’étude de l’élaboration de mousses graphéniques par voie solvothermale, une méthode originale qui consiste en une réaction solvothermale entre un alcool et du sodium métallique, suivie par un traitement thermique. L’étude des produits issus de la réaction solvothermale ainsi que de la pyrolyse sous azote a été menée à l’aide de techniques de caractérisation complémentaires et multi-échelles : des mécanismes de formation du composé solvothermal ainsi que des mousses graphéniques ont pu être proposés. Les conditions optimales de pyrolyse ont également été déterminées, et permettent l’obtention d’une mousse de graphène possédant une grande qualité structurale et une surface accessible élevée. Par ailleurs, plusieurs traitements post-élaboration ont été mis en place : un recuit sous vide, en particulier, améliore sensiblement la qualité structurale et la pureté des échantillons. Enfin, l’étude de la modification des propriétés physico-chimiques des mousses à travers la chimie de l’intercalation des matériaux carbonés a été effectuée. Des films de graphène ont pu être préparés à partir des mousses intercalées et leurs propriétés électriques ont été évaluées
Graphene-based materials have attracted a great interest these last years, due to their outstanding properties. In particular, graphene foams offer a part of the properties of graphene, combined with a high surface area: they show great potentiality in some application domains such as energy. This thesis work is focused on the elaboration of graphene foams by a solvothermal-based process, an original method involving a solvothermal reaction between an alcohol and sodium, followed by a thermal treatment. The study of the compounds produced by the solvothermal reaction and the pyrolysis under a nitrogen flow was lead through multi-scale and complementary characterization techniques: mechanisms of formation of the solvothermal compound and graphenic foams have been proposed. The optimal conditions of pyrolysis were also determined, and provide the obtaining of graphene foams with a high structural quality and a large specific surface area. Furthermore, some types of post-elaboration treatments were carried out: notably, a vacuum annealing significantly improves the structural quality and the purity of the samples. Lastly, the modification of the physico-chemical properties of the foams through the chemistry of carbon materials intercalation has been studied. Graphene films were prepared from the intercalated foams and their electrical properties were evaluated
APA, Harvard, Vancouver, ISO, and other styles
32

Segerholm, Kristoffer. "Characteristics of wood plastic composites based on modified wood : Moisture properties, biological performance and micromorphology." Doctoral thesis, KTH, Byggnadsmaterial, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-105217.

Full text
Abstract:
Biobased materials made from renewable resources, such as wood, play an important role in the sustainable development of society. One main challenge of biobased building materials is their inherent moisture sensitivity, a major cause for fungal decay, mold growth and dimensional instability, resulting in decreased service life as well as costly maintenance. A new building material known as wood-plastic composites (WPCs) has emerged. WPCs are a combination of a thermoplastic matrix and a wood component, the former is usually recycled polyethylene or polypropylene, and the latter a wood processing residual, e.g. sawdust and wood shavings. The objective of this thesis was to gain more insight about characteristics of WPCs containing a modified wood component. The hypothesis was that a modified wood component in WPCs would increase the moisture resistance and durability in outdoor applications. The study comprises both injection molded and extruded WPC samples made with an unmodified, acetylated, thermally modified or furfurylated wood component in a polypropylene (PP), high density polyethylene (HDPE), cellulose ester (CAP, a cellulose ester containing both acetate and propionate substituents) or polylactate (PLA) matrix. The WPCs were prepared with 50-70 weight-% wood. The emphasis was on studying the moisture sorption, fungal resistance and micromorphological features of these new types of composites. Water sorption in both liquid and vapor phases was studied, and the biological performance was studied both in laboratory and in long term outdoor field tests. Micromorphological features were assessed by analyzing of the wood component prior to and after processing, and by studying the composite microstructure by means of a new sample preparation technique based on UV excimer laser ablation combined with scanning electron microscopy (SEM). Results showed that the WPCs with a modified wood component had a distinctly lower hygroscopicity than the WPCs with unmodified wood, which resulted in less wood-plastic interfacial cracks when subjected to a moisture soaking-drying cycle. Durability assessments in field and marine tests showed that WPCs with PP or CAP as a matrix and 70 weight-% unmodified wood degraded severely within a few years, whereas the corresponding WPCs with a modified wood component were sound after 7 years in field tests and 6 years in marine tests. Accelerated durability tests of WPCs with PLA as a matrix showed only low mass losses due to decay. However, strength losses due to moisture sorption suggest that the compatibility between the PLA and the different wood components must be improved. The micromorphological studies showed that WPC processing distinctly reduces the size and changes the shape of the wood component. The change was most pronounced in the thermally modified wood component which became significantly reduced in size. The disintegration of the modified wood components during processing also creates a more homogeneous micromorphology of the WPCs, which may be beneficial from a mechanical performance perspective. Future studies are suggested to include analyses of the surface composition, the surface energy and the surface energy heterogeneity of both wood and polymer components in order to tailor new compatible wood-polymer combinations in WPCs and biocomposites.

QC 20121119

APA, Harvard, Vancouver, ISO, and other styles
33

Liu, Jing. "EFFECT OF AMYLOSE AND PROTEIN OXIDATION ON THE THERMAL, RHEOLOGICAL, STRUCTURAL, AND DIGESTIVE PROPERTIES OF WAXY AND COMMON RICE FLOURS AND STARCHES." UKnowledge, 2013. http://uknowledge.uky.edu/animalsci_etds/23.

Full text
Abstract:
The effects of oxidation by sodium hypochlorite (0, 0.8, 2, and 5%, NaOCl), the presence of endogenous proteins, and amylose content on waxy and common rice flours (WF, CF) and starches (WS, CS) were investigated in terms of in vitro starch digestibility, morphology and surface properties, and thermal and rheological characteristics. The concentration of NaOCl had an effect on all the samples including WF, CF, WS, and CS. The carbonyl and carboxyl group contents increased up to 25 and 10 folds (P < 0.05) of oxidized starches (WS, CS), respectively. Only mild oxidation (P < 0.05) occurred in flours (WF, WS). In addition, endogenous proteins were oxidized according to amino acid analysis and SDS–PAGE results. Glu+Gln, Gly, His, Arg, Tyr, and Lys were more sensitive to NaOCl oxidation. Disulfide bonds, hydrophobic force, and hydrogen bonds were involved in protein polymerization after NaOCl oxidative modification. In granular state, the in vitro starch digestibility of WF, WS, and CS decreased by 5% NaOCl oxidation. After gelatinization, only 2 and 5% oxidized WS had lower digestibility. Scanning electron microscopy and confocal laser scanning microscopy further demonstrated that protein existed on the surface of starch granules and had aggregation by oxidation. X-ray diffraction patterns showed the crystallinity of 5% oxidized flours and starches was reduced compared with all their non-oxidized samples. Thermal and rheological properties were analyzed by differential scanning calorimetry and rheometer, respectively. Starch gelatinization peak temperature of flours (WF, RF) was increased by 3 °C, but starches (WS, CS) had a significantly decrease by 8 °C. Viscoelastic patterns were dramatically changed by oxidation. Oxidized WF and CF had increased in both viscosity and elasticity by oxidation, whereas both WS and CS had significantly lower viscoelasticity after oxidative modification.
APA, Harvard, Vancouver, ISO, and other styles
34

Wentzel, Maximilian [Verfasser], Holger [Akademischer Betreuer] Militz, Christian [Gutachter] Brischke, Carsten [Gutachter] Mai, Andrea [Gutachter] Polle, Christian [Gutachter] Ammer, and František [Gutachter] Hapla. "Process optimization of thermal modification of Chilean Eucalyptus nitens plantation wood / Maximilian Wentzel ; Gutachter: Christian Brischke, Carsten Mai, Andrea Polle, Christian Ammer, František Hapla ; Betreuer: Holger Militz." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/1179449177/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wentzel, Maximilian Verfasser], Holger [Akademischer Betreuer] [Militz, Christian [Gutachter] Brischke, Carsten [Gutachter] Mai, Andrea Gutachter] Polle, Christian [Gutachter] [Ammer, and František [Gutachter] Hapla. "Process optimization of thermal modification of Chilean Eucalyptus nitens plantation wood / Maximilian Wentzel ; Gutachter: Christian Brischke, Carsten Mai, Andrea Polle, Christian Ammer, František Hapla ; Betreuer: Holger Militz." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://nbn-resolving.de/urn:nbn:de:gbv:7-11858/00-1735-0000-002E-E5A0-2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Behr, Georg [Verfasser], Holger [Akademischer Betreuer] Militz, Holger [Gutachter] Militz, and Andreas [Gutachter] Krause. "The influence of melamine treatment in combination with thermal modification on the properties and performance of native hardwoods / Georg Behr ; Gutachter: Holger Militz, Andreas Krause ; Betreuer: Holger Militz." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1209358204/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Behr, Georg [Verfasser], Holger [Akademischer Betreuer] Militz, Holger Gutachter] Militz, and Andreas [Gutachter] [Krause. "The influence of melamine treatment in combination with thermal modification on the properties and performance of native hardwoods / Georg Behr ; Gutachter: Holger Militz, Andreas Krause ; Betreuer: Holger Militz." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://nbn-resolving.de/urn:nbn:de:gbv:7-21.11130/00-1735-0000-0005-1389-B-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lizotte, Jeremy Richard. "Synthesis and Characterization of Tailored Macromolecules via Stable Free Radical Polymerization Methodologies." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/28998.

Full text
Abstract:
The stable free radical polymerization methodology for production of controlled macromolecules was investigated using a novel monomer, 2-vinylnaphthalene. Initial polymerizations resulted in molecular weight distributions typical of conventional free radical polymerization techniques (>2.0). Manipulation of the initiator concentration and the molar ratio of initiator to nitroxide demonstrated no significant control over the resulting polymer products. Analysis of the polymerization kinetics for a 2-vinylnaphthalene polymerization performed in the presence and absence of the free radical initiator revealed identical monomer consumption profiles as well as pseudo first order kinetics indicating a significant degree of the thermal polymerization was occurring at the polymerization temperature (130°C). Comparison of the thermal polymerization propensity of 2-vinylnaphthalene and styrene revealed an increased tendency for 2-vinylnapthahlene to undergo thermal polymerization. Styrene is considered highly active in its propensity to thermally polymerize. However, an Arhenius analysis using in situ FTIR was employed to determine the activation energy for the thermal polymerization of styrene and 2-vinylnaphthalene. The 2-vinylnaphthalene activation energy for thermal polymerization was determined for the first time to be almost 30 kJ/mol less than styrene. A novel modified Mayo mechanism was proposed for the 2-vinylnaphthalene thermal initiation mechanism. Moreover, this thermal initiation was employed to initiate nitroxide mediated polymerizations of styrene. This first use of a 2-vinylnaphthalene initiating system resulted in polystyrene with a large macrocyclic initiating fragment. The presence of the initiating moiety was studied using both UV-Vis spectroscopy and 1H NMR spectroscopy. The extension of stable free radical polymerization to the acrylate monomer family was examined using a novel nitroxide mediator, N-tert-butyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)] nitroxide (DEPN). The synthesis of DEPN was monitored using in situ FTIR spectroscopy to determine optimum reaction conditions. The purified nitroxide was subsequently employed in the synthesis of various block and random acrylate copolymers. The production of a unique amphiphilic block copolymer consisting of acrylic sequences was achieved. Poly(t-butyl acrylate-b-2ethylhexyl acrylate-b-t-butyl acrylate) was synthesized using the SFRP process. The t-butyl functionalities were subsequently removed in a post-polymerization acid catalyzed hydrolysis. The effect of steric bulk and electronic factors on the resulting SFRP process was also investigated and revealed similar polymerization kinetics for various alkyl acrylates. However, addition of a hydroxyl containing monomer, 2-hydroxyethyl acrylate, resulted in an increase in the polymerization rate up to 2 times. The rate enhancement was attributed to hydrogen bonding effects and this was confirmed using the unprecedented addition of dodecanol, which also demonstrated a significant rate enhancement. Block copolymers were also achieved using a novel difunctional nitroxide synthesized from 4-hydroxy TEMPO and 1,6-hexamethylene diisocyanate. The identity of the nitroxide was confirmed using mass spectrometry and 1H NMR. The dinitroxide was used in the polymerization of styrene and subsequently used to produce symmetric ABA triblock copolymers with t-butyl styrene using a unique two-step polymerization route. In addition, the dinitroxide demonstrated an increased tendency for decomposition due to the complex mediation equilibrium. The decomposition was studied using GPC to evaluate the decomposition effects on the polymerization. Results of the research efforts presented herein are written as individual research reports with contributing authors and pertinent literature reviews presented at the beginning of each chapter.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
39

Ruszkiewicz, Dorota M. "The secret life of small alcohols : the discovery and exploitation of fragmentation, adduct formation and auto-modification phenomena in differential ion mobility spectrometry leading to next-generation toxicity screening." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/23270.

Full text
Abstract:
The research presented in this thesis started with the idea to study alcohols as modifiers and dopants in differential ion mobility spectrometry (d-IMS) to produce complicated chemical signatures to explore a concept of chemical labels for product security application. D-IMS is a gas phase atmospheric pressure separation and detection technique which distinguishes compounds based on differences in their ions mobility as their travel under a low and high electric field. The hypothesis was that alcohols will form typical d-IMS products such as protonated monomers and proton bound cluster ions. However, the very first experiments revealed unexpected phenomena which included changes in the mobility of ions over a narrow range of concentrations that could not be explained by existing theory. Another observation was the apparent regeneration of reactant ions. It became evident that the observed phenomena had not been described in the open literature and that addressing the research-questions that were being raised would be essential for the determination of alcohols by d-IMS and its use in medical applications for toxicity screening and monitoring of alcohols. The above discovery shifted the research objective towards a fundamental and comprehensive study on the behaviour of alcohols in d-IMS. This thesis describes designed experiments and constructed systems allowing the efficient study of effect of concentration, electric field and temperature on the d-IMS responses of alcohols. The results of those studies demonstate: extensive fragmentation of alcohols, including previously undescribed fragmentation patterns with regeneration of the hydrated proton; new phenomena of adduct ion formation within the d-IMS drift tube, observed in the case of methanol within a narrow range of concentration; and self-modification of the alpha function of alcohols. This knowledge was exploited by developing an non-invasive analytical method for recovery, separation and detection of toxins from human saliva (including alcohols, diols and GHB) using TD-GC-d-IMS (thermal desorption - gas chromatography d-IMS) within a full range of toxicological concentration levels.
APA, Harvard, Vancouver, ISO, and other styles
40

Junior, Virgilio Tattini. "Efeito da liofilização sobre a estrutura e mudanças de fase da albumina bovina modificada por reação com metoxi-polietilenoglicol." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/9/9134/tde-19092006-194927/.

Full text
Abstract:
A conjugação por polietilenoglicol (PEG) mascara a superfície das proteínas e aumenta o tamanho molecular do polipeptídio, reduzindo assim sua ultrafiltragem renal, impedindo a aproximação de células processadoras de antígenos ou anticorpos e reduzindo a degradação por enzimas proteolíticas. O PEG transfere para as moléculas suas propriedades físico-químicas e, conseqüentemente, modifica também a biodistribuição e a solubilidade de drogas peptídicas e não peptídicas. As soluções de proteínas são facilmente desnaturadas (muitas vezes irreversivelmente) pelo aparecimento de numerosos eventos que podem afetar a estabilidade das soluções, tais como: aquecimento, agitação, congelamento, mudanças no pH e exposição a interfaces ou agentes desnaturantes, resultando geralmente na perda da eficácia clínica e aumento do risco de efeitos colaterais adversos. A solução prática para o dilema da estabilidade da proteína é a remoção da água. A liofilização é o método mais comumente utilizado para a preparação de proteínas desidratadas, as quais, teoricamente, devem apresentar uma estabilidade adequada por um longo período de armazenagem em temperaturas ambientes. A proteína utilizada neste estudo foi a albumina sérica bovina (BSA), amplamente estudada no campo da bioquímica. Através da espectroscopia Raman associada com análise térmica por DSC, análise colorimétrica, e a determinação do teor de umidade, verificou-se que o congelamento rápido (30 °C/min.) favoreceu a manutenção da estrutura conformacional da proteína após a liofilização, porém aumentou o tempo de secagem primária em sete horas em relação ao congelamento lento (2,5 °C/min.). Após a modificação da albumina bovina por reação com o metoxi-PEG verificou-se que a BSA-PEG (1:0,25) apresentou um menor grau de alteração estrutural e conseqüentemente uma menor variação das características físico-químicas, além de otimizar as condições de liofilização e armazenamento da proteína quando comparada com a BSA-PEG (1:0,5) .
PEG conjugation masks the proteins surface and increases the molecular size of the polypeptide, thus reducing its renal ultrafiltration, preventing the approach of antibodies or antigen processing cells and reducing the degradation by proteolytic enzymes. The PEG conveys to molecules its physico-chemical properties and therefore modifies also biodistribution and solubility of peptide and non-peptide drugs. This property opens new techniques in biocatalysis and in pharmaceutical technology where many insoluble drugs are solubilized by PEG conjugation and thus more easily administered. Aqueous protein solutions are readily denatured (often irreversibly) by numerous stresses arising in solution, e.g., heating, agitation, freezing, pH changes, and exposure to interfaces or denaturants, usually resulting in lost of clinical efficacy and increase the risk of adverse side effects. Even if its physical stability is maintained, a protein can be degraded by chemical reactions (e.g., hydrolysis and deamidation), many of which are mediated by water. The practical solution to the protein stability dilemma is to remove the water. Lyophilization is most commonly used to prepare dehydrated proteins, which, theorecally, should have the desired long-term stability at ambient temperatures. The protein used in this study was the bovine serum albumin (BSA), largely studied in the biochemical field. Through Raman spectroscopy associated with thermal analysis using DSC, Colorimetric analysis and the determination of water content It was observed that the fast freezing (30 °C/min.) favored the maintenance of the conformational structure in the protein after lyophilization, however increased the primary drying in seven hours with regard to the slow freezing (2,5 °C/min.). After the modification of bovine serum albumin with methoxy-PEG it was observed that the BSA-PEG (1:0,25) showed a lower degree of structural alterations and consequently a lower variation on the physical-chemical characteristics, moreover optimized the conditions during the lyophilization process and storage of the protein when it was compared to BSA-PEG (1:0,5).
APA, Harvard, Vancouver, ISO, and other styles
41

Radwan, Badreddin. "Treatment of a Liquid Al-Si Alloy : Quality Control and Comparison of Two Melt Degassing Processes." Thesis, Tekniska Högskolan, Jönköping University, JTH, Material och tillverkning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-48236.

Full text
Abstract:
Products manufactured by aluminium casting have become very popular and already replaced many parts that were once produced by iron and steel casting. This trends upwards especially in the automotive industry as it has become extremely important to reduce vehicle weight due to environmental requirements and economical aspects. This popularity of aluminium alloys could be ascribed to their light weights and many other advantages including excellent castability, good corrosion resistance, good thermal and electrical conductivity, good machinability, low melting temperatures and minimal gas solubility with the exception of hydrogen. The most important alloy group among casting alloys is Aluminium Silicon (Al - Si).   Al-Si alloys must undergo a specific melt treatment procedure prior to casting. This treatment consists of several steps including degassing of hydrogen, grain refinement and eutectic modification. The aim of this study is to make an assessment of the metal treatment process of an (Al-Si) casting alloy at Unnaryd Modell AB for the purpose of improving the melt conditions and thus the quality of the final product. A rotary degasser provided by Foseco is also tested instead of the traditional tablet degassing method to see if this technique would result in any significant improvement of the melt quality. The results show that Unnaryd modell AB follows a proper treatment routine. It shows moreover that the rotary degassing is superior to the tablet degassing in many aspects including the level of degassing achieved, time efficiency, environmental consideration and personnel security.
APA, Harvard, Vancouver, ISO, and other styles
42

Apicella, Fernandez Sergio. "Surface energy modification of metal oxide to enhance electron injection in light-emitting devices : charge balance in hybrid OLEDs and OLETs." Thesis, Högskolan i Gävle, Avdelningen för elektronik, matematik och naturvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-25097.

Full text
Abstract:
Organic semiconductors (OSCs) present an electron mobility lower by several orders of magnitude than the hole mobility, giving rise to an electron-hole charge imbalance in organic devices such as organic light-emitting diodes (OLEDs) and organic light-emitting transistors (OLETs). In this thesis project, I tried to achieve an efficient electron transport and injection properties in opto-electronic devices, using inorganic n-type metal oxides (MOs) instead of organic n-type materials and a polyethyleneimine ethoxylated (PEIE) thin layer as electron transport (ETLs) and injection layers (EILs), respectively. In the first part of this thesis, inverted OLEDs were fabricated in order to study the effect of the PEIE layer in-between ZnO and two different emissive layers (EMLs): poly(9,9-dioctylfluorene-alt-benzothiadiazole) polymer (F8BT) and tris(8-hydroxyquinolinato) aluminum small molecule (Alq3), based on a solution and thermal evaporation processes, respectively. Different concentrations (0.80 %, 0.40 %) of PEIE layers were used to further study electron injection capability in OLEDs. After a series of optimizations in the fabrication process, the opto-electrical characterization showed high-performance of devices. The inverted OLEDs reported a maximum luminance over 104 cd m-2 and a maximum external quantum efficiency (EQE) around 1.11 %. The results were attributed to the additional PEIE layer which provided a good electron injection from MOs into EMLs. In the last part of the thesis, OLETs were fabricated and discussed by directly transferring the energy modification layer from OLEDs to OLETs. As metal oxide layer, ZnO:N was employed for OLETs since ZnO:N-based thin film transistors (TFTs) showed better performance than ZnO-based TFTs. Finally, due to their short life-time, OLETs were characterized electrically but not optically.
APA, Harvard, Vancouver, ISO, and other styles
43

David, Sarah-Anne. "Impact de l'acclimatation embryonnaire à la chaleur sur des modifications post-traductionnelles des histones chez le poulet." Thesis, Tours, 2017. http://www.theses.fr/2017TOUR4036.

Full text
Abstract:
L’altération de l’environnement périnatal peut impacter à long terme l’expression des gènes notamment par le biais de modifications épigénétiques. Une stratégie pour accroitre la thermotolérance des poulets de chair, sensibles à la chaleur en fin d’élevage (J35) est la thermo-manipulation embryonnaire (TM). Lors d’un coup de chaleur à J35, les modifications d’expression de gènes observées chez les poulets TM pourraient être liées à une altération de l’épigénome induite lors de l’embryogenèse et persistante au cours du développement. Cette thèse s’intéresse à deux modifications post-traductionnelles des histones (MPTH) décrites pour être modulées par des variations thermiques : H3K27Me3 et H3K4Me3. Afin d’étudier ces MPTH sans a priori à J35, nous avons mis au point les techniques d’immunoprécipitation de la chromatine suivie de séquençage à haut débit dans deux tissus : l’hypothalamus et le muscle. Nos travaux montrent que le traitement semble impacter principalement l’épigénome de l’hypothalamus, en particulier au niveau de la marque H3K4me3, en modulant des voies liées à la morphogenèse et la réponse hormonale
Perinatal environment changes may alter gene expression throughout life via epigenetic modifications. A strategy to improve thermal tolerance of heat-sensitive chickens is a thermalmanipulation during embryogenesis (TM). During a heat challenge at the end of the rearing period (D35), modifications of gene expression have been reported in thermally-manipulated chickens. These alterations could be linked to epigenetic modifications induced during the TM that persist throughout life. This work focused on two histone post-translational modifications (HPTM): H3K27me3 and H3K4me3. We adjusted two methods of chromatin immunoprecipitation to conduct a whole genome study of these HPTM at D35, in the hypothalamus and skeletal muscle. We demonstrated that the TM has a major impact in the hypothalamus, especially on H3K4me3. These alterations seem to modulate the hypothalamic morphogenesis and its response to hormones, therefore possibly contributing to better adaptive capacities of TM chickens
APA, Harvard, Vancouver, ISO, and other styles
44

Moreira, Ana Sofia Pereira. "Study of modifications induced by thermal and oxidative treatment in oligo and polysaccharides of coffee by mass spectrometry." Doctoral thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/17074.

Full text
Abstract:
Doutoramento em Bioquímica
Os polissacarídeos são os componentes maioritários dos grãos de café verde e torrado e da bebida de café. Os mais abundantes são as galactomananas, seguindo-se as arabinogalactanas. Durante o processo de torra, as galactomananas e arabinogalactanas sofrem modificações estruturais, as quais estão longe de estar completamente elucidadas devido à sua diversidade e à complexidade estrutural dos compostos formados. Durante o processo de torra, as galactomananas e arabinogalactanas reagem com proteínas, ácidos clorogénicos e sacarose, originando compostos castanhos de alto peso molecular contendo nitrogénio, designados de melanoidinas. As melanoidinas do café apresentam diversas atividades biológicas e efeitos benéficos para a saúde. No entanto, a sua estrutura exata e os mecanismos envolvidos na sua formação permanecem desconhecidos, bem como a relação estrutura-atividade biológica. A utilização de sistemas modelo e a análise por espectrometria de massa permitem obter uma visão global e, simultaneamente, detalhada das modificações estruturais nos polissacarídeos do café promovidas pela torra, contribuindo para a elucidação das estruturas e mecanismos de formação das melanoidinas. Com base nesta tese, oligossacarídeos estruturalmente relacionados com a cadeia principal das galactomananas, (β1→4)-Dmanotriose (Man3), e as cadeias laterais das arabinogalactanas, (α1→5)-Larabinotriose (Ara3), isoladamente ou em misturas com ácido 5-Ocafeoilquínico (5-CQA), o ácido clorogénico mais abundante nos grãos de café verde, e péptidos compostos por tirosina e leucina, usados como modelos das proteínas, foram sujeitos a tratamento térmico a seco, mimetizando o processo de torra. A oxidação induzida por radicais hidroxilo (HO•) foi também estudada, uma vez que estes radicais parecem estar envolvidos na modificação dos polissacarídeos durante a torra. A identificação das modificações estruturais induzidas por tratamento térmico e oxidativo dos compostos modelo foi feita por estratégias analíticas baseadas principalmente em espectrometria de massa, mas também em cromatografia líquida. A cromatografia de gás foi usada na análise de açúcares neutros e ligações glicosídicas. Para validar as conclusões obtidas com os compostos modelo, foram também analisadas amostras de polissacarídeos do café obtidas a partir de resíduo de café e café instantâneo. Os resultados obtidos a partir dos oligossacarídeos modelo quando submetidos a tratamento térmico (seco), assim como à oxidação induzida por HO• (em solução), indicam a ocorrência de despolimerização, o que está de acordo com estudos anteriores que reportam a despolimerização das galactomananas e arabinogalactanas do café durante a torra. Foram ainda identificados outros compostos resultantes da quebra do anel de açúcares formados durante o tratamento térmico e oxidativo da Ara3. Por outro lado, o tratamento térmico a seco dos oligossacarídeos modelo (individualmente ou quando misturados) promoveu a formação de oligossacarídeos com um maior grau de polimerização, e também polissacarídeos com novos tipos de ligações glicosídicas, evidenciando a ocorrência de polimerização através reações de transglicosilação não enzimática induzidas por tratamento térmico a seco. As reações de transglicosilação induzidas por tratamento térmico a seco podem ocorrer entre resíduos de açúcares provenientes da mesma origem, mas também de origens diferentes com formação de estruturas híbridas, contendo arabinose e manose como observado nos casos dos compostos modelo usados. Os resultados obtidos a partir de amostras do resíduo de café e de café instantâneo sugerem a presença de polissacarídeos híbridos nestas amostras de café processado, corroborando a ocorrência de transglicosilação durante o processo de torra. Além disso, o estudo de misturas contendo diferentes proporções de cada oligossacarídeo modelo, mimetizando regiões do grão de café com composição distinta em polissacarídeos, sujeitos a diferentes períodos de tratamento térmico, permitiu inferir que diferentes estruturas híbridas e não híbridas podem ser formadas a partir das arabinogalactanas e galactomananas, dependendo da sua distribuição nas paredes celulares do grão e das condições de torra. Estes resultados podem explicar a heterogeneidade de estruturas de melanoidinas formadas durante a torra do café. Os resultados obtidos a partir de misturas modelo contendo um oligossacarídeo (Ara3 ou Man3) e 5-CQA sujeitas a tratamento térmico a seco, assim como de amostras provenientes do resíduo de café, mostraram a formação de compostos híbridos compostos por moléculas de CQA ligadas covalentemente a um número variável de resíduos de açúcar. Além disso, os resultados obtidos a partir da mistura contendo Man3 e 5-CQA mostraram que o CQA atua como catalisador das reações de transglicosilação. Por outro lado, nas misturas modelo contendo um péptido, mesmo contendo também 5-CQA e sujeitas ao mesmo tratamento, observou-se uma diminuição na extensão das reações transglicosilação. Este resultado pode explicar a baixa extensão das reações de transglicosilação não enzimáticas durante a torra nas regiões do grão de café mais ricas em proteínas, apesar dos polissacarídeos serem os componentes maioritários dos grãos de café. A diminuição das reações de transglicosilação na presença de péptidos/proteínas pode dever-se ao facto de os resíduos de açúcares redutores reagirem preferencialmente com os grupos amina de péptidos/proteínas por reação de Maillard, diminuindo o número de resíduos de açúcares redutores disponíveis para as reações de transglicosilação. Além dos compostos já descritos, uma diversidade de outros compostos foram formados a partir dos sistemas modelo, nomeadamente derivados de desidratação formados durante o tratamento térmico a seco. Em conclusão, a tipificação das modificações estruturais promovidas pela torra nos polissacarídeos do café abre o caminho para a compreensão dos mecanismos de formação das melanoidinas e da relação estrutura-atividade destes compostos.
Polysaccharides are the major components of green and roasted coffee beans, and coffee brew. The most abundant ones are galactomannans, followed by arabinogalactans. During the roasting process, galactomannans and arabinogalactans undergo structural modifications that are far to be completely elucidated due to their diversity and complexity of the compounds formed. During the roasting process, galactomannans and arabinogalactans react with proteins, chlorogenic acids, and sucrose, originating high molecular weight brown compounds containing nitrogen, known as melanoidins. Several biological activities and beneficial health effects have been attributed to coffee melanoidins. However, their exact structures and the mechanisms involved in their formation remain unknown, as well as the structure-biological activity relationship. The use of model systems and mass spectrometry analysis allow to obtain an overall view and, simultaneously, detailed, of the structural modifications in coffee polysaccharides promoted by roasting, contributing to the elucidation of the structures and formation mechanisms of melanoidins. Based on this thesis, oligosaccharides structurally related to the backbone of galactomannans, (β1→4)-D-mannotriose, and the side chains of arabinogalactans, (α1→5)-Larabinotriose, alone or in mixtures with 5-O-caffeoylquinic acid, the most abundant chlorogenic acid in green coffee beans, and dipeptides composed by tyrosine and leucine, used as models of proteins, were submitted to dry thermal treatments, mimicking the coffee roasting process. The oxidation induced by hydroxyl radicals (HO•) was also studied, since these radicals seem to be involved in the modification of the polysaccharides during roasting. The identification of the structural modifications induced by thermal and oxidative treatment of the model compounds was performed mostly by mass spectrometry-based analytical strategies, but also using liquid chromatography. Gas chromatography was used in the analysis of neutral sugars and glycosidic linkages. To validate the conclusions achieved with the model compounds, coffee polysaccharide samples obtained from spent coffee grounds and instant coffee were also analysed. The results obtained from the model oligosaccharides when submitted to thermal treatment (dry) or oxidation induced by HO• (in solution) indicate the occurrence of depolymerization, which is in line with previous studies reporting the depolymerization of coffee galactomannans and arabinogalactans during roasting. Compounds resulting from sugar ring cleavage were also formed during thermal treatment and oxidative treatment of Ara3. On the other hand, the dry thermal treatment of the model oligosaccharides (alone or when mixed) promoted the formation of oligosaccharides with a higher degree of polymerization, and also polysaccharides with new type of glycosidic linkages, evidencing the occurrence of polymerization via non-enzymatic transglycosylation reactions induced by dry thermal treatment. The transglycosylation reactions induced by dry thermal treatment can occur between sugar residues from the same origin, but also of different origins, with formation of hybrid structures, containing arabinose and mannose in the case of the model compounds used. The results obtained from spent coffee grounds and instant coffee samples suggest the presence of hybrid polysaccharides in these processed coffee samples, corroborating the occurrence of transglycosylation during the roasting process. Furthermore, the study of mixtures containing different proportions of each model oligosaccharide, mimicking coffee bean regions with distinct polysaccharide composition, subjected to different periods of thermal treatment, allowed to infer that different hybrid and non-hybrid structures may be formed from arabinogalactans and galactomannans, depending on their distribution in the bean cell walls and on roasting conditions. These results may explain the heterogeneity of melanoidins structures formed during coffee roasting. The results obtained from model mixtures containing an oligosaccharide (Ara3 or Man3) and 5-CQA and subjected to dry thermal treatment, as well as samples derived from spent coffee grounds, showed the formation of hybrid compounds composed by CQA molecules covalently linked to a variable number of sugar residues. Moreover, the results obtained from the mixture containing Man3 and 5-CQA showed that CQA acts as catalyst of transglycosylation reactions. On the other hand, in the model mixtures containing a peptide, even if containing 5-CQA and subjected to the same treatment, it was observed a decrease in the extent of transglycosylation reactions. This outcome can explain the low extent of non-enzymatic transglycosylation reactions during roasting in coffee bean regions enriched in proteins, although polysaccharides are the major components of the coffee beans. The decrease of transglycosylation reactions in the presence of peptides/proteins can be related with the preferential reactivity of reducing residues with the amino groups of peptides/proteins by Maillard reaction, decreasing the number of reducing residues available to be directly involved in the transglycosylation reactions. In addition to the compounds already described, a diversity of other compounds were formed from model systems, namely dehydrated derivatives formed during dry thermal treatment. In conclusion, the identification of the structural modifications in coffee polysaccharides promoted by roasting pave the way to the understanding of the mechanisms of formation of melanoidins and structure-activity relationship of these compounds.
APA, Harvard, Vancouver, ISO, and other styles
45

Somer, Aloisi. "EFEITOS DE MODIFICAÇÕES ESTRUTURAIS SOBRE A DIFUSIVIDADE TÉRMICA EFETIVA EM SISTEMAS COM DUPLA CAMADA MEDIDA PELA TÉCNICA DE CÉLULA FOTOACÚSTICA ABERTA." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2016. http://tede2.uepg.br/jspui/handle/prefix/853.

Full text
Abstract:
Made available in DSpace on 2017-07-21T19:25:50Z (GMT). No. of bitstreams: 1 Aloisi Somer2.pdf: 7687974 bytes, checksum: 2416565c5d4c2106a977eae2ad58cbfe (MD5) Previous issue date: 2016-02-19
Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná
The generation of mechanical waves can be produced in the air in contact with the surface of a sample since a modulated light focus on that sample. This feature is well known, and there are several techniques and theoretical models to elucidate this process. One of the techniques used to measure such waves is the technique of cell Open Photoacoustic (OPC), and why it is can estimate the thermal diffusivity of a sample. The hypothesis in this thesis is that small structural changes in thin superficial layers can influence on effective thermal diffusivity measured by the OPC technique. Initially, it was carried out a review of mathematical models presented in the literature for samples with double layer, and the approach of a second thin layer. It has been found that the influence of a thin layer on a thick sample is negligible, and, therefore, the effective thermal diffusivity tends to the value of the thermal diffusivity of the bulk sample in all models. To check the influence of structural modification in a second thin layer were produced two sets of samples with two kinds of surface structural changes in samples with metallic volume. The first set was with changes in the proportions of rutile and anatase, the structural phases TiO2 film which was grown by thermal oxidation treatment in three types of titanium metal: two degrees of purity titanium, Ti and TiG2, and a TiG5 alloy (Ti-6Al-4V). The correlation of effective thermal diffusivity and the structural modification of layers grown by different thermal treatment (at 600 and 700ºC) in various treatment times was established. The effective thermal diffusivity determined by OPC is directly proportional to anatase quantity in the thermally grown layer of samples. In the second set were created different concentrations of structural martensite phase by mechanical polishing of austenitic AISI304 steel samples, having an austenitic volume. The effective thermal diffusivity values are influenced as the ratio martensite/austenite as the thickness of the sample. It was expected a decrease in effective thermal diffusivity values with decreasing the martensite quantity on the surface of samples as with the increase in the thickness of samples. This behavior was partially observed, however for small proportions of martensite and higher thickness values the effective thermal diffusivity increases. This feature can be associated with non-linear effects. Also, a method to check the thermal diffusivity values obtained by the OPC technique was proposed. This procedure comes from the dependency of the weight parameter thermoelastic bending C2, which depends on the thickness of the sample. If the dependence of C2 is as close to ls-3 confirms the values of thermal diffusivity. The method was tested for aluminum samples successfully. In conclusion, the variation in concentration of structural changes on sample´s surface and thin layers can influence the effective thermal diffusivity obtained by OPC technique, contrary to the theoretical models predict.
A geração de ondas mecânicas pode ser produzida no ar em contato com a superfície de uma amostra desde que sobre a mesma incida uma luz modulada. Isso já é bem conhecido e existem várias técnicas e modelos para elucidar tal processo. Uma das técnicas utilizadas na mensuração de tais ondas é a técnica de Célula Fotoacústica Aberta (OPC – Open Photoacoustic Cell), pela qual é possível estimar a difusividade térmica de uma amostra. A hipótese levantada nesta tese é que pequenas modificações estruturais em finas camadas superficiais possam influenciar a difusividade térmica efetiva mensurada pela técnica OPC. Inicialmente foi realizada uma revisão bibliográfica dos modelos matemáticos para amostras com dupla camada, e para a aproximação de uma segunda camada muito fina. Foi verificado que a influência de uma fina camada sobre uma amostra espessa é desprezível, e consequentemente, a difusividade térmica efetiva tende ao valor da difusividade térmica do volume da amostra, em todos os modelos. Para verificar a influência de uma modificação estrutural em uma segunda camada muito fina foram produzidos dois conjuntos de amostras, com dois tipos de modificações estruturais superficiais em amostras metálicas. O primeiro conjunto com alterações das proporções entre rutilo e anatásio, fases estruturais do filme de TiO2, que foi crescido por meio de tratamento de oxidação térmico um volume de titânio metálico para três tipos deste metal: dois graus de pureza de titânio, Ti e TiG2, e uma liga TiG5 (Ti-6Al-4V). A correlação de difusividade térmica e a microestrutura das camadas crescidas por tratamento de oxidação térmico sobre Ti, TiG2 e TiG5 a 600 ºC e 700 ºC, em diferentes tempos foi estabelecida. Observou-se que a difusividade térmica efetiva medida pela técnica OPC é diretamente proporcional a quantidade de anatásio na camada criada por tratamento térmico. No segundo conjunto foram criadas diferentes concentrações da fase estrutural martensita por polimento mecânico em amostras de aço austenítico AISI304, que possui um volume austenítico. Foi observado que a difusividade térmica efetiva teve influência tanto da razão martenstia/austenita quanto da espessura do volume da amostra. Esperava-se uma diminuição da difusividade térmica efetiva com a redução da quantidade de martensita na superfície e com o aumento da espessura do volume da amostra. Esse comportamento foi parcialmente observado, mas para pequenas proporções de martensita e maiores espessuras a difusividade térmica efetiva tornou a aumentar. Comportamento que pode ser associado a possíveis efeitos não lineares. Ainda, foi proposto um método de confirmação para os valores da difusividade térmica medida pela técnica OPC. Esse método parte da dependência do parâmetro peso da flexão termoelástica C2, o qual depende da espessura da amostra. Quando a dependência medida para o parâmetro C2 estiver próxima ls-3 confirma-se os valores da difusividade térmica. O método foi testado para amostras de alumino com êxito. Em conclusão é constatado que modificações na concentração da fase estrutural na superfície e em finas camadas têm influência na difusividade térmica efetiva medida pela técnica OPC, ao contrário do constatado pelos modelos teóricos presentes na literatura.
APA, Harvard, Vancouver, ISO, and other styles
46

Vacek, Petr. "Modifikace vrstev deponovaných technologiemi HVOF a cold spray pomocí technologie elektronového paprsku." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-254211.

Full text
Abstract:
The aim of this thesis was to modify microstructure and coating-substrate interface of CoNiCrAlY coatings deposited by HVOF and cold spray on Inconel 718 substrates. Electron beam remelting and annealing in a protective atmosphere were used to modify the coatings. Microstructure, chemical and phase composition were analyzed. The effect of beam current, transversal velocity and beam defocus on remelted depth was evaluated. As-sprayed microstructure and chemical composition of coatings were analyzed and compared with remelted samples. The effect of annealing of the as-sprayed and remelted samples was evaluated. Remelted layers exhibited dendritic structure. Chemical composition changed only after remelting of interface and part of a substrate. When only the coating was remelted, chemical composition remained the same. Phases coarsened after the annealing. Chemical composition changed after annealing due to the diffusion.
APA, Harvard, Vancouver, ISO, and other styles
47

Gablech, Imrich. "Polovodičové senzory plynů na bázi oxidu ciničitého." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2014. http://www.nusl.cz/ntk/nusl-221035.

Full text
Abstract:
This project is aimed at semiconductive gas sensors based on tin dioxide. In the first part, gas sensors are divided depending on their principal of functionality. Next part is about functionality of tin dioxide gas sensors and the possibilities of active layer modification. Experimental describes gas sensor from its drawing until construction, testing and characterization. Several microelectronic technologies such as thin-film, thick-film, LTCC, spray-coating or wire-bonding were used for constructing the sensor. In the last part properties of gas sensors and differences in functionality between modified and unmodified gas sensor are summarized.
APA, Harvard, Vancouver, ISO, and other styles
48

Norin, Lars. "Secondary Electromagnetic Radiation Generated by HF Pumping of the Ionosphere." Doctoral thesis, Uppsala universitet, Astronomi och rymdfysik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9393.

Full text
Abstract:
Electromagnetic waves can be used to transmit information over long distances and are therefore often employed for communication purposes. The electromagnetic waves are reflected off material objects on their paths and interact with the medium through which they propagate. For instance, the plasma in the ionosphere can refract and even reflect radio waves propagating through it. By increasing the power of radio waves injected into the ionosphere, the waves start to modify the plasma, resulting in the generation of a wide range of nonlinear processes, including turbulence, in particular near the reflection region. By systematically varying the injected radio waves in terms of frequency, power, polarisation, duty cycle, inclination, etc. the ionosphere can be used as an outdoor laboratory for investigating fundamental properties of the near-Earth space environment as well as of plasma turbulence. In such ionospheric modification experiments, it has been discovered that the irradiation of the ionosphere by powerful radio waves leads to the formation of plasma density structures and to the emission of secondary electromagnetic radiation, a phenomenon known as stimulated electromagnetic emission. These processes are highly repeatable and have enabled systematic investigations of the nonlinear properties of the ionospheric plasma. In this thesis we investigate features of the plasma density structures and the secondary electromagnetic radiation. In a theoretical study we analyse a certain aspect of the formation of the plasma structures. The transient dynamics of the secondary radiation is investigated experimentally in a series of papers, focussing on the initial stage as well as on the decay. In one of the papers we use the transient dynamics of the secondary radiation to reveal the intimate relation between certain features of the radiation and structures of certain scales. Further, we present measurements of unprecedentedly strong secondary radiation, attributed to stimulated Brillouin scattering, and report measurements of the secondary radiation using a novel technique imposed on the transmitted radio waves.
APA, Harvard, Vancouver, ISO, and other styles
49

Silva, Cássia Cavalcanti [UNESP]. "Efeito de inoculantes para refino de grão e modificador de eutético na curva de resfriamento da liga A356 e da liga A356 reciclada." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/141999.

Full text
Abstract:
Submitted by Cassia Cavalcanti da Silva null (cassiacavalcanti@terra.com.br) on 2016-08-01T22:46:23Z No. of bitstreams: 1 Silva_Cássia_2016.pdf: 9369604 bytes, checksum: d9e7dedc0ffe91324f392628a9e5c12f (MD5)
Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-08-03T16:09:39Z (GMT) No. of bitstreams: 1 silvia_cc_dr_guara.pdf: 9369604 bytes, checksum: d9e7dedc0ffe91324f392628a9e5c12f (MD5)
Made available in DSpace on 2016-08-03T16:09:39Z (GMT). No. of bitstreams: 1 silvia_cc_dr_guara.pdf: 9369604 bytes, checksum: d9e7dedc0ffe91324f392628a9e5c12f (MD5) Previous issue date: 2016-07-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A liga AA 356 é uma liga Al-Si amplamente utilizada tanto na indústria automobilística como na aeronáutica. Para melhorar suas propriedades mecânicas, são usados inoculantes para o refino de grão e para modificação eutética. Os componentes solidificados em moldes metálicos, que são mais eficientes na extração de calor, em geral, têm propriedades mecânicas superiores àqueles solidificados em moldes de areia que apresentam uma menor taxa de extração de calor. A curva de resfriamento que é uma curva da temperatura em função do tempo obtida da extremidade de um termopar localizado no centro do molde e conectado a um sistema de aquisição de dados é uma ferramenta que permite avaliar tanto o refino de grão quanto a modificação eutética. Essa ferramenta permite observar também a formação de fases intermetálicas, e é influenciada por fatores como a taxa de resfriamento. A primeira derivada da curva de resfriamento que representa a taxa de resfriamento é parte da ferramenta, pois melhora a precisão dos dados obtidos com a curva de resfriamento. Para o desenvolvimento desse trabalho foram preparados lingotes variando-se o material do molde (areia e aço), o teor de modificador de eutético e a adição de refinador de grão, ambos na forma de ligas-mãe (ante-liga) Al-10Sr e Al-5Ti-1B, respectivamente. Os valores para traçar as curvas de resfriamento foram obtidos monitorando a temperatura do metal desde o vazamento até sua completa solidificação e posterior resfriamento. Amostras do material foram preparadas para metalografia e obtidas imagens de macroestrutura e microestrutura. Da microestrutura foram obtidas as imagens com o ataque químico convencional e o ataque químico profundo; foram realizadas medidas de fração de porosidade por área, por técnica de microscopia, além de medidas de dureza Vickers e Brinell. Os resultados confirmam que a técnica da análise térmica da curva de resfriamento é uma excelente ferramenta, pois além de fornecer as temperaturas solidus e liquidus, as temperaturas de transformações de fases e informações sobre a eficácia do refino de grão e modificação eutética, pode ser utilizada na avaliação da presença de impurezas e na identificação de fases presentes nas ligas, tanto da liga primária quanto da liga reciclada.
The alloy AA 356 is an Al-Si alloy widely used in the automotive and aeronautics industry. To improve the mechanical properties of this alloy inoculants are used to grain refine and eutectic modification. The solidified components in metal mold, with a higher heat extraction rate, generally have mechanical properties superior to those solidified in sand mold with a lower heat extraction rate. The cooling curve is a curve of temperature versus time obtained in the end of a thermocouple located in the center of the mold and connected to a data acquisition system. It is a tool to evaluate both the grain refinement as the eutectic modification. This tool also can also be used to observe the formation of intermetallic phases, and is influenced by factors such as the cooling rate. The first derivative of the curve representing the cooling rate is part of the tool because it improves the accuracy of the data obtained from the curve. For the development of this work ingots were prepared varying the mold material (sand and steel), the content of eutectic modifier and the grain refiner addition , both in the form of master alloys Al-10Sr and Al-5Ti-1B, respectively.The data for plotting the cooling curves were obtained experimentally during solidification; Samples of the material were prepared for metallography and macrostructure and microstructure images were obtained. Through microstructure images obtained with conventional etching and deep etching. Porosity fraction area was measured by microscopy technique and hardness measurements were performed by Vickers and Brinell metdhod. The results confirm that the thermal analysis of the cooling curve is an excellent tool because provides the solidus and liquidus temperatures and the phase transformations on the effectiveness of the grain refining and eutectic modification and it can be used to assess the presence of impurities in the phase identification, for both the primary alloy and the recycled alloy.
APA, Harvard, Vancouver, ISO, and other styles
50

Petrasová, Zuzana. "Koncepce integrovaných zařízení pro jednotky „waste-to-energy“." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-416432.

Full text
Abstract:
The diploma thesis deals with design modifications of the investigated industrial „waste-to-energy“ unit and possible deployment of modern integrated equipment instead of existing devices that would reduce economic demands and improve environmental impacts of thermal treatment of gaseous waste in order to increase thermal efficiency. Within the considered modifications, possible modifications of the process according to current technological trends are presented. For all solved devices, investment costs were determined according to the price offers of suppliers in accordance with professional literature, which deals with the economic aspect during the phase of synthesis and selection of the most suitable concept from the investor's point of view. The Venture Profit is used as a measure of the profitability of a given operation to evaluate individual modifications. The output of the thesis is to determine the optimum modification for the process based on the mentioned criteria.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography