Dissertations / Theses on the topic 'Thermal fluid dynamics computational'

To see the other types of publications on this topic, follow the link: Thermal fluid dynamics computational.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Thermal fluid dynamics computational.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Negrão, Cezar O. R. "Conflation of computational fluid dynamics and building thermal simulation." Thesis, University of Strathclyde, 1995. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21238.

Full text
Abstract:
The present work is a contribution towards the integration of building simulation tools in order to better represent the complexity of the real world. It attempts to overcome certain shortfalls of contemporary simulation applications with respect to indoor air flows. As a result, the evaluation of building energy consumption and indoor air quality is expected to be improved. Advanced fluid flow models (as employed within Building Thermal Simulation - BTS - and Computational Fluid Dynamics - CFD) with different degrees of detail were investigated and their modelling deficiencies identified. The CFD technique which defines the fluid flow on a micro scale was integrated into BTS in which fluid flow is described in a larger scale. The resulting combined approach strengthens the modelling potential of each methodology by overcoming their specific deficiencies. BTS's inability to predict air flow property gradients within a single space was surmounted and the difficult of estimating CFD boundary conditions are now supplied by BTS. The conflation approach is expected to be employed where gradients of indoor air flow properties can be considered crucial to the evaluation of thermal comfort and energy consumption. The BTS environment, ESP-r, was elected to perform the current work and a new CFD program, dfs, was specifically developed for the analysis of three-dimensional, turbulent, transient air flow. Finally, the two approaches were integrated. The integration work focuses on the CFD boundary conditions where the interactions of BTS and CFD take place; these occur at the inside zone surfaces and at the zone openings. Three conflation approaches were devised addressing different degrees of complexity and sophistication. The first one, involving the two types of zone boundaries, corresponds to a simple approach where the BTS and CFD systems exchange information without any direct interaction. The second approach consists of three other schemes to handle the thermal coupling at the internal zone surfaces. The third approach comprises coupling between the nodal network approach as employed by the BTS environment, and the continuity and momentum equations in the CFD technique. A validation methodology consisting of analytical validation, intermodel comparison and empirical validation is described and applied. The technique is shown to be adequate for modelling indoor air flows when compared to existing models. Three situations, covering the different types of air flows encountered within buildings are discussed to demonstrate the combined method's applicability when compared with the nodal network approach. Finally, general conclusions are presented and some possible future work is identified showing that the developed methodology is very promising.
APA, Harvard, Vancouver, ISO, and other styles
2

Lai, Ho-yin Albert. "Artificial intelligence based thermal comfort control with CFD modelling /." Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21929555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sagerman, Denton Gregory. "Hypersonic Experimental Aero-thermal Capability Study Through Multilevel Fidelity Computational Fluid Dynamics." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1499433256220438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Badenhorst, Reginald Ivor. "Computational Fluid Dynamics analysis of flow patterns in a thermal tray dryer." Diss., University of Pretoria, 2010. http://hdl.handle.net/2263/27534.

Full text
Abstract:
Industrial tray air-dryers are increasingly used for the drying of agricultural products. The main drawback of these dryers is the non-uniform velocity distribution in the drying zone resulting in a non-uniform drying of the product. Computational Fluid Dynamics (CFD) software was implemented to predict and decrease the non-uniform velocity distribution of various dryer configurations. Tunnel dryers in commercial use were used to obtain experimental data. The CFD results were correlated with the test data. Trolley and tray tunnel dryers provide a relatively simple, low capital intensive and versatile method for drying a wide range of products. Artificial drying has the advantage of controlled drying conditions compared to traditional sun drying. The main focus of every tunnel design should be the improvement of the quality of the product in terms of colour, texture and aroma. Increasing the evaporation rate without increasing the energy required to do so, should always be done in-line with this main objective. Many studies focus on the mango structure and food dehydration principles that influence the uniform drying product with the assumption that the airflow over the produce is uniform. Few have been conducted on the air movement inside industrial dryers. CFD analysis predicts the airflow without influencing the airflow pattern compared to the measuring equipment inside test dryers. The experimental data were obtained from an empty dryer without a flow diverter. This was compared to dryer with the flow diverter included and compared to a dryer with the trolleys, trays and mango slices included. The test results showed that turbulence created by this configuration, still played a major role in the nonuniform velocity distribution along the drying zone of the tunnel. The inclusion of a flow diverter did however dampen the swirl effect of the main fan. Measuring the velocity distribution was practically difficult with the handheld devices used, which influenced the accuracy of the measurements taken. This justified the CFD analysis in order to better visualise and predict the airflow pattern inside the dryer. The total average speed CFD results of the sections in the drying zone (without mangoes and trolleys) of the dryer without a flow diverter was 11.2% higher compared to the test results. It was 14% higher for the dryer with the flow diverter included. The dryer with the mangoes, trays, trolleys and flow diverter showed a large difference where the total average speed of the CFD analysis was 49% higher compared to the test results. The main reason for the difference of the CFD analysis compared to the measured results are the factors that influenced the uncertainty of the experimental set up. The CFD analysis showed that the coefficient of variance (CV) of the dryer with the flow diverter (mangoes and trolleys included) was 3% lower compared to the dryer without one. Various dryer configurations were analysed using the CFD software to investigate what the best combination of flow diverter, vanes and blanking-off plates would be. A dryer configuration where flow diverters (Up-and-downstream of the main fan) above the false ceiling and inside the drying zone was analysed. A 16% decrease in terms of the CV value was obtained compared to the dryer with just the flow diverter downstream of main fan above the false ceiling. There was however a large region of swirl upstream of the main above the false ceiling resulting in a larger loss of heated air through the outlet fan before it reached the drying zone. The cost of manufacturing a simple vane and flow diverter for an existing dryer is 4% of the initial building costs (excluding the initial cost of the trolleys). The overall drying uniformity of this dryer is improved according to the CFD analysis by 7%. A cost analysis (taking into account the 15 year life cycle of a dryer) in terms of the energy requirement to evaporate water from the drying zone, showed that the dryer with the flow diverter was 6% less expensive to run on a yearly basis. Labour costs will be lower due to man-hours saved in terms of sorting out the wet slices from the dried product. Resources (dryers and trolleys) that would have been used for re-drying the wet produce, could now be implemented to increase the production rate of the plant. Copyright
Dissertation (MEng)--University of Pretoria, 2010.
Mechanical and Aeronautical Engineering
unrestricted
APA, Harvard, Vancouver, ISO, and other styles
5

Paul, Steven Timothy. "A Computational Framework for Fluid-Thermal Coupling of Particle Deposits." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83544.

Full text
Abstract:
This thesis presents a computational framework that models the coupled behavior between sand deposits and their surrounding fluid. Particle deposits that form in gas turbine engines and industrial burners, can change flow dynamics and heat transfer, leading to performance degradation and impacting durability. The proposed coupled framework allows insight into the coupled behavior of sand deposits at high temperatures with the flow, which has not been available previously. The coupling is done by using a CFD-DEM framework in which a physics based collision model is used to predict the post-collision state-of-the-sand-particle. The collision model is sensitive to temperature dependent material properties of sand. Particle deposition is determined by the particle's softening temperature and the calculated coefficient of restitution of the collision. The multiphase treatment facilitates conduction through the porous deposit and the coupling between the deposit and the fluid field. The coupled framework was first used to model the behavior of softened sand particles in a laminar impinging jet flow field. The temperature of the jet and the impact surface were varied(T^* = 1000 – 1600 K), to observe particle behavior under different temperature conditions. The Reynolds number(Rejet = 20, 75, 100) and particle Stokes numbers (Stp = 0.53, 0.85, 2.66, 3.19) were also varied to observe any effects the particles' responsiveness had on deposition and the flow field. The coupled framework was found to increase or decrease capture efficiency, when compared to an uncoupled simulation, by as much as 10% depending on the temperature field. Deposits that formed on the impact surface, using the coupled framework, altered the velocity field by as much as 130% but had a limited effect on the temperature field. Simulations were also done that looked at the formation of an equilibrium deposit when a cold jet impinged on a relatively hotter surface, under continuous particle injection. An equilibrium deposit was found to form as deposited particles created a heat barrier on the high temperature surface, limiting more particle deposition. However, due to the transient nature of the system, the deposit temperature increased once deposition was halted. Further particle injection was not performed, but it can be predicted that the formed deposit would begin to grow again. Additionally, a Large-Eddy Simulation (LES) simulation, with the inclusion of the Smagorinsky subgrid model, was performed to observe particle deposition in a turbulent flow field. Deposition of sand particles was observed as a turbulent jet (Re jet=23000,T_jet^*= 1200 K) impinged on a hotter surface(T_surf^*= 1600 K). Differences between the simulated flow field and relevant experiments were attributed to differing jet exit conditions and impact surface thermal conditions. The deposit was not substantive enough to have a significant effect on the flow field. With no difference in the flow field, no difference was found in the capture efficiency between the coupled and decoupled frameworks.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
6

Sazhina, E. M. "Numerical analysis of autoignition and thermal radiation processes in diesel engines." Thesis, University of Brighton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

黎浩然 and Ho-yin Albert Lai. "Artificial intelligence based thermal comfort control with CFD modelling." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B3122278X.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gowreesunker, Baboo Lesh Singh. "Phase change thermal enery storage for the thermal control of large thermally lightweight indoor spaces." Thesis, Brunel University, 2013. http://bura.brunel.ac.uk/handle/2438/7649.

Full text
Abstract:
Energy storage using Phase Change Materials (PCMs) offers the advantage of higher heat capacity at specific temperature ranges, compared to single phase storage. Incorporating PCMs in lightweight buildings can therefore improve the thermal mass, and reduce indoor temperature fluctuations and energy demand. Large atrium buildings, such as Airport terminal spaces, are typically thermally lightweight structures, with large open indoor spaces, large glazed envelopes, high ceilings and non-uniform internal heat gains. The Heating, Ventilation and Air-Conditioning (HVAC) systems constitute a major portion of the overall energy demand of such buildings. This study presented a case study of the energy saving potential of three different PCM systems (PCM floor tiles, PCM glazed envelope and a retrofitted PCM-HX system) in an airport terminal space. A quasi-dynamic coupled TRNSYS®-FLUENT® simulation approach was used to evaluate the energy performance of each PCM system in the space. FLUENT® simulated the indoor air-flow and PCM, whilst TRNSYS® simulated the HVAC system. Two novel PCM models were developed in FLUENT® as part of this study. The first model improved the phase change conduction model by accounting for hysteresis and non-linear enthalpy-temperature relationships, and was developed using data from Differential Scanning Calorimetry tests. This model was validated with data obtained in a custom-built test cell with different ambient and internal conditions. The second model analysed the impact of radiation on the phase change behaviour. It was developed using data from spectrophotometry tests, and was validated with data from a custom-built PCM-glazed unit. These developed phase change models were found to improve the prediction errors with respect to conventional models, and together with the enthalpy-porosity model, they were used to simulate the performance of the PCM systems in the airport terminal for different operating conditions. This study generally portrayed the benefits and flexibility of using the coupled simulation approach in evaluating the building performance with PCMs, and showed that employing PCMs in large, open and thermally lightweight spaces can be beneficial, depending on the configuration and mode of operation of the PCM system. The simulation results showed that the relative energy performance of the PCM systems relies mainly on the type and control of the system, the night recharge strategy, the latent heat capacity of the system, and the internal heat gain schedules. Semi-active systems provide more control flexibility and better energy performance than passive systems, and for the case of the airport terminal, the annual energy demands can be reduced when night ventilation of the PCM systems is not employed. The semi-active PCM-HX-8mm configuration without night ventilation, produced the highest annual energy and CO2 emissions savings of 38% and 23%, respectively, relative to a displacement conditioning (DC) system without PCM systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Davies, Gareth Frank. "Development of a predictive model of the performance of domestic gas ovens using computational fluid dynamics." Thesis, London South Bank University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Louw, Andre Du Randt. "Discrete and porous computational fluid dynamics modelling of an air-rock bed thermal energy storage system." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86233.

Full text
Abstract:
Thesis (MScEng)--Stellenbosch University, 2014.
ENGLISH ABSTRACT: Concentrating solar power promises to be a potential solution for meeting the worlds energy needs in the future. One of the key features of this type of renewable energy technology is its ability to store energy effectively and relatively cheaply. An air-rock bed thermal energy storage system promises to be an effective and reasonably inexpensive storage system for concentrating solar power plants. Currently there is no such storage system commercially in operation in any concentrating solar power plant, and further research is required before such a system can be implemented. The main research areas to address are the thermal-mechanical behaviour of rocks, rock bed pressure drop correlations and effective and practical system designs. Recent studies have shown that the pressure drop over a packed bed of rocks is dependant on various aspects such as particle orientation relative to the flow direction, particle shape and surface roughness. The irregularity and unpredictability of the particle shapes make it difficult to formulate a general pressure drop correlation. Typical air-rock bed thermal design concepts consist of a large vertical square or cylindrical vessel in which the bed is contained. Such system designs are simple but susceptible to the ratcheting effect and large pressure drops. Several authors have proposed concepts to over-come these issues, but there remains a need for tools to prove the feasibility of the designs. The purpose of this paper is to investigate aDEM-CFD coupled approach that can aid the development of an air-rock bed thermal energy storage system. This study specifically focuses on the use of CFD. A complementary study focusses on DEM. The two areas of focus in this study are the pressure drop and system design. A discrete CFD simulation model is used to predict pressure drop over packed beds containing spherical and irregular particles. DEM is used to create randomly packed beds containing either spherical or irregularly shaped particles. This model is also used to determine the heat transfer between the fluid and particle surface. A porous CFD model is used to model system design concepts. Pressure drop and heat transfer data predicted by the discrete model, is used in the porous model to describe the pressure drop and thermal behaviour of a TES system. Results from the discrete CFD model shows that it can accurately predict the pressure drop over a packed bed of spheres with an average deviation of roughly 10%fromresults found in literature. The heat transfer between the fluid and particle surface also is accurately predicted, with an average deviation of between 13.36 % and 21.83 % from results found in literature. The discrete CFD model for packed beds containing irregular particles presented problems when generating a mesh for the CFD computational domain. The clump logic method was used to represent rock particles in this study. This method was proven by other studies to accurately model the rock particle and the rock packed bed structure using DEM. However, this technique presented problems when generating the surface mesh. As a result a simplified clump model was used to represent the rock particles. This simplified clump model showed characteristics of a packed bed of rocks in terms of pressure drop and heat transfer. However, the results suggest that the particles failed to represent formdrag. This was attributed to absence of blunt surfaces and sharp edges of the simplified clumpmodel normally found on rock particles. The irregular particles presented in this study proved to be inadequate for modelling universal characteristics of a packed bed of rocks in terms of pressure drop. The porous CFD model was validated against experimental measurement to predict the thermal behaviour of rock beds. The application of the porous model demonstrated that it is a useful design tool for system design concepts.
AFRIKAANSE OPSOMMING: Gekonsentreerde sonkrag beloof om ’n potensiële toekomstige oplossing te wees vir die wêreld se groeiende energie behoeftes. Een van die belangrikste eienskappe van hierdie tipe hernubare energie tegnologie is die vermoë om energie doeltreffend en relatief goedkoop te stoor. ’n Lug-klipbed termiese energie stoorstelsel beloof om ’n doeltreffende en redelik goedkoop stoorstelsel vir gekonsentreerde sonkragstasies te wees . Tans is daar geen sodanige stoorstelsel kommersieël in werking in enige gekonsentreerde sonkragstasie nie. Verdere navorsing is nodig voordat so ’n stelsel in werking gestel kan word. Die belangrikste navorsingsgebiede om aan te spreek is die termies-meganiese gedrag van klippe, klipbed drukverlies korrelasies en effektiewe en praktiese stelsel ontwerpe. Onlangse studies het getoon dat die drukverlies oor ’n gepakte bed van klippe afhanklik is van verskeie aspekte soos partikel oriëntasie tot die vloeirigting, partikel vormen oppervlak grofheid. Die onreëlmatigheid en onvoorspelbaarheid van die klip vorms maak dit moeilik om ’n algemene drukverlies korrelasie te formuleer. Tipiese lug-klipbed termiese ontwerp konsepte bestaan uit ’n groot vertikale vierkantige of silindriese houer waarin die gepakte bed is. Sodanige sisteem ontwerpe is eenvoudig, maar vatbaar vir die palrat effek en groot drukverliese. Verskeie studies het voorgestelde konsepte om hierdie kwessies te oorkom, maar daar is steeds ’n behoefte aanmetodes om die haalbaarheid van die ontwerpe te bewys. Die doel van hierdie studie is om ’n Diskreet Element Modelle (DEM) en numeriese vloeidinamika gekoppelde benadering te ontwikkel wat ’n lug-klipbed termiese energie stoorstelsel kan ondersoek. Hierdie studie fokus spesifiek op die gebruik van numeriese vloeidinamika. ’n Aanvullende studie fokus op DEM. Die twee areas van fokus in hierdie studie is die drukverlies en stelsel ontwerp. ’n Diskrete numeriese vloeidinamika simulasie model word gebruik om drukverlies te voorspel oor gepakte beddens met sferiese en onreëlmatige partikels. DEM word gebruik om lukraak gepakte beddens van óf sferiese óf onreëlmatige partikels te skep. Hierdie model is ook gebruik om die hitte-oordrag tussen die vloeistof en partikel oppervlak te bepaal. ’n Poreuse numeriese vloeidinamika model word gebruik omdie stelsel ontwerp konsepte voor te stel. Drukverlies en hitte-oordrag data, voorspel deur die diskrete model, word gebruik in die poreuse model om die drukverlies- en hittegedrag van ’n TES-stelsel te beskryf. Resultate van die diskrete numeriese vloeidinamikamodel toon dat dit akkuraat die drukverlies oor ’n gepakte bed van sfere kan voorspel met ’n gemiddelde afwyking van ongeveer 10%van die resultatewat in die literatuur aangetref word. Die hitte-oordrag tussen die vloeistof en partikel oppervlak is ook akkuraat voorspel, met ’n gemiddelde afwyking van tussen 13.36%en 21.83%van die resultate wat in die literatuur aangetref word. Die diskrete numeriese vloeidinamika model vir gepakte beddens met onreëlmatige partikels bied probleme wanneer ’n maas vir die numeriese vloeidinamika, numeriese domein gegenereer word. Die "clump"logika metode is gebruik om klip partikels te verteenwoordig in hierdie studie. Hierdiemetode is deur ander studies bewys om akkuraat die klip partikel en die klip gepakte bed-struktuur te modelleer deur die gebruik van DEM. Hierdie tegniek het egter probleme gebied toe die oppervlak maas gegenereer is. As gevolg hiervan is ’n vereenvoudigde "clump"model gebruik om die klip partikels te verteenwoordig. Die vereenvoudigde "clump"model vertoon karakteristieke eienskappe van ’n gepakte bed van klippe in terme van drukverlies en hitte oordrag. Die resultate het egter getoon dat die partikels nie vorm weerstand verteenwoordig nie. Hierdie resultate kan toegeskryf word aan die afwesigheid van gladde oppervlaktes en skerp kante, wat normaalweg op klip partikels gevind word, in die vereenvoudigde "clump"model. Die oneweredige partikels wat in hierdie studie voorgestel word, blykomnie geskik tewees vir die modellering van die universele karakteristieke eienskappe van ’n gepakte bed van klippe in terme van drukverlies nie. Die poreuse numeriese vloeidinamika model is met eksperimentele metings bevestig omdie termiese gedrag van klipbeddens te voorspel. Die toepassing van die poreuse model demonstreer dat dit ’n nuttige ontwerp metode is vir stelsel ontwerp konsepte.
APA, Harvard, Vancouver, ISO, and other styles
11

Cruz, Ethan E. "Coupled inviscid-viscous solution methodology for bounded domains: Application to data center thermal management." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54316.

Full text
Abstract:
Computational fluid dynamics and heat transfer (CFD/HT) models have been employed as the dominant technique for the design and optimization of both new and existing data centers. Inviscid modeling has shown great speed advantages over the full Navier-Stokes CFD/HT models (over 20 times faster), but is incapable of capturing the physics in the viscous regions of the domain. A coupled inviscid-viscous solution method (CIVSM) for bounded domains has been developed in order to increase both the solution speed and accuracy of CFD/HT models. The methodology consists of an iterative solution technique that divides the full domain into multiple regions consisting of at least one set of viscous, inviscid, and interface regions. The full steady, Reynolds-Averaged Navier-Stokes (RANS) equations with turbulence modeling are used to solve the viscous domain, while the inviscid domain is solved using the Euler equations. By combining the increased speed of the inviscid solver in the inviscid regions, along with the viscous solver’s ability to capture the turbulent flow physics in the viscous regions, a faster and potentially more accurate solution can be obtained for bounded domains that contain inviscid regions which encompass more than half of the domain, such as data centers.
APA, Harvard, Vancouver, ISO, and other styles
12

Sadrizadeh, Sasan. "Design of Hospital Operating Room Ventilation using Computational Fluid Dynamics." Doctoral thesis, KTH, Strömnings- och klimatteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-181053.

Full text
Abstract:
The history of surgery is nearly as old as the human race. Control of wound infection has always been an essential part of any surgical procedure, and is still an important challenge in hospital operating rooms today. For patients undergoing surgery there is always a risk that they will develop some kind of postoperative complication. It is widely accepted that airborne bacteria reaching a surgical site are mainly staphylococci released from the skin flora of the surgical staff in the operating room and that even a small fraction of those particles can initiate a severe infection at the surgical site.  Wound infections not only impose a tremendous burden on healthcare resources but also pose a major threat to the patient. Hospital-acquired infection ranks amongst the leading causes of death within the surgical patient population. A broad knowledge and understanding of sources and transport mechanisms of infectious particles may provide valuable possibilities to control and minimize postoperative infections. This thesis contributes to finding solutions, through analysis of such mechanisms for a range of ventilation designs together with investigation of other factors that can influence spread of infection in hospitals, particularly in operating rooms. The aim of this work is to apply the techniques of computational fluid dynamics in order to provide better understanding of air distribution strategies that may contribute to infection control in operating room and ward environments of hospitals, so that levels of bacteria-carrying particles in the air can be reduced while thermal comfort and air quality are improved.  A range of airflow ventilation principles including fully mixed, laminar and hybrid strategies were studied. Airflow, particle and tracer gas simulations were performed to examine contaminant removal and air change effectiveness. A number of further influential parameters on the performance of airflow ventilation systems in operating rooms were examined and relevant measures for improvement were identified. It was found that airflow patterns within operating room environments ranged from laminar to transitional to turbulent flows. Regardless of ventilation system used, a combination of all airflow regimes under transient conditions could exist within the operating room area. This showed that applying a general model to map airflow field and contaminant distribution may result in substantial error and should be avoided. It was also shown that the amount of bacteria generated in an operating room could be minimized by reducing the number of personnel present. Infection-prone surgeries should be performed with as few personnel as possible. The initial source strength (amount of colony forming units that a person emits per unit time) of staff members can also be substantially reduced, by using clothing systems with high protective capacity. Results indicated that horizontal laminar airflow could be a good alternative to the frequently used vertical system. The horizontal airflow system is less sensitive to thermal plumes, easy to install and maintain, relatively cost-efficient and does not require modification of existing lighting systems. Above all, horizontal laminar airflow ventilation does not hinder surgeons who need to bend over the surgical site to get a good view of the operative field. The addition of a mobile ultra-clean exponential laminar airflow screen was also investigated as a complement to the main ventilation system in the operating room. It was concluded that this system could reduce the count of airborne particles carrying microorganisms if proper work practices were maintained by the surgical staff. A close collaboration and mutual understanding between ventilation experts and surgical staff would be a key factor in reducing infection rates. In addition, effective and frequent evaluation of bacteria levels for both new and existing ventilation systems would also be important.
Tidigt i mänsklighetens utveckling har kirurgin funnits med i bilden. Hantering av infektioner har genom tiderna varit en oundviklig del av alla kirurgiska ingrepp, och finns kvar ännu idag som en viktig utmaning i operationssalar på sjukhus. För patienter som genomgår kirurgi finns alltid en risk att de efter ingreppet utvecklar någon behandlingsrelaterad komplikation. Allmänt accepterat är att de luftburna bakterier som når operationsområdet huvudsakligen består av stafylokocker frigjorda från hudfloran av operationspersonalen i operationssalen, och att endast en liten del av dessa partiklar behövs för att initiera en allvarlig infektion i det behandlade området. Sårinfektioner innebär inte bara en enorm börda för hälso- och sjukvårdsresurser, utan utgör också en betydande risk för patienten. På sjukhus förvärvad infektion finns bland de främsta dödsorsakerna i kirurgiska patientgrupper.. En bred kunskap och förståelse av spridningsmekanismer och källor till infektionsspridande partiklar kan ge värdefulla möjligheter att kontrollera och minimera postoperativa infektioner. Denna avhandling bidrar till lösningar genom analys av en rad olika ventilationssystem tillsammans med undersökning av andra faktörer som kan påverka infektionsspridningen på sjukhus, främst i operationssalar. Syftet med arbetet är att med hjälp av CFD-teknik (Computational Fluid Dynamics) få bättre förståelse för olika luftspridningsmekanismers betydelse vid ventilation av operationssalar och vårdinrättningar på sjukhus, så att halten av bacteriebärande partiklar i luften kan minskas samtidigt som termisk komfort och luftkvalité förbättras.  Flera luftflödesprinciper för ventilation inklusive omblandade strömning, riktad (laminär) strömning och hybridstrategier har studerats. Simuleringar av luft-, partikel- och spårgasflöden gjordes för alla fallstudier för att undersöka partikelevakuering och luftomsättning i rummet. Flera viktiga parametrar som påverkar detta undersöktes och relevanta förbättringar  föreslås i samarbete med industrin. Av resultaten framgår att mängden genererade bakterier i en operationssal  kan begränsas genom att minska antalet personer i operationsteamet. Infektionsbenägna operationer skall utföras med så lite personal som möjligt. Den initiala källstyrkan (mängden kolonibildande enheter som en person avger per tidsenhet) från operationsteamet kan avsevärt minskas om högskyddande kläder används. Av resultaten framgår också att ett horisontellt (laminärt) luftflöde kan vara ett bra alternativ till det ofta använda vertikala luftflödet. Ett horisontellt luftflöde är mindre känsligt för termisk påverkan från omgivningen, enkelt att installera och underhålla, relativt kostnadseffektivt och kräver vanligen ingen förändring av befintlig belysningsarmatur. Framför allt begränsar inte denna ventilationsprincip kirurgernas rörelsemönster. De kan luta kroppen över operationsområdet utan att hindra luftflödet. En flyttbar flexibel skärm för horisontell spridning av ultraren ventilationsluft i tillägg till ordinarie ventilation undersöktes också. Man fann att denna typ av tilläggsventilation kan minska antalet luftburna partiklar som bär mikroorganismer om operationspersonalen följer en strikt arbetsordning. Bra samarbete och förståelse mellan ventilationsexperter och operationsteamet på sjukhuset är nyckeln till att få ner infektionsfrekvensen. Det är också viktigt med effektiva och frekventa utvarderingar av bakteriehalten i luften, för såväl nya  som befintliga ventilationssystem.

QC 20160129

APA, Harvard, Vancouver, ISO, and other styles
13

Bebeau, Robert R. "Simulation of Radiation Flux from Thermal Fluid in Origami Tubes." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7666.

Full text
Abstract:
Spacecraft in orbit experience temperature swings close to 240 K as the craft passes from the shadow of the Earth into direct sunlight. To regulate the craft’s internal energy, large radiators eject unwanted energy into space using radiation transfer. The amount of radiation emitted is directly related to the topology of the radiator design. Deformable structures such as those made with origami tessellation patterns offer a mechanism to control the quantity of energy being emitted by varying the radiator shape. Three such patterns, the Waterbomb, Huffman Waterbomb, and Huffman Stars-Triangles, can be folded into tubes. Origami tubes offer greater control and simplicity of design than flat radiators. Using FLUENT, Origami Simulator, and Solidworks to first simulate and then analyze the flow of a thermal fluid through the patterns and the radiation emitted from the created bodies, it was determined that the Waterbomb pattern achieved a 17.6 percent difference in emitted radiation, over a 2 percent change in fold. The Huffman Waterbomb pattern displayed a 42.7 percent difference in emitted radiation over a 20 percent change of fold. The simulations demonstrated both the feasibility and benefits of the origami designed tubes.
APA, Harvard, Vancouver, ISO, and other styles
14

Thiele, Roman. "Mechanistic Modeling of Wall-Fluid Thermal Interactions for Innovative Nuclear Systems." Doctoral thesis, KTH, Reaktorteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177370.

Full text
Abstract:
Next generation nuclear power plants (GEN-IV) will be capable of not only producing energy in a reliable, safe and sustainable way, but they will also be capable of reducing the amount of nuclear waste, which has been accumulated over the lifetime of current-generation nuclear power plants, through transmutation. Due to the use of new and different coolants, existing computational tools need to be tested, further developed and improved in order to thermal-hydraulically design these power plants.This work covers two different non-unity Prandtl number fluids which are considered as coolants in GEN-IV reactors, liquid lead/lead-bismuth-eutectic and supercritical water. The study investigates different turbulence modeling strategies, such as Large Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS) modeling, and their applicability to these proposed coolants. It is shown that RANS turbulence models are partly capable of predicting wall heat transfer in annular flow configurations. However, improvements in these prediction should be possible through the use of advanced turbulence modeling strategies, such as the use of separate thermal turbulence models. A large blind benchmark study of heat transfer in supercritical water showed that the available turbulence modeling strategies are not capable of predicting deteriorated heat transfer in a 7-rod bundle at supercritical pressures. New models which take into account the strong buoyancy forces and the rapid change of the molecular Prandtl number near the wall occurring during the transition of the fluid through the pseudocritical point need to be developed. One of these strategies to take into account near-wall buoyancy forces is the use of advanced wall functions, which cannot only help in modeling these kind of flows, but also decrease computational time by 1 to 2 orders of magnitude. Different advanced wall function models were implemented in the open-source CFD toolbox OpenFOAM and their performance for different flows in sub- and supercritical conditions were evaluated. Based on those results, the wall function model UMIST-A by Gerasimov is recommended for further investigation and specific modeling tactics are proposed.Near-wall temperature and velocity behavior is important to and influenced by the wall itself. The thermal inertia of the wall influences the temperature in the fluid. However, a more important issue is how temperature fluctuations at the wall can induce thermal fatigue. With the help of LES thermal mixing in a simplified model of a control rod guide tube was investigated, including the temperature field inside the control rod and guide tube walls. The WALE sub-grid turbulence model made it possible to perform LES computations in this complex geometry, because it automatically adapts to near-wall behavior close to the wall, without the use of ad-hoc functions. The results for critical values, such as the amplitude and frequency of the temperature fluctuations at the wall, obtained from the LES computations are in good agreement with experimental results.The knowledge gained from the aforementioned investigations is used to optimize the flow path in a small, passively liquid-metal-cooled pool-type GEN IV reactor, which was designed for training and education purposes, with the help of 3D CFD. The computations were carried out on 1/4 of the full geometry, where the small-detail regions of the heat exchangers and the core were modeled using a porous media approach. It was shown that in order to achieve optimal cooling of the core without changing the global geometry a ratio of close to unity of the pressure drop over the core and the heat exchanger needs to be achieved. This is done by designing a bottom plate which channels enough flow through the core without choking the flow in the core. Improved cooling is also achieved by reducing heat losses from the hot leg through the flow shroud to the cold leg by applying thermal barrier coating similar to methods used in gas turbine design.
Nästa generations kärnkraftverk (GEN-IV) kan inte bara producera el på ett pålitligt, säkert och hållbart sätt, utan det kan också reducera mängden kärnavfall, som har producerats under tiden som man använt nuvarande generationen kärnkraftverk, genom att transmutera avfallen. Framtidens kärnkraftverk använder andra kylmedel än nuvarande kraftverk som t.ex. flytande bly, gas eller superkritiskt vatten. Det betyder att många beräkningsverktyg måste testas, utvecklas och förbättras så att man kan genomföra termohydrauliska designberäkningar. Den här avhandlingen omfattar två olika kylmedel, flytande bly och superkritiskt vatten, som har ett Prandtl-tal som skiljer sig från 1 och kommer att användas i GEN-IV reaktorer. Studien undersöker olika strategier för att modellera turbulens som Large Eddy Simulation (LES) och Reynolds-Averaged Navier-Stokes (RANS) och hur man kan använda dessa strategierna i beräkningar av strömning och värmetransfer i den nya kylvätskan. Undersökningen visar att RANS turbulensmodeller delvis kan förutsäga värmeöverföringen vid en vägg i en ringformad strömningsgeometri. Förbättringar av förutsägelsen ska vara möjlig genom användning av avancerade strategier för turbulensmodellering, t.ex. termiska turbulensmodeller. En stor prestandajämförelse för värmeöverföring i superkritiskt vatten visade att ingen av nuvarande strategier för turbulensmodellering kan förutsäga försämrad värmeöverföring i en 7-stavknippet under superkritiskt tryck. Nya modeller, som omfattar de starka flytkrafterna och den snabba förändringen av den molekulära Prandtl-tal vid väggen som uppstår när vätskan går genom pseudokritiska punkten, måste utvecklas. Avancerade väggfunktioner är en av strategierna som kan ta hänsyn till dessa fenomen. Väggfunktioner kan inte bara hjälpa till att modellera de typer av flöden som behövs utan kan också hjälpa till att sänka beräkningstiden med en eller två tiopotenser. Olika avancerade väggfunktioner i open-source beräkningsverktyget OpenFOAM implementerades och deras prestation i sub- och superkritiska vattenflödar värderades. Baserat på detta rekommenderas Gerasimovs modell för ytterligare utredning. Dessutom läggs olika strategier fram för att utöka modellens validitet till flöde med superkritiskt vatten i sammanband med försämrad och förbättrad värmeöverföring. Kunskap om beteendet av temperatur och hastighet i väggens närhet är viktigt för väggens integritet, detta då väggen även påverkar beteendet. Väggens termiska tröghet påverkar flödets temperatur och hastighet. Dock är ett ännu viktigare problem, som kan uppträda, är att temperaturfluktuationer kan framkalla termisk utmattning i en vägg. Med användning av LES utreds termisk blandning av varmt och kallt vatten i en simplifierad modell av ett styrstavsledrör, inklusive temperaturfältet i styrstaven och ledrörsväggen. Användningen av WALE LES-turbulensmodellen gör det möjligt att utföra beräkningar i den komplexa geometrin, detta eftersom modellen anpassar sig automatiskt till fenomenen nära väggen utan användning av ad-hoc funktioner. LES resultaten för alla värden som är viktiga för att bestämma utmattningsbeteende, som amplitud och frekvens av temperaturfluktuationer i väggens närhet och i väggen själv, är i god överensstämmelse med resultaten från experiment från KTH i samma geometri.Kunskapen som vunnits genom ovannämnda utredningar användes för att optimera den termohydrauliska designen av en liten, pool-typ GEN-IV reaktor som är passivt kyld med flytande bly. Reaktorn är designad som en utbildnings- och träningsreaktor och optimeringen genomfördes med hjälp av 3D CFD. Beräkningarna genomfördes på en fjärdedel av reaktorns hela geometrin. Regioner med små detaljer, som de åtta värmeväxlarna och reaktorns kärna, modellerades genom porösa material. Det visar sig att för att ha en optimal kylning av kärnan, utan att förändra reaktorns globala geometri, måste förhållandet mellan tryckförlust i reaktorkärnan och värmeväxlarna vara nära 1. Detta uppnås genom att designa plattan vid ingången till kärnan så att tillräckligt med bly flödar genom kärnan utan att kväva flödet i denna. Ytterligare en förbättring i reaktorkylningen uppnås genom att reducera värmeförlusten genom väggen som skiljer varm och kall vätska. Detta görs med en strategi som förekommer i gasturbinteknologin, genom att man lägger till ett tunt skikt av termiskt isolerande material på väggen, som reducerar värmeöverföring med ungefär 50%.

QC 20151123


THEMFA
GENIUS
THINS
APA, Harvard, Vancouver, ISO, and other styles
15

Moghimi, Ardekani Mohammad. "Optical thermal and economic optimisation of a linear Fresnel collector." Thesis, University of Pretoria, 2017. http://hdl.handle.net/2263/61313.

Full text
Abstract:
Solar energy is one of a very few low-carbon energy technologies with the enormous potential to grow to a large scale. Currently, solar power is generated via the photovoltaic (PV) and concentrating solar power (CSP) technologies. The ability of CSPs to scale up renewable energy at the utility level, as well as to store energy for electrical power generation even under circumstances when the sun is not available (after sunset or on a cloudy day), makes this technology an attractive option for sustainable clean energy. The levelised electricity cost (LEC) of CSP with thermal storage was about 0.16-0.196 Euro/kWh in 2013 (Kost et al., 2013). However, lowering LEC and harvesting more solar energy from CSPs in future motivate researchers to work harder towards the optimisation of such plants. The situation tempts people and governments to invest more in this ultimate clean source of energy while shifting the energy consumption statistics of their societies from fossil fuels to solar energy. Usually, researchers just concentrate on the optimisation of technical aspects of CSP plants (thermal and/or optical optimisation). However, the technical optimisation of a plant while disregarding economic goals cannot produce a fruitful design and in some cases may lead to an increase in the expenses of the plant, which could result in an increase in the generated electrical power price. The study focused on a comprehensive optimisation of one of the main CSP technology types, the linear Fresnel collector (LFC). In the study, the entire LFC solar domain was considered in an optimisation process to maximise the harvested solar heat flux throughout an imaginary summer day (optical goal), and to minimise cavity receiver heat losses (thermal goal) as well as minimising the manufacturing cost of the plant (economic goal). To illustrate the optimisation process, an LFC was considered with 12 design parameters influencing three objectives, and a unique combination of the parameters was found, which optimised the performance. In this regard, different engineering tools and approaches were introduced in the study, e.g., for the calculation of thermal goals, Computational Fluid Dynamics (CFD) and view area approaches were suggested, and for tackling optical goals, CFD and Monte-Carlo based ray-tracing approaches were introduced. The applicability of the introduced methods for the optimisation process was discussed through case study simulations. The study showed that for the intensive optimisation process of an LFC plant, using the Monte Carlo-based ray-tracing as high fidelity approach for the optical optimisation objective, and view area as a low fidelity approach for the thermal optimisation objective, made more sense due to the saving in computational cost without sacrificing accuracy, in comparison with other combinations of the suggested approaches. The study approaches can be developed for the optimisation of other CSP technologies after some modification and manipulation. The techniques provide alternative options for future researchers to choose the best approach in tackling the optimisation of a CSP plant regarding the nature of optimisation, computational cost and accuracy of the process.
Thesis (PhD)--University of Pretoria, 2017.
Mechanical and Aeronautical Engineering
PhD
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
16

Muhammad, Mubarak Danladi. "Development of a cascaded latent heat storage system for parabolic trough solar thermal power generation." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9303.

Full text
Abstract:
Concentrated solar power (CSP) has the potential of fulfilling the world’s electricity needs. Parabolic-trough system using synthetic oil as the HTF with operating temperature between 300 and 400o C, is the most matured CSP technology. A thermal storage system is required for the stable and cost effective operation of CSP plants. The current storage technology is the indirect two-tank system which is expensive and has high energy consumption due to the need to prevent the storage material from freezing. Latent heat storage (LHS) systems offer higher storage density translating into smaller storage size and higher performance but suitable phase change materials (PCMs) have low thermal conductivity, thus hindering the realization of their potential. The low thermal conductivity can be solved by heat transfer enhancement in the PCM. There is also lack of suitable commercially-available PCMs to cover the operating temperature range. In this study, a hybrid cascaded storage system (HCSS) consisting of a cascaded finned LHS and a high temperature sensible or concrete tube register (CTR) stages was proposed and analysed via modelling and simulation. Fluent CFD code and the Dymola simulation environment were employed. A validated CFD phase change model was used in determining the heat transfer characteristics during charging and discharging of a finned and unfinned LHS shell-and-tube storage element. The effects of various fin configurations were investigated and heat transfer coefficients that can be used for predicting the performance of the system were obtained. A model of the HCSS was then developed in the Dymola simulation environment. Simulations were conducted considering the required boundary conditions of the system to develop the best design of a system having a capacity of 875 MWhth, equivalent to 6 hours of full load operation of a 50 MWe power plant. The cascaded finned LHS section provided ~46% of the entire HCSS capacity. The HCSS and cascaded finned LHS section have volumetric specific capacities 9.3% and 54% greater than that of the two-tank system, respectively. It has been estimated that the capital cost of the system is ~12% greater than that of the two-tank system. Considering that the passive HCSS has lower operational and maintenance costs it will be more cost effective than the twotank system considering the life cycle of the system. There is no requirement of keeping the storage material above its melting temperature always. The HCSS has also the potential of even lower capital cost at higher capacities (>6 hours of full load operation).
APA, Harvard, Vancouver, ISO, and other styles
17

Lockwood, Brian Alan. "A two dimensional fluid dynamics solver for use in multiphysics simulations of gas cooled reactors." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/24820.

Full text
Abstract:
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2008.
Committee Co-Chair: de Oliveira, Cassiano; Committee Co-Chair: Ghiaasiaan, S. Mostafa; Committee Member: Martineau, Richard C.; Committee Member: van Rooijen, W.F.G
APA, Harvard, Vancouver, ISO, and other styles
18

Somani, Ankit. "Advanced thermal management strategies for energy-efficient data centers." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/26527.

Full text
Abstract:
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Joshi, Yogendra; Committee Member: ghiaasiaan, mostafa; Committee Member: Schwan, Karsten. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
19

Nie, Qihong. "Experimentally validated multiscale thermal modeling of electronic cabinets." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26492.

Full text
Abstract:
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Joshi, Yogendra; Committee Member: Gallivan, Martha; Committee Member: Graham, Samuel; Committee Member: Yeung, Pui-Kuen; Committee Member: Zhang, Zhuomin. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
20

Xu, Haoxin. "Numerical Study on the Thermal Performance of a Novel Impinging Type Solar Receiver for Solar Dish-Brayton System." Thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-137091.

Full text
Abstract:
An impinging type solar receiver has been designed for potential applications in a future Brayton Solar Dish System. The EuroDish system is employed as the collector, and an externally fired micro gas turbine (EFMGT) has been chosen as the power conversion unit. In order to reduce the risks caused by the quartz glass window, which is widely used in traditional air receiver designs, a cylinder cavity absorber without a quartz window has been adopted. Additionally, an impinging design has been chosen as the heat exchange system due to its high heat transfer coefficient compared to other single-phase heat exchange mechanisms. This thesis work introduces the design of an solar air receiver without a glass window, which features jet impingement to maximize the heat transfer rate. A detailed study of the thermal performance of the designed solar receiver has been conducted using numerical tools from the ANSYS FLUENT package. Concerning receiver performance, an overall thermal efficiency of 72.9% is attained and an output air temperature of 1100 K can be achieved, according to the numerical results. The total thermal power output is 38.05 kW, enough to satisfy the input requirements of the targeted micro gas turbine. A preliminary design layout is presented and potential optimization approaches for future enhancement of the receiver are proposed, regarding local thermal stress and pressure loss reduction. This thesis project also introduces a ray-thermal coupled numerical design method, which combines ray tracing techniques (using FRED®), with thermal performance analysis (using ANSYS Workbench).
APA, Harvard, Vancouver, ISO, and other styles
21

Charitopoulos, Anastasios. "Computational Fluid Dynamics study of heavily loaded fixed-pad thrust bearings operating under thermoelastohydrodynamic regime." Thesis, Poitiers, 2020. http://www.theses.fr/2020POIT2285.

Full text
Abstract:
Dans la présente thèse sont étudiés les effets des déformations thermiques sur les performances des butées à patin fixe fonctionnant sous des charges et des températures élevées. Le travail présenté se compose de deux parties principales. Dans une première étape, afin d'identifier les mécanismes de génération de pression dans les butées à surfaces parallèles, les différentes théories proposées dans la littérature scientifique ont été évaluées. À cette fin, un modèle thermoélastohydrodynamique (TEHD) basé sur la Dynamique de Fluides Numérique (CFD) a été généré, en tenant compte tous les phénomènes physiques du lubrifiant, des solides et de leur interaction, qui ont été suggérés dans la littérature comme des phénomènes contribuant au mécanisme de génération de pression des butées à faces parallèles. L'importance de chaque théorie a été quantifiée et une modélisation finale a été proposée afin d’évaluer avec précision les performances d'une butée à faces parallèles. De plus, le modèle généré a été validé par rapport aux résultats expérimentaux de la littérature. La deuxième partie de la thèse utilise l'approche de modélisation proposée précédemment pour évaluer les conceptions contemporaines de butées, telles que les butées à surfaces texturées, revêtus, à poche et à plan incliné. En conclusion, les déformations thermiques des patins de la butée ou de la glissière sont établies comme le principal mécanisme de création de pression dans les butées à surfaces parallèles. En outre, elles contribuent de manière significative aux performances TEHD des butées texturées et revêtues. Au contraire, sur les butées à poche et à plan incliné, les déformations thermiques sont d'une importance négligeable, même à des charges et des températures de fonctionnement élevées
The present Thesis investigates the effects of thermal deformations on the performance of fixed-pad thrust bearings operating under high loads and temperatures. The presented work consists of two main parts. Firstly, in order to identify the mechanisms of pressure build-up in parallel surface thrust bearings, the different theories proposed in the scientific literature have been evaluated. To this end, a CFD-based thermoelastohydrodynamic (TEHD) model has been generated, accounting for all the physical phenomena of the lubricant, of the solid domains and their interaction, which have been suggested in the literature as phenomena contributing to the pressure build-up mechanism of the parallel thrust bearing. The importance of each theory has been quantified and a final modelling approach has been proposed, for accurately evaluating the performance of a parallel thrust bearing. Furthermore, the generated model has been validated against experimental results of the literature. The second part of the Thesis utilises the previously proposed modelling approach to evaluate contemporary designs of thrust bearings, such as textured, coated, pocket and tapered-land bearings. In conclusion, the thermal deformations of the bearing pad are established as the main pressure build-up mechanism in parallel thrust bearings. Moreover, they contribute significantly to the TEHD performance of textured and coated bearings. Contrariwise, on pocket and tapered-land bearings, the thermal deformations are of negligible importance, even at high loads and operating temperatures
APA, Harvard, Vancouver, ISO, and other styles
22

Sjölund, Johannes. "Real-time Thermal Flow Predictions for Data Centers : Using the Lattice Boltzmann Method on Graphics Processing Units for Predicting Thermal Flow in Data Centers." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-70530.

Full text
Abstract:
The purpose of this master thesis is to investigate the usage of the Lattice Boltzmann Method (LBM) of Computational Fluid Dynamics (CFD) for real-time prediction of indoor air flows inside a data center module. Thermal prediction is useful in data centers for evaluating the placement of heat-generating equipment and air conditioning. To perform the simulation a program called RAFSINE was used, written by Nicholas Delbosc at the University of Leeds, which implemented LBM on Graphics Processing Units (GPUs) using NVIDIA CUDA. The program used the LBM model called Bhatnagar-Gross-Krook (BGK) on a 3D lattice and had the capability of executing thermal simulations in real-time or faster than real-time. This fast rate of execution means a future application for this simulation could be as a predictive input for automated air conditioning control systems, or for fast generation of training data sets for automatic fault detection systems using machine learning. In order to use the LBM CFD program even from hardware not equipped with NVIDIA GPUs it was deployed on a remote networked server accessed through Virtual Network Computing (VNC). Since RAFSINE featured interactive OpenGL based 3D visualization of thermal evolution, accessing it through VNC required use of the VirtualGL toolkit which allowed fast streaming of visualization data over the network. A simulation model was developed describing the geometry, temperatures and air flows of an experimental data center module at RISE SICS North in Luleå, Sweden, based on measurements and equipment specifications. It was then validated by comparing it with temperatures recorded from sensors mounted in the data center. The thermal prediction was found to be accurate on a room-level within ±1° C when measured as the average temperature of the air returning to the cooling units, with a maximum error of ±2° C on an individual basis. Accuracy at the front of the server racks varied depending on the height above the floor, with the lowest points having an average accuracy of ±1° C, while the middle and topmost points had an accuracy of ±2° C and ±4° C respectively. While the model had a higher error rate than the ±0.5° C accuracy of the experimental measurements, further improvements could allow it to be used as a testing ground for air conditioning control or automatic fault detection systems.
APA, Harvard, Vancouver, ISO, and other styles
23

Rabhi, Achref. "Numerical Modelling of Subcooled Nucleate Boiling for Thermal Management Solutions Using OpenFOAM." Licentiate thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-53307.

Full text
Abstract:
Two-phase cooling solutions employing subcooled nucleate boiling flows e.g. thermosyphons, have gained a special interest during the last few decades. This interest stems from their enhanced ability to remove extremely high heat fluxes, while keeping a uniform surface temperature. Consequently, modelling and predicting boiling flows is very important, in order to optimise the two-phase cooling operation and to increase the involved heat transfer coefficients.  In this work, a subcooled boiling model is implemented in the open-source code OpenFOAM to improve and extend its existing solver reactingTwoPhaseEulerFoam dedicated to model boiling flows. These flows are modelled using Computational Fluid Dynamics (CFD) following the Eulerian two-fluid approach. The simulations are used to evaluate and analyse the existing Active Nucleation Site Density (ANSD) models in the literature. Based on this evaluation, the accuracy of the CFD simulations using existing boiling sub-models is determined, and features leading to improve this accuracy are highlighted. In addition, the CFD simulations are used to perform a sensitivity analysis of the interfacial forces acting on bubbles during boiling flows. Finally, CFD simulation data is employed to study the Onset of Nucleate Boiling (ONB) and to propose a new model for this boiling sub-model, with an improved prediction accuracy and extended validity range. It is shown in this work that predictions associated with existing boiling sub-models are not accurate, and such sub-models need to take into account several convective boiling quantities to improve their accuracy. These quantities are the thermophysical properties of the involved materials, liquid and vapour thermodynamic properties and the heated surface micro-structure properties. Regarding the interfacial momentum transfer, it is shown that all the interfacial forces have considerable effects on boiling, except the lift force, which can be neglected without influencing the simulations' output. The new proposed ONB model takes into account convective boiling features, and it able to predict the ONB with a very good accuracy with a standard deviation of 2.7% or 0.1 K. This new ONB model is valid for a wide range of inlet Reynolds numbers, covering both regimes, laminar and turbulent, and a wide range of inlet subcoolings and applied heat fluxes.
APA, Harvard, Vancouver, ISO, and other styles
24

Snyders, Cornelius Albert. "Modelling the thermal, electrical and flow profiles in a 6-in-line matte melting furnace." Thesis, Stellenbosch : Stellenbosch University, 2008. http://hdl.handle.net/10019.1/1993.

Full text
Abstract:
Thesis (MScEng (Process Engineering))--Stellenbosch University, 2008.
The furnace at Polokwane is designed to treat high chromium containing concentrates which requires higher smelting temperatures to prevent or limit the undesirable precipitation of chromium spinels. The furnace has therefore been designed to allow for deep electrode immersion with copper coolers around the furnace to permit the operation with the resulting higher heat fluxes. Deep electrode immersion has been noted to result in dangerously high matte temperatures. Matte temperatures however can be influenced by a number of furnace factors which emphasize the need to understand the energy distribution inside the furnace. Computational fluid dynamics (CFD) has therefore been identified to analyze the flow and heat profiles inside the furnace. The commercial CFD software code Fluent is used for the simulations. Attention has been given only to a slice of the six-in-line submerged arc furnace containing two electrodes or one pair while focusing on the current density profiles, slag and matte flow profiles and temperature distribution throughout the bath to ensure the model reflects reality. Boundary conditions were chosen and calculated from actual plant data and material specifications were derived from previous studies on slag and matte. Three dimensional results for the current, voltage and energy distributions have been developed. These results compare very well with the profiles developed by Sheng, Irons and Tisdale in their CFD modelling of a six-in-line furnace. It was found the current flow mainly takes place through the matte, even with an electrode depth of only 20% immersion in the slag, but the voltage drop and energy distribution still only take place in the slag. Temperature profiles through-out the entire modelling domain were established. The vertical temperature profile similar to Sheng et al. 1998b was obtained which shows a specifically good comparison to the measured temperature data from the Falconbridge operated six-in-line furnace. The temperature in the matte and the slag was found to be uniform, especially in the vertical direction. It has been found that similar results with Sheng et al. (1998b) are obtained for the slag and matte velocity vectors. Different results are, however, obtained with different boundary conditions for the slag/matte interface and matte region; these results are still under investigation to obtain an explanation for this behaviour. The impact of the bubble formation on the slag flow was investigated and found to be a significant contributor to the flow. With the bubble formation, it is shown that possible ‘dead zones’ in the flow with a distinctive V-shape can develop at the sidewalls of the furnace with the V pointing towards the centre of the electrode. This behaviour can have a significant impact on the point of feed to the furnace and indirectly affect the feed rate as well as the settling of the slag and matte. These results are not validated though. Different electrode immersions were modelled with a constant electrical current input to the different models and it was found that the electrode immersion depth greatly affects the stirring of the slag in the immediate vicinity of the electrode, but temperature (which determines the natural buoyancy) has a bigger influence on the stirring of the slag towards the middle and sidewall of the slag bath. The sensitivity of the model to a different electrode tip shape with current flow concentrated at the tip of the electrode was also modelled and it was found that the electrode shape and electrical current boundary conditions are very important factors which greatly affect the voltage, current density and temperature profiles through the matte and the slag. A detailed investigation to determine the electrode tip shape at different immersions, as well as the boundary conditions of the current density on the tip of the electrode is necessary as it was proven that the model is quite sensitive to these conditions. Several recommendations arose from this modelling work carried out in this investigation. Time constraints, however, did not allow for the additional work to be carried out and although valuable results were obtained, it is deemed to be a necessity if a more in-depth understanding of furnace behaviour is to be obtained. Future work will include the validation of the results, understanding the liquid matte model, investigating the MHD effects and modelling different furnace operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
25

Yalcin, Fidan Seza. "Cfd Analysis Of A Notebook Computer Thermal Management Solution." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/12609483/index.pdf.

Full text
Abstract:
In this study, the thermal management system of a notebook computer is investigated by using a commercial finite volume Computational Fluid Dynamics (CFD) software. After taking the computer apart, all dimensions are measured and all major components are modeled as accurately as possible. Heat dissipation values and necessary characteristics of the components are obtained from the manufacturer'
s specifications. The different heat dissipation paths that are utilized in the design are investigated. Two active fans and aluminum heat dissipation plates as well as the heat pipe system are modeled according to their specifications. The first and second order discretization schemes as well as two different mesh densities are investigated as modeling choices. Under different operating powers, adequacy of the existing thermal management system is observed. Average and maximum temperatures of the internal components are reported in the form of tables. Thermal resistance networks for five different operating conditions are obtained from the analysis of the CFD simulation results. Temperature distributions on the top surface of the chassis where the keyboard and touchpad are located are investigated considering the user comfort.
APA, Harvard, Vancouver, ISO, and other styles
26

Crowell, Andrew R. "Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366204830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Stevenson, Tyler C. "Experimental investigation of hospital operating room air distribution." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Viljoen, Carel Frederik. "Thermo-hydraulic analysis of the PBMR used fuel tank using computational fluid dynamics / Carel Frederik Viljoen." Thesis, North-West University, 2003. http://hdl.handle.net/10394/276.

Full text
Abstract:
The Pebble Bed Modular Reactor (PBMR) is a 4th generation nuclear reactor based on the HTR-Modul of Siemens currently being developed by Eskom in South Africa. The major safety characteristics of the PBMR are the fuel design and physical dimensions that make it an inherently safe reactor. This means that the reactor will not melt down like a typical Light Water Reactor (LWR) when cooling of the reactor is lost. The thermo-hydraulic analysis of the Used Fuel Tank (UFT) is of great importance in the safety analysis of the PBMR. The UFT is one of two types of tanks that will be used to store fuel that has been in the reactor for a finite time. The fuel would therefore contain fission products and would generate decay heat. This decay heat should be removed to limit the temperature of the fuel. The temperature of the fuel should be limited to prevent the release of fission products to the environment. The temperature limit on the fuel during storage is required to ensure that the graphite in the fuel does not oxidize in the presence of oxygen. The fuel is normally kept in a helium environment, but it must be shown that the fuel is safe when there is air ingress into the system. The purpose of this study is therefore to determine the temperature distribution in the fuel and the components of the used fuel tank for different scenarios. This includes the forced cooling of the tanks and the possibility of cooling the tanks with natural convection. Computational Fluid Dynamics (CFD) was used to model the various heat transfer mechanisms present. This includes convection heat transfer between the gases and the solids, conduction through the solids and thermal radiation between most of the surfaces. The effect of natural convection was also included, as the pipes through the tank cause result in high mass flow through these pipes due to the buoyancy effect. The results show that the fuel temperature will not exceed the allowable limit during forced cooling if the Heating, Ventilation and Air-conditioning (HVAC) is supplied at 6 kg/s. The possibility of cooling the tanks with passive means during upset events looks promising, but it is dependant on the design of the chimneys. The chimney cross-flow area was the most significant factor influencing the air mass flow through the system. The chimney design and the rest of the system not included in this study should be analysed in detail before the passive operation of the system can be guaranteed.
Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2004.
APA, Harvard, Vancouver, ISO, and other styles
29

Fadhl, Bandar. "Modelling of the thermal behaviour of a two-phase closed thermosyphon." Thesis, Brunel University, 2016. http://bura.brunel.ac.uk/handle/2438/12871.

Full text
Abstract:
Interest in the use of heat pipe technology for heat recovery and energy saving in a vast range of engineering applications has been on the rise in recent years. Heat pipes are playing a more important role in many industrial applications, especially in increasing energy savings in commercial applications and improving the thermal performance of heat exchangers. Computational techniques play an important role in solving complex flow problems for a large number of engineering applications due to their universality, flexibility, accuracy and efficiency. However, up to now, computational studies on heat pipes are still at an early stage due to the complexity of multiphase flow characteristics and heat and mass transfer phase changes. Therefore, the main objective of this study is to develop a CFD modelling that includes the complex physical phenomena of both the heat transfer processes of evaporation and condensation and the mass transfer process of phase change during the pool boiling and film condensation. In this thesis, two novel numerical models were developed in ANSYS FLUENT. In the first, a two-dimensional CFD model was developed to visualise the two-phase flow and the evaporation, condensation and heat transfer phenomena during the operation of a wickless heat pipe, that otherwise could not be visualised by empirical or experimental work. An in-house code was developed using user-defined functions (UDFs) to enhance the ability of FLUENT to simulate the phase change occurring inside the heat pipe. Three different fluids, water, R134a and R404a, were selected as the working fluids of the investigated wickless heat pipe. The cooling system of the condenser section was simulated separately as a three-dimensional CFD model of a parallel-flow double pipe heat exchanger to model the heat transfer across the condenser section's heat exchanger and predict the heat transfer coefficients. The overall effective thermal resistance along with the temperature profile along the wickless heat pipe have been investigated. An experimental apparatus was built to carry out a thermal performance investigation on a typical wickless heat pipe for the purpose of validating the CFD simulation. A theoretical model based on empirical correlations was developed to predict the heat transfer thermal resistances in the evaporator and the condenser section. The second model was developed to combine the two-dimensional CFD simulation of the wickless heat pipe and the three-dimensional CFD simulation of the condenser section's heat exchanger to simulate the two-phase flow phenomena of boiling and condensation and the cooling system of the condenser section through a comprehensive three-dimensional CFD model of a wickless heat pipe. Two fluids, water and R134a, were selected as the working fluids of the investigated wickless heat pipe. This model was validated using a transparent glass wickless heat pipe to visualise the phenomena of pool boiling and comparing the results with the three-dimensional CFD flow visualisation. This study demonstrated that the proposed CFD models of a wickless heat pipe can successfully reproduce the complex physical phenomena of both the heat transfer process of evaporation and condensation and the mass transfer process of phase change during the pool boiling that takes place in the evaporator section and the filmwise condensation that takes place in the condenser section. The CFD simulation was successful in modelling and visualising the multiphase flow characteristics for water, R134a and R404a, emphasising the difference in pool boiling behaviour between these working fluids. The CFD simulation results were compared with experimental measurements, with good agreement obtained between predicted temperature profiles and experimental temperature data.
APA, Harvard, Vancouver, ISO, and other styles
30

Pegonen, Reijo. "Development of an Improved Thermal-Hydraulic Modeling of the Jules Horowitz Reactor." Doctoral thesis, KTH, Reaktorteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-197712.

Full text
Abstract:
The newest European high performance material testing reactor, the Jules Horowitz Reactor, is under construction at CEA Cadarache research center in France. The reactor will support existing and future nuclear reactor technologies, with the first criticality expected at the end of this decade. The current/reference CEA methodology for simulating the thermalhydraulic behavior of the reactor gives reliable results. The CATHARE2 code simulates the full reactor circuit with a simplified approach for the core. The results of this model are used as boundary conditions in a three-dimensional FLICA4 core simulation. However this procedure needs further improvement and simplification to shorten the computational requirements and give more accurate core level data. The reactor’s high performance (e.g. high neutron fluxes, high power densities) and its design (e.g. narrow flow channels in the core) render the reactor modeling challenging compared to more conventional designs. It is possible via thermal-hydraulic or solely hydraulic Computational Fluid Dynamics (CFD) simulations to achieve a better insight of the flow and thermal aspects of the reactor’s performance. This approach is utilized to assess the initial modeling assumptions and to detect if more accurate modeling is necessary. There were no CFD thermal-hydraulic publications available on the JHR prior to the current PhD thesis project. The improvement process is split into five steps. In the first step, the state-of-the-art CEA methodology for thermal-hydraulic modeling of the reactor using the system code CATHARE2 and the core analysis code FLICA4 is described. In the second and third steps, a CFD thermal-hydraulic simulations of the reactor’s hot fuel element are undertaken with the code STAR-CCM+. Moreover, a conjugate heat transfer analysis is performed for the hot channel. The knowledge of the flow and temperature fields between different channels is important for performing safety analyses and for accurate modeling. In the fourth step, the flow field of the full reactor vessel is investigated by conducting CFD hydraulic simulations in order to identify the mass flow split between the 36 fuel elements and to describe the flow field in the upper and lower plenums. As a side study a thermal-hydraulic calculation, similar to those performed in previous steps is undertaken utilizing the outcome of the hydraulic calculation as an input. The final step culminates by producing an improved, more realistic, purely CATHARE2 based, JHR model, incorporating all the new knowledge acquired from the previous steps. The primary outcome of this four year PhD research project is the improved, more realistic, CATHARE2 model of the JHR with two approaches for the hot fuel element. Furthermore, the project has led to improved thermal-hydraulic knowledge of the complex reactor (including the hot fuel element), with the most prominent findings presented.

QC 20161208


DEMO-JHR
APA, Harvard, Vancouver, ISO, and other styles
31

Bineli, Aulus Roberto Romão 1981. "Simulação numerica CFD no processo de tempera." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267163.

Full text
Abstract:
Orientadores: Rubens Maciel Filho, Andre Luiz Jardini Munhoz
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-14T19:20:20Z (GMT). No. of bitstreams: 1 Bineli_AulusRobertoRomao_M.pdf: 24103427 bytes, checksum: e0dc4ef614d43eab9b12a55f01124378 (MD5) Previous issue date: 2009
Resumo: Em tratamentos térmicos de têmpera há uma grande dificuldade em entender os diferentes perfis de resfriamento que ocorrem na superfície e no interior dos materiais, e que definem o controle da estrutura formada e das propriedades finais desejadas. A formação de diferentes tipos de estruturas no mesmo material pode ocorrer devido ao resfriamento não uniforme provocado pelas condições fluidodinâmicas do tanque e do fluido refrigerante, os quais determinam as taxas de resfriamento e o valor do coeficiente de transferência de calor. Além disso, há muito pouco na literatura sobre os critérios para a construção de tanques de têmpera. Portanto este trabalho investiga por meio da Fluidodinâmica Computacional (CFD), utilizando o software ANSYS CFX® 11, duas configurações de um sistema de agitação submerso em tanque de têmpera e o impacto das condições fluidodinâmicas e das propriedades físicas do fluido sobre a uniformidade do resfriamento e no coeficiente de transferência de calor na interface do bloco de aço. Como conseqüência as simulações permitem a verificação de alternativas de como o processo pode ser melhorado a partir deste tipo de análise. O processo físico estudado consiste no resfriamento de um bloco de aço nas dimensões 2,3m x 1,2m x 0,86m imerso em tanque com água de dimensões 8,7m x 2,8m x 4,0 m com um sistema de agitação de jato submerso distribuídos em vários bicos reguladores de saída de água. Foram realizadas duas simulações, a primeira envolvendo o sistema de agitação localizado sob o bloco. Na segunda, entretanto, foi acrescentado um sistema de agitação localizada nas laterais do material na tentativa de homogeneizar o fluxo do fluido entorno do bloco, consequentemente sobre a uniformidade do resfriamento. Os resultados deste trabalho indicam que o sistema foi suscetível a variação das propriedades físicas do fluido e do fluxo sobre o material o que levou a grandes variações na curva de resfriamento para o primeiro caso. Contudo, a implementação do sistema lateral de agitação promoveu uma melhora significativa na uniformidade da têmpera, além disso, o modelo foi capaz de predizer as curvas de resfriamento, os coeficientes de transferência de calor na interface do material, e os fluxos do fluido no tanque. A análise discutida fornece informações de como o software pode melhorar o controle do processo de resfriamento por estudos sobre a uniformidade da têmpera, o que pode auxiliar os engenheiros na concepção e desenvolvimento de novos projetos de tanque levando-se em consideração a forma e o tipo do sistema de agitação, bem como a geometria do tanque e do material, e o fluido utilizado no processo. Esta abordagem pode produzir melhorias significativas na qualidade do material enquanto simultaneamente prevê condições para redução de distorções do material durante o tratamento térmico.
Abstract: In the quenching heat treatment is a great difficulty to understand the different cooling profiles occurring at the surface and subsurface of the material, that define the structure formed and the final properties desired. The formation of different types of structures in the material can occurs due to uneven cooling caused by fluid dynamic conditions of the tank, which determine the cooling rates and the heat transfer coefficient. Moreover, there is very little literature concerning the criteria for the construction of quenching tanks. Therefore in this work was analyzed by means of Computational Fluid Dynamics (CFD), two configurations of submerged agitation system and the impact of fluid dynamic conditions and the physical properties of the fluid on the cooling uniformity and the heat transfer coefficient at the interface of the steel block. The simulations performed allow the verification of alternatives of how the process can be improved from this type of analysis. The physical process studied consist in the cooling of a steel block with dimensions 2.3m x 1.2m x 0.86m immersed in water tank with dimensions 8.7m x 2.8m x 4.0m with submerged agitation system. There were two simulations, the first involving the agitation system located under the block. In the second, however, was added agitation system located next the sides of the material in an attempt to homogenize the fluid flow around the block, consequently on the uniformity of cooling. The results indicate that the system was susceptible to variations in the fluid properties and fluid flow on the material which led to large variations in the cooling curve for the first case. The implementation of the sideway agitation system led to a significant improvement in uniformity of quenching, in addition, the model was able to predict the cooling curves, the heat transfer coefficient at the interface of the material, and fluid flow in the tank. The analysis provides information about how software can improve the control of the cooling process by studies of quench uniformity, which can help engineers in the design and development of new tank taking into account the type of agitation system, tank geometry and material, and the fluid used in the process. This approach can produce significant improvements in the quality of the material while simultaneously provide conditions to reduce distortions in the material during heat treating.
Mestrado
Mestre em Engenharia Química
APA, Harvard, Vancouver, ISO, and other styles
32

Gempesaw, Daniel. "A multi-resolution discontinuous Galerkin method for rapid simulation of thermal systems." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42775.

Full text
Abstract:
Efficient, accurate numerical simulation of coupled heat transfer and fluid dynamics systems continues to be a challenge. Direct numerical simulation (DNS) packages like FLU- ENT exist and are sufficient for design and predicting flow in a static system, but in larger systems where input parameters can change rapidly, the cost of DNS increases prohibitively. Major obstacles include handling the scales of the system accurately - some applications span multiple orders of magnitude in both the spatial and temporal dimensions, making an accurate simulation very costly. There is a need for a simulation method that returns accurate results of multi-scale systems in real time. To address these challenges, the Multi- Resolution Discontinuous Galerkin (MRDG) method has been shown to have advantages over other reduced order methods. Using multi-wavelets as the local approximation space provides an inherently efficient method of data compression, while the unique features of the Discontinuous Galerkin method make it well suited to composition with wavelet theory. This research further exhibits the viability of the MRDG as a new approach to efficient, accurate thermal system simulations. The development and execution of the algorithm will be detailed, and several examples of the utility of the MRDG will be included. Comparison between the MRDG and the "vanilla" DG method will also be featured as justification of the advantages of the MRDG method.
APA, Harvard, Vancouver, ISO, and other styles
33

Virdi, Amandeep Singh. "Aero-thermal performance and enhanced internal cooling of unshrouded turbine blade tips." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:62c3e94a-a1ff-47a8-bb81-e870b0013f11.

Full text
Abstract:
The tips of unshrouded, high-pressure turbine blades are prone to significantly high heat loads. The gap between the tip and over-tip casing is the root cause of undesirable over-tip leakage flow that is directly responsible for high thermal material degradation and is a major source of aerodynamic loss within a turbine. Both must be minimised for the safe working and improved performance of future gas-turbines. A joint experimental and numerical study is presented to understand and characterise the heat transfer and aerodynamics of unshrouded blade tips. The investigation is undertaken with the use of a squealer or cavity tip design, known for offering the best overall compromise between the tip aerodynamics, heat transfer and mechanical stress. Since there is a lack of understanding of these tips at engine-realistic conditions, the present study comprises of a detailed analysis using a high-speed linear cascade and computational simulations. The aero-thermal performance is studied to provide a better insight into the behaviour of squealer tips, the effects of casing movement and tip cooling. The linear cascade environment has proved beneficial for its offering of spatially-resolved data maps and its ability to validate computational results. Due to the unknown tip gap height within an entire engine cycle, the effects of gap height are assessed. The squealer's aero-thermal performance has been shown to be linked with the gap height, and qualitative different trends in heat transfer are established between low-speed and high-speed tip flow regimes. To the author's knowledge, the present work is the first of its kind, providing comprehensive aero-thermal experimental research and a dataset for a squealer tip at engine-representative transonic conditions. It is also unique in terms of conducting direct and systematic validations of a major industrial computational fluid dynamics method for aero-thermal performance prediction of squealer tips at enginerepresentative transonic conditions. Finally, after recognising the highest heat loads are found on the squealer rims, a novel shaped squealer tip has been investigated to help improve the thermal performance of the squealer with a goal to improve its durability. It has been discovered that a seven percent reduction in tip temperature can be achieved through incorporating a shaped squealer and maximising the internal cooling performance.
APA, Harvard, Vancouver, ISO, and other styles
34

Pryde, James R. "Development of effective thermal management strategies for LED luminaires." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/26687.

Full text
Abstract:
The efficacy, reliability and versatility of the light emitting diode (LED) can outcompete most established light source technologies. However, they are particularly sensitive to high temperatures, which compromises their efficacy and reliability, undermining some of the technology s key benefits. Consequently, effective thermal management is essential to exploit the technology to its full potential. Thermal management is a well-established subject but its application in the relatively new LED lighting industry, with its specific constraints, is currently poorly defined. The question this thesis aims to answer is how can LED thermal management be achieved most effectively? This thesis starts with a review of the current state of the art, relevant thermal management technologies and market trends. This establishes current and future thermal management constraints in a commercial context. Methods to test and evaluate the thermal management performance of a luminaire system follow. The defined test methods, simulation benchmarks and operational constraints provide the foundation to develop effective thermal management strategies. Finally this work explores how the findings can be implemented in the development and comparison of multiple thermal management designs. These are optimised to assess the potential performance enhancement available when applied to a typical commercial system. The outcomes of this research showed that thermal management of LEDs can be expected to remain a key requirement but there are hints it is becoming less critical. The impacts of some common operating environments were studied, but appeared to have no significant effect on the thermal behaviour of a typical system. There are some active thermal management devices that warrant further attention, but passive systems are inherently well suited to LED luminaires and are readily adopted so were selected as the focus of this research. Using the techniques discussed in this thesis the performance of a commercially available component was evaluated. By optimising its geometry, a 5 % decrease in absolute thermal resistance or a 20 % increase in average heat transfer coefficient and 10 % reduction in heatsink mass can potentially be achieved . While greater lifecycle energy consumption savings were offered by minimising heatsink thermal resistance the most effective design was considered to be one optimised for maximum average heat transfer coefficient. Some more radical concepts were also considered. While these demonstrate the feasibility of passively manipulating fluid flow they had a detrimental impact on performance. Further analysis would be needed to conclusively dismiss these concepts but this work indicates there is very little potential in pursuing them further.
APA, Harvard, Vancouver, ISO, and other styles
35

He, Fan. "Combined Experimental and Numerical Study of Active Thermal Control of Battery Modules." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51748.

Full text
Abstract:
Lithium ion (Li-ion) batteries have been identified as a promising solution to meet the increasing demands for alternative energy in electric vehicles (EVs) and hybrid electric vehicle (HEVs). This work describes experimental and numerical study of thermal management of battery module consisting of cylindrical Li-ion cells, with an emphasis on the use of active control to achieve optimal cooling performance with minimal parasitic power consumption. The major contribution from this work is the first experimental demonstration (based on our review of archival journal and conference literature) and the corresponding analysis of active thermal control of battery modules. The results suggest that the active control strategy, when combined with reciprocating cooling flow, can reduce the parasitic energy consumption and cooling flow amount substantially. Compared with results using passive control with unidirectional cooling flow, the parasitic energy consumption was reduced by about 80%. This contribution was achieved in three steps, which was detailed in this dissertation in chapters 2, 3, and 4, respectively. In the first step, an experimental facility and a corresponding CFD model were developed to capture the thermal behavior of multiple battery cells. Based on the experimental and CFD results, a reduced-order model (ROM) was then developed for active monitoring and control purposes. In the second step, the ROM was parameterized and an observer-based control strategy was developed to control the core temperature of battery cells. Finally, based on the experimental facility and the ROM model, the active control of a battery module was demonstrated. Each of these steps represents an important facet of the thermal management problem, and it is expected that the results and specifics documented in this dissertation lay the groundwork to facilitate further study.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
36

Ho, Son Hong. "Numerical simulation of thermal comfort and contaminant transport in air conditioned rooms." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Huang, Ming Jun. "The application of computational fluid dynamics (CFD) to predict the thermal performance of phase change materials for the control of photovoltaic cell temperatures in buildings." Thesis, Ulster University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yifan, Wang, and Huang Yizhang. "Urban Wind and Thermal Environment Simulation - A Case Study of Gävle, Sweden." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-16605.

Full text
Abstract:
As urbanization and industrialization progressed during the last decades, Urban Heat Island (UHI) has become a major environmental issue to many cities around the world. The effect of UHI differs from area to area due to varying urban scale, population density, construction of urban surface layer, the level of industrialization and type of climate. Researchers have made great efforts in investigating various approaches to Urban Heat Island studies. Monitoring technologies have been widely used in this field, especially Geographic Information System (GIS) and remote sensing technology. Computational Fluid Dynamics (CFD) simulations are also actively applied in wind engineering, which can provide details of air flow over urban areas. The combined application of these technologies can provide the monitoring and simulation of urban wind corridor and thermal environment that can produce relevant information at a lesser time.A research using GIS, remote sensing technology and CFD simulation was done in this project to obtain a holistic view of the urban thermal environment and wind flow for Gävle City. With GIS and remote sensing the thermal image of the city was presented. The temperature data, which were collected from MODIS satellite were transferred and processed by ArcGIS and Global Mapper. The wind flow above the city was simulated through constructing geometric and mathematical model with OpenFOAM. The outcomes of the modeling and simulation identified that the temperature in the city center could possibly reach 35℃ during summers, which can cause the Urban Heat Island to form. Ventilation was also poorer in the city centre, and neither the river nor the green area in the southwest could help ventilate the city. The study result also suggested that certain sites in the city had relatively high wind flow for urban wind turbines to work.This study had used method of Urban Heat Island study with remote sensing and CFD technologies. The model produced from simulation could also be used to further study Gävle city's thermal and wind environment to produce more accurate results.
APA, Harvard, Vancouver, ISO, and other styles
39

Ghanta, Nikhilesh. "Meta-modeling and Optimization of Computational Fluid Dynamics (CFD) analysis in thermal comfort for energy-efficient Chilled Beams-based Heating, Ventilation and Air-Conditioning (HVAC) systems." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126989.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Computation for Design and Optimization Program, May, 2020
Cataloged from the official PDF of thesis.
Includes bibliographical references (pages 172-178).
With the rapid rise in the use of air conditioning systems and technological advancements, there is an ever-increasing need for optimizing the HVAC systems for energy efficiency while maintaining adequate occupant thermal comfort. HVAC systems in buildings alone contribute to almost 15% of the overall energy consumption across all sectors in the world and optimizing this would contribute positively towards overcoming climate change and reducing the global carbon footprint. A relatively modern solution is to implement a smart building-based control system and one of the objectives of this study is to understand the physical phenomenon associated with workspaces conditioned by chilled beams and evaluated the methods to reduce energy consumption.
Building upon the initial work aimed at creating a workflow for a smart building, this thesis presents the results of both experimental and computational studies of occupant thermal comfort with chilled beams (primarily in conference rooms) and the various inefficiencies associated. Results from these studies have helped to inform an optimum location for the installation of a chilled beam to counter the effects of incoming solar irradiation through an external window while keeping the energy consumption low. A detailed understanding of the various parameters influencing the temperature distribution in a room with chilled beams is achieved using CFD studies and data analysis of experimental data logging.
The work converges into a fundamental question of where, how, and what to measure to best monitor and control the human thermal comfort, and a novel technique was presented using the existing sensors which would provide a significant improvement over other existing methods in practice. This technique was validated using a series of experiments. The thesis concludes by presenting early works on hybrid HVAC systems including chilled beams and ceiling fans for higher economic gains. Future work should seek to perform CFD simulations for a better understanding of hybrid HVAC systems, both in conference rooms and open-plan office spaces, and also to design a new sensor that could better estimate human thermal comfort.
by Nikhilesh Ghanta.
S.M.
S.M. Massachusetts Institute of Technology, Computation for Design and Optimization Program
APA, Harvard, Vancouver, ISO, and other styles
40

Warneford, Emma S. "The thermal shallow water equations, their quasi-geostrophic limit, and equatorial super-rotation in Jovian atmospheres." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:6604fcac-afe6-4abe-8a6f-6a09de4f933f.

Full text
Abstract:
Observations of Jupiter show a super-rotating (prograde) equatorial jet that has persisted for decades. Shallow water simulations run in the Jovian parameter regime reproduce the mixture of robust vortices and alternating zonal jets observed on Jupiter, but the equatorial jet is invariably sub-rotating (retrograde). Recent work has obtained super-rotating equatorial jets by extending the standard shallow water equations to relax the height field towards its mean value. This Newtonian cooling-like term is intended to model radiative cooling to space, but its addition breaks key conservation properties for mass and momentum. In this thesis the radiatively damped thermal shallow water equations are proposed as an alternative model for Jovian atmospheres. They extend standard shallow water theory by permitting horizontal variations of the thermodynamic properties of the fluid. The additional temperature equation allows a Newtonian cooling term to be included while conserving mass and momentum. Simulations reproduce equatorial jets in the correct directions for both Jupiter and Neptune (which sub-rotates). Quasi-geostrophic theory filters out rapidly moving inertia-gravity waves. A local quasi-geostrophic theory of the radiatively damped thermal shallow water equations is derived, and then extended to cover whole planets. Simulations of this global thermal quasi-geostrophic theory show the same transition, from sub- to super-rotating equatorial jets, seen in simulations of the original thermal shallow water model as the radiative time scale is decreased. Thus the mechanism responsible for setting the direction of the equatorial jet must exist within quasi-geostrophic theory. Such a mechanism is developed by calculating the competing effects of Newtonian cooling and Rayleigh friction upon the zonal mean zonal acceleration induced by equatorially trapped Rossby waves. These waves transport no momentum in the absence of dissipation. Dissipation by Newtonian cooling creates an eastward zonal mean zonal acceleration, consistent with the formation of super-rotating equatorial jets in simulations, while the corresponding acceleration is westward for dissipation by Rayleigh friction.
APA, Harvard, Vancouver, ISO, and other styles
41

Maasdorp, Lynndle Caroline. "Temperature proton exchange membrane fuel cells in a serpentine design." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_1316_1307961639.

Full text
Abstract:

The aim of my work is to model a segment of a unit cell of a fuel cell stack using numerical methods which is classified as computational fluid dynamics and implementing the work in a commercial computational fluid dynamics package, FLUENT. The focus of my work is to study the thermal distribution within this segment. The results of the work aid in a better understanding of the fuel cell operation in this temperature range. At the time of my investigation experimental results were unavailable for validation and therefore my results are compared to previously published results published. The outcome of the results corresponds to this, where the current flux density increases with the increasing of operating temperature and fixed operating voltage and the temperature variation across the fuel cell at varying operating voltages. It is in the anticipation of determining actual and or unique material input parameters that this work is done and at which point this studies results would contribute to the understanding high temperature PEM fuel cell thermal behaviour, significantly.

APA, Harvard, Vancouver, ISO, and other styles
42

H, N. Akshay Jamadagni. "Simulations of complete vehicles in cold climate at partial and full load driving conditions." Thesis, Linköpings universitet, Mekanisk värmeteori och strömningslära, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170181.

Full text
Abstract:
In this study, CFD simulations of a complete truck are carried out to investigate the effect of altered simulation settings at cold climatic conditions. The aim of this study is to obtain knowledge through CFD simulations performed on a selected driving condition namely at a vehicle speed of 93 kph, an ambient temperature of -20 °C and for an engine operating at 25 % load. Data from measurement carried out in a climatic wind tunnel is available and utilized as boundary conditions for the simulations.The simulations are performed under steady state conditions utilizing the commercial software STAR-CCM+. The first simulation case (reference simulation case) is constructed through java macro-scripts as per the standard VTM settings at Scania. The results from the simulations are compared with the measurement data utilizing temperature validation probes. These probes are located around the engine and measure the air temperature in the underhood engine compartment. The results from the first simulation case show that the temperature of each probe located in front of the engine and above the engine agrees well with the measured probe temperatures. But the temperature of the remaining probes show larger differences with the measured probe temperatures. To investigate the larger differences in probe temperatures, additional simulations are carried out by changing specific simulation settings. For instance, this is achieved by including thermal radiation in the physics continua. Finally, a simulation of engine load of 100 % is carried out and the results from the simulation are compared with the measurement from the same engine load as well as the results from the measurement and simulation of 25 % engine load. The results from all the simulations indicate that additional boundaryconditions and/or different methodologies need to be explored to better replicate the cold climatic conditions in the simulations.
APA, Harvard, Vancouver, ISO, and other styles
43

Huisamen, Ewan. "A thermo-hydraulic model that represents the current configuration of the SAFARI-1 secondary cooling system." Diss., University of Pretoria, 2005. http://hdl.handle.net/2263/66205.

Full text
Abstract:
This document focuses on the procedure and results of creating a thermohydraulic model of the secondary cooling system of the SAFARI-1 research reactor at the Pelindaba facility of the South African Nuclear Energy Corporation (Necsa) to the west of Pretoria, South Africa. The secondary cooling system is an open recirculating cooling system that comprises an array of parallel-coupled heat exchangers between the primary systems and the main heat sink system, which consists of multiple counterflow-induced draught cooling towers. The original construction of the reactor was a turnkey installation, with no theoretical/technical support or verifiability. The design baseline is therefore not available and it is necessary to reverse-engineer a system that could be modelled and characterised. For the nuclear operator, it is essential to be able to make predictions and systematically implement modifications to improve system performance, such as to understand and modify the control system. Another objective is to identify the critical performance areas of the thermohydraulic system or to determine whether the cooling capacity of the secondary system meets the optimum original design characteristics. The approach was to perform a comprehensive one-dimensional modelling of all the available physical components, which was followed by using existing performance data to verify the accuracy and validity of the developed model. Where performance data is not available, separate analysis through computational fluid dynamics (CFD) modelling is performed to generate the required inputs. The results yielded a model that is accurate within 10%. This is acceptable when compared to the variation within the supplied data, generated and assumed alternatives, and when considering the compounding effect of the large amount of interdependent components, each with their own characteristics and associated performance uncertainties. The model pointed to potential problems within the current system, which comprised either an obstruction in a certain component or faulty measuring equipment. Furthermore, it was found that the current spray nozzles in the cooling towers are underutilised. It should be possible to use the current cooling tower arrangement to support a similar second reactor, although slight modifications would be required to ensure that the current system is not operated beyond its current limits. The interdependent nature of two parallel systems and the variability of the conditions that currently exist would require a similar analysis as the current model to determine the viability of using the existing cooling towers for an additional reactor.
Dissertation (MEng)--University of Pretoria, 2015.
Mechanical and Aeronautical Engineering
MEng
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
44

Burton, Ludovic Nicolas. "Multi-Scale Thermal Modeling Methodology for High Power-Electronic Cabinets." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19808.

Full text
Abstract:
Future generation of all-electric ships will be highly dependent on electric power, since every single system aboard such as the drive propulsion, the weapon system, the communication and navigation systems will be electrically powered. Power conversion modules (PCM) will be used to transform and distribute the power as desired in various zone within the ships. As power densities increase at both components and systems-levels, high-fidelity thermal models of those PCMs are indispensable to reach high performance and energy efficient designs. Efficient systems-level thermal management requires modeling and analysis of complex turbulent fluid flow and heat transfer processes across several decades of length scales. In this thesis, a methodology for thermal modeling of complex PCM cabinets used in naval applications is offered. High fidelity computational fluid dynamics and heat transfer (CFD/HT) models are created in order to analyze the heat dissipation from the chip to the multi-cabinet level and optimize turbulent convection cooling inside the cabinet enclosure. Conventional CFD/HT modeling techniques for such complex and multi-scale systems are severely limited as a design or optimization tool. The large size of such models and the complex physics involved result in extremely slow processing time. A multi-scale approach has been developed to predict accurately the overall airflow conditions at the cabinet level as well as the airflow around components which dictates the chip temperature in details. Various models of different length scales are linked together by matching the boundary conditions. The advantage is that it allows high fidelity models at each length scale and more detailed simulations are obtained than what could have been accomplished with a single model methodology. It was found that the power cabinets under the prescribed design parameters, experience operating point airflow rates that are much lower than the design requirements. The flow is unevenly distributed through the various bays. Approximately 90 % of the cold plenum inlet flow rate goes exclusively through Bay 1 and Bay 2. Re-circulation and reverse flow are observed in regions experiencing a lack of flow motion. As a result high temperature of the air flow and consequently high component temperatures are also experienced in the upper bays of the cabinet. A proper orthogonal decomposition (POD) methodology has been performed to develop reduced-order compact models of the PCM cabinets. The reduced-order modeling approach based on POD reduces the numerical models containing 35 x 109 DOF down to less than 20 DOF, while still retaining a great accuracy. The reduced-order models developed yields prediction of the full-field 3-D cabinet within 30 seconds as opposed to the CFD/HT simulations that take more than 3 hours using a high power computer cluster. The reduced-order modeling methodology developed could be a useful tool to quickly and accurately characterize the thermal behavior of any electronics system and provides a good basis for thermal design and optimization purposes.
APA, Harvard, Vancouver, ISO, and other styles
45

Castelli, Fábio Alexandre. "Mecânica dos fluidos computacional integrada com modelo térmico do corpo humano para análise de ambientes térmicos." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3150/tde-19072013-114927/.

Full text
Abstract:
Neste trabalho é proposta uma metodologia numérica como ferramenta para avaliação de ambientes térmicos com manequins. A simulação de CFD do ambiente térmico em simulador comercial é integrada à simulação do sistema térmico do corpo humano realizada em código acadêmico. As soluções dos fluxos de calor e temperaturas nas peles são retroalimentadas e a transferência de informações é realizada via arquivo. A geometria do ambiente térmico é simplificada para minimizar os efeitos de problemas com a malha computacional na simulação de CFD, permitindo uma melhor análise do método interativo proposto. O manequim é separado em 15 segmentos cilíndricos representando cabeça, pescoço, tronco, braços, antebraços, mãos, coxas, pernas e pés. Cada segmento é subdividido em quatro quadrantes, totalizando 60 zonas, para capturar assimetrias térmicas e aerodinâmicas. Foi conduzido estudo de validação geométrica de manequim virtual pela comparação de resultados dos coeficientes térmicos obtidos com CFD e resultados obtidos de ensaios experimentais da literatura. A qualidade da malha e o tratamento de parede são discutidos. Os resultados tornam evidente que uma geometria simplificada do manequim é suficiente para estudos e avaliações de ambiente térmico e de conforto térmico quando se utiliza técnicas numéricas de CFD. Os resultados a partir da integração dos simuladores mostram que o método numérico pode ser instável nos segmentos com baixo metabolismo e baixa vazão de sangue, como nos pés e mãos. Pretende-se introduzir na metodologia proposta algum mecanismo que identifique automaticamente este fenômeno, para evitar a divergência do método e tornar a ferramenta mais robusta.
In this work is proposed a new numerical methodology as a tool for thermal comfort evaluation. This method promotes the interaction of the thermal environment simulation and the thermal system of the human body simulation. The commercial CFD simulator FLUENT R and an academician code for human body simulation are used. The solutions are fed back and the transfer is made by file. The geometry of the room is simplified to minimize the effects of problems with the computational mesh in the CFD simulation, allowing a better analysis of the proposed interactive method. The dummy is separated into 15 cylindrical segments representing head, neck, trunk, arms, forearms, hands, thighs, legs and feet. Each segment is subdivided into four quadrants, totaling 60 zones, to capture asymmetries in the heat flux field and temperature field. Was conducted a geometric validation of virtual dummy by comparing results of heat transfer coefficients from literature and CFD simulation. The mesh quality and near wall treatment are discussed. The results show that a simplified geometry of the dummy is sufficient for thermal environment studies and evaluations in CFD simulations. The results from coupled simulations show that the numerical method can be unstable in the segments with low metabolism and low blood flow, as the feet and hands. So, its intended to introduce mechanisms in the methodology to automatically identify this phenomenon and to avoid the divergence of the method to make more robust this methodology.
APA, Harvard, Vancouver, ISO, and other styles
46

Ruan, Xiaoyong. "Structural Integrity Assessment of Nuclear Energy Systems." Kyoto University, 2020. http://hdl.handle.net/2433/253517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Eroglu, Sinan. "Coupling of CFD analysis of the coolant flow with the FE thermal analysis of a diesel engine." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/12655.

Full text
Abstract:
In the process of engine design, it is important for the engine designer to predict the accurate component temperatures. Controlling the temperature of engine components requires a better understanding of the coolant behaviour in the coolant jacket of an engine which is critical to internal combustion engine design, The studies reported in the literature emphasize the influence of the cooling system on other engine operation such as exhaust emission, fuel consumption and engine wear. In this context, much work has been done with the purpose of improving the coolant jacket design and components of the cooling system to achieve higher performance. (Some of these studies) Previous researches have shown the possibility of achieving higher engine efficiency and performance with higher coolant temperature. This project aims at understanding the coolant flow behaviour in the coolant jackets of a diesel engine and investigating the possibility of running the engine at higher coolant temperatures by predicting the temperature distribution of the structure which is required for the assessment of the durability ofthe engine components. In this thesis, CFD (Computational Fluid Dynamics) and FE (Finite Element) techniques are used to study coolant flow in the coolant jackets and to predict the temperature distribution within the engine structure respectively. The objectives are to develop an FE model of the engine structure for thermal analyses and a CFD model of the fluid domain for the coolant flow CFD analyses. A number of case studies are carried out with the purpose of determining the most suitable technique for accurate temperature prediction. The methodology of manual coupling approach between CFD and FE analyses, which is more widely used in industry, and conjugate approach are demonstrated. Using these approaches, thermal analysis of the engine is conducted with the purpose of identifying the thermally critical locations throughout the engine. Furthermore, the influences of higher coolant temperature on these thermally critical regions of the engine are highlighted by carrying out four case studies with coolant inlet temperatures of 110°C, !ISOC, 117.5"C and !20°C. The temperature rise at the particular points around thermally critical regions is found to be in the range of 3-9 degrees at the higher coolant temperatures. This slight increase in temperature of critical locations may affect the durability of the structure. However, without carrying out the structural analyses it is not possible to comment on the durability of the engine structure. The effects of surface roughness and viscosity on heat transfer rate are also investigated and shown to be insignificant.
APA, Harvard, Vancouver, ISO, and other styles
48

Ahmed, Nisaar. "Thermo-fluid modelling of electrical generator frames under forced convection in an oscillating water column environment." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31363.

Full text
Abstract:
This PhD involved computational fluid dynamic simulations of finned generators cooling under forced convection in an oscillating water column environment. Various design changes to the upstream Wells turbine and its effect on the consequent cooling of the generator were investigated. Simulations were run in steady-state to obtain an initial condition, thereafter, unsteady simulations revealed a steadying of heat transfer over the course of multiple blade rotation cycles. This justified the use of steady-state for the remaining simulations over a range of flow coefficients. The results revealed that the heat transfer from the generator increased for tighter blade tip clearances, thicker blade profiles and greater turbine solidity. The heat transfer was found to increase with rising flow rate coefficient, which was adjusted by increasing the inlet velocity whilst maintaining the angular velocity of the turbine at a constant 2000 RPM. Additionally, the variation of turbine angular velocity at a fixed flow rate coefficient was investigated, the heat transfer was also found to increase with angular velocity, albeit by a far lesser extent. The inclusion of the Wells turbine upstream of the generator was investigated initially and was found to increase heat transfer due to the resulting impingement of airflow across the generator. In all design scenarios in which the heat transfer increases, there is also an observed increase in the mass flow rate of air, radially, towards the generator.
APA, Harvard, Vancouver, ISO, and other styles
49

Plank, Jack R. "Nuclear Thermal Propulsion Cool-Down Phase Optimization Through Quasi-Steady Computational Analysis, and the Effect of Auxiliary Heat Removal Systems." The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1618934609976051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Svantesson, Einar. "Transient thermal management simulations of complete heavy-duty vehicles." Thesis, KTH, Mekanik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266464.

Full text
Abstract:
Transient vehicle thermal management simulations have the potential to be an important tool to ensure long component lifetimes in heavy-duty vehicles, as well as save development costs by reducing development time. Time-resolved computational fluid dynamics simulations of complete vehicles are however typically very computationally expensive, and approximation methods must be employed to keep computational costs and turn-around times at a reasonable level. In this thesis, two transient methods are used to simulate two important time-dependent scenarios for complete vehicles; hot shutdowns and long dynamic drive cycles. An approach using a time scaling between fluid solver and thermal solver is evaluated for a short drive cycle and heat soak. A quasi-transient method, utilizing limited steady-state computational fluid dynamics data repeatedly, is used for a long drive cycle. The simulation results are validated and compared with measurements from a climatic wind tunnel. The results indicate that the time-scaling approach is appropriate when boundary conditions are not changing rapidly. Heat-soak simulations show reasonable agreement between three cases with different thermal scale factors. The quasi-transient simulations suggest that complete vehicle simulations for durations of more than one hour are feasible. The quasi-transient results partly agree with measurements, although more component temperature measurements are required to fully validate the method.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography