Academic literature on the topic 'Thermal field model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal field model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Thermal field model"
Dmitriev, A. N., and Yu V. Pakharukov. "Thermoelectric model of the Earth's magnetic field." Oil and Gas Studies, no. 2 (June 11, 2021): 39–52. http://dx.doi.org/10.31660/0445-0108-2021-2-39-52.
Full textLiu, Hong, Jin Guo Li, and Yong Tian Wang. "Fast Computing Model for Thermal Field of Auto Lamp." Key Engineering Materials 364-366 (December 2007): 783–88. http://dx.doi.org/10.4028/www.scientific.net/kem.364-366.783.
Full textRajendran, S., C. C. Chao, D. P. Hill, J. P. Kalejs, and Vern Overbye. "Magnetic and thermal field model of EFG system." Journal of Crystal Growth 109, no. 1-4 (February 1991): 82–87. http://dx.doi.org/10.1016/0022-0248(91)90160-7.
Full textDrahoš, Peter, Vladimír Kutiš, and Róbert Lenický. "Thermocouple Sensor Influence on Temperature Field in SMA Actuator." Applied Mechanics and Materials 394 (September 2013): 50–56. http://dx.doi.org/10.4028/www.scientific.net/amm.394.50.
Full textWang, Jingxia, Yusheng Hu, Ming Cheng, Biao Li, and Bin Chen. "Bidirectional Coupling Model of Electromagnetic Field and Thermal Field Applied to the Thermal Analysis of the FSPM Machine." Energies 13, no. 12 (June 14, 2020): 3079. http://dx.doi.org/10.3390/en13123079.
Full textSuh, S. W. "A Hybrid Near-Field/Far-Field Thermal Discharge Model for Coastal Areas." Marine Pollution Bulletin 43, no. 7-12 (July 2001): 225–33. http://dx.doi.org/10.1016/s0025-326x(01)00074-1.
Full textKarma, Alain, and Wouter-Jan Rappel. "Phase-field model of dendritic sidebranching with thermal noise." Physical Review E 60, no. 4 (October 1, 1999): 3614–25. http://dx.doi.org/10.1103/physreve.60.3614.
Full textZubert, Mariusz, Tomasz Raszkowski, Agnieszka Samson, Marcin Janicki, and Andrzej Napieralski. "The distributed thermal model of fin field effect transistor." Microelectronics Reliability 67 (December 2016): 9–14. http://dx.doi.org/10.1016/j.microrel.2016.09.021.
Full textSinelnikov, D., D. Bulgadaryan, V. Kurnaev, and M. Lobov. "The model of thermal field emission from tungsten fuzz." Journal of Physics: Conference Series 941 (December 2017): 012024. http://dx.doi.org/10.1088/1742-6596/941/1/012024.
Full textJensen, Kevin L., Patrick G. O’Shea, and Donald W. Feldman. "Generalized electron emission model for field, thermal, and photoemission." Applied Physics Letters 81, no. 20 (November 11, 2002): 3867–69. http://dx.doi.org/10.1063/1.1521491.
Full textDissertations / Theses on the topic "Thermal field model"
Bawana, Niyem Mawenbe. "Thermal Response in a Field Oriented Controlled Three-phase Induction Motor." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7740.
Full textHuang, Zhida. "SIMULATION OF METAL GRAIN GROWTH IN LASER POWDER BED FUSION PROCESS USING PHASE FIELD THERMAL COUPLED MODEL." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1554391043588225.
Full textMacGinitie, Laura A. "Electrical and thermal modulation of protein synthesis in cartilage : a model for field effects on biological tissues." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/17222.
Full textTitle as it appears in M.I.T. Graduate List, Feb. 1988: Electrical and thermal modulation of protein synthesis in cartilage--a model for electric field effects on biological tissues.
Bibliography: leaves 264-281.
by Laura A. MacGinitie.
Ph.D.
Spiegel, Colleen. "Mathematical modeling of polymer exchange membrane fuel cells." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002730.
Full textSeaman, Shane Thomas. "Material Related Effects on the Structural Thermal Optical Performance of a Thermally Tunable Narrowband Interferometric Spectral Filter." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90799.
Full textDoctor of Philosophy
LiDAR (an acronym for Light Detection and Ranging) is a technology that can be used to measure properties of the atmosphere. It is similar to radar, but uses much smaller light waves rather than larger radio waves, enabling more detailed information to be obtained. High Spectral Resolution Lidar (HSRL) is a lidar technique that uses a high precision optical filter to distinguish between light that scatters from particulates (such as dust, smoke, or fog) and light that scatters from molecules (such as oxygen, nitrogen, or carbon dioxide) in the atmosphere. By separating the two types of backscattered light, higher accuracy measurements are possible that will enable improvements in climate models, air quality measurements, and climate forecasting. A spaceborne HSRL instrument can provide great impact in these areas by enabling near-continuous measurements across the Earth; however, the optical filter technology has typically been too complex for reliable long-duration spaceflight due to the need for complicated and expensive additional hardware. In this research, a high-performance HSRL optical filter that can be reliably operated by simply monitoring and adjusting the temperature has been designed, built, and tested. The greatly-reduced operational complexity has been made possible through a new process that enables more accurate prediction of the complicated interactions between the materials of the optical filter. This process is based on a combination of high-accuracy characterization of the materials and detailed structural-thermal-optical-performance (STOP) modeling. The overall design process, fabrication procedures, and characterization of the optical filter are presented.
上原, 拓也, Takuya UEHARA, 貴洋 辻野, and Takahiro TSUJINO. "フェーズフィールドモデルを用いた変態‐熱‐応力連成解析の定式化." 日本機械学会, 2006. http://hdl.handle.net/2237/9012.
Full textHasan, Md Mahmudul. "Thermal comfort conditions and perception by staff and patients in a Swedish health care center : A measurement and survey field study for summer conditions." Thesis, Högskolan i Gävle, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-34161.
Full textBagnoli, Annalisa. "Diffuse interface models for tumour growth within a non-isothermal Cahn-Hilliard theory for phase separation: thermodynamics, chemotaxis and stability." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14120/.
Full textCastellví, Fernández Quim. "Non-focal non-thermal electrical methods for cancer treatment." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/586217.
Full textLa majoria del mètodes físics d'ablació tumoral es basen en produir dany tèrmic de manera focalitzada. Tot i ser considerats una alternativa habitual a la resecció quirúrgica, el principi tèrmic de funcionament, comporta un risc per la preservació d'estructures vitals adjacents a la zona de tractament, tals com grans vasos o nervis. A més, el fet de ser focals, fa impracticable la seva aplicació en cas de múltiples nòduls o tumors de difícil accés. Aquesta tesi explora tractaments elèctrics no basats en temperatura, capaços de ser aplicats de manera no focal. S'han investigat dos tractaments: El primer, proposat per altres fa pocs anys, està basat en aplicar permanentment camps elèctrics alterns de baixa magnitud a través d'elèctrodes superficials. Aquí, aquest tractament s'ha estudiat in vivo tant per avaluar la seva eficàcia com per discernir si aquesta resideix en la temperatura. El segon tractament es basa en el fenomen d'electroporació i persegueix el tractament de nòduls hepàtics. En els tractaments basats en electroporació, s’apliquen breus camps elèctrics de gran magnitud per tal de permeabilitzar la membrana cel·lular. Això permet la penetració d’agents quimioterapèutics o produeix directament la mort cel·lular. En lloc d'utilitzar, com és habitual, agulles per tal d'aplicar el tractament, aquí s'explora tractar tot el fetge de forma no localitzada, fent servir grans elèctrodes plans i paral·lels. Utilitzant solucions d'alta conductivitat elèctrica, es pretén magnificar selectivament el camp elèctric sobre els tumors, sent així capaços de destruir tots els tumors i alhora preservar el teixit sà. El tractament proposat per els tumors hepàtics, requereix d'un equip generador actualment no disponible. El presentat treball inclou el disseny d'una nova topologia de generadors capaç de complir amb els requisits.
上原, 拓也, Takuya UEHARA, 貴洋 辻野, and Takahiro TSUJINO. "フェーズフィールドモデルによる析出相内部の応力変化と残留応力のシミュレーション." 日本機械学会, 2006. http://hdl.handle.net/2237/9013.
Full textBooks on the topic "Thermal field model"
Nicol, Fergus. Thermal comfort: A handbook for field studies toward an adaptive model. London: University ofEast London, on behalf of the UK Collaborative Group on Thermal Comfort, 1993.
Find full textMiller, Robert T. Field observations, preliminary model analysis, and aquifer thermal efficiency: Cyclic injection, storage, and withdrawal of heated water in a sandstone aquifer at St. Paul, Minnesota. Washington: U.S. G.P.O., 1993.
Find full textAnholt, Robert. Electrical and thermal characterization of MESFETs, HEMTs, and HBTs. Boston: Artech House, 1995.
Find full textservice), SpringerLink (Online, ed. From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence: The AdS/CFT Correspondence. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textS̆imunić, Dina. Thermal and stimutalting effects of time-varying magnetic fields during MRI. Aachen: Shaker, 1995.
Find full textMagdalena, Nuñez, ed. Progress in electrochemistry research. Hauppauge, N.Y: Nova Science Publishers, 2005.
Find full textLorenzo, Pareschi, and Russo Giovanni, eds. Modelling and numerics of kinetic dissipative systems. Hauppauge, N.Y: Nova Science Publishers, 2005.
Find full textP, Norris Charles, ed. Surface science: New research. Hauppauge, N.Y: Nova Science Publishers, 2005.
Find full textN, Linke A., ed. Progress in chemical physics research. Hauppauge, N.Y: Nova Science Publishers, 2005.
Find full textMagdalena, Nuñez, ed. Trends in electrochemistry research. New York: Nova Science Publishers, 2005.
Find full textBook chapters on the topic "Thermal field model"
Denny, Allen, Neelkanth Kirloskar, Babu Rao Ponangi, Rex Joseph, and V. Krishna. "Electro-Thermal Model for Field Effective Transistors." In Recent Advances in Hybrid and Electric Automotive Technologies, 277–84. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2091-2_21.
Full textJensen, Kevin L. "A Thermal-Field-Photoemission Model and Its Application." In Modern Developments in Vacuum Electron Sources, 345–85. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47291-7_8.
Full textSvehla, Drazen. "Model of Solar Radiation Pressure and Thermal Re-radiation." In Geometrical Theory of Satellite Orbits and Gravity Field, 269–95. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76873-1_19.
Full textLiu, Hong, Jin Guo Li, and Yong Tian Wang. "Fast Computing Model for Thermal Field of Auto Lamp." In Optics Design and Precision Manufacturing Technologies, 783–88. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-458-8.783.
Full textSun, Zichao, Weicun Zhang, and Yan Liu. "Research on the Temperature Field and Thermal Roll Shape of Cold Rolling Model." In Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019), 475–84. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0474-7_45.
Full textWu, Weige, and Gang Liu. "Modeling and Validation of Thermal-Fluid Field of Transformer Winding Based on a Product-Level Heating and Cooling Model." In Modeling and Application of Electromagnetic and Thermal Field in Electrical Engineering, 665–85. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0173-9_16.
Full textMartin, Katharina, Dennis Daub, Burkard Esser, Ali Gülhan, and Stefanie Reese. "Numerical Modelling of Fluid-Structure Interaction for Thermal Buckling in Hypersonic Flow." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 341–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_22.
Full textBarfusz, Oliver, Felix Hötte, Stefanie Reese, and Matthias Haupt. "Pseudo-transient 3D Conjugate Heat Transfer Simulation and Lifetime Prediction of a Rocket Combustion Chamber." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 265–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_17.
Full textZhao, Junwei, Xuming Mao, Ruhua Wang, Wenjiang Wang, Zhenwei Zhang, and Hongjun Xue. "Numerical Simulation of Inner Hydro-field and Comfortable Evaluation Based on Human Thermal Comfortable Model in Cockpit." In Informatics in Control, Automation and Robotics, 543–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25899-2_73.
Full textGentilal, Nichal, Ricardo Salvador, and Pedro Cavaleiro Miranda. "A Thermal Study of Tumor-Treating Fields for Glioblastoma Therapy." In Brain and Human Body Modeling 2020, 37–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_3.
Full textConference papers on the topic "Thermal field model"
Ababneh, Mohammed T., Frank M. Gerner, Pramod Chamarthy, Peter de Bock, Shakti Chauhan, and Tao Deng. "Thermo-Fluid Model for High Thermal Conductivity Thermal Ground Planes." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75185.
Full textSchaich, David, Raghav G. Jha, and Anosh Joseph. "Thermal phase structure of a supersymmetric matrix model." In 37th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2020. http://dx.doi.org/10.22323/1.363.0069.
Full textPardo, F., P. Lopez, D. Cabello, and M. Balsi. "FPGA Implementation of 3-D Thermal Model Simulator." In 2006 International Conference on Field Programmable Logic and Applications. IEEE, 2006. http://dx.doi.org/10.1109/fpl.2006.311278.
Full textJia, Wangkun, Brian T. Helenbrook, and Ming-C. Cheng. "Thermal modeling of multi-gate field effect transistors based on a reduced order model." In 2014 30th Semiconductor Thermal Measurement & Management Symposium (SEMI-THERM). IEEE, 2014. http://dx.doi.org/10.1109/semi-therm.2014.6892245.
Full textLin, M. C. "A self-consistent general thermal field emission model." In 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6383346.
Full textLin, M. C. "A self-consistent general thermal field emission model." In 2012 IEEE Thirteenth International Vacuum Electronics Conference (IVEC). IEEE, 2012. http://dx.doi.org/10.1109/ivec.2012.6262201.
Full textYifeng, Wang, Yuan Kejian, Liu Yongzhi, and Liu Shuang. "A 3-D Thermal Field Model in Phosphate Glass." In 2006 International Conference on Communications, Circuits and Systems. IEEE, 2006. http://dx.doi.org/10.1109/icccas.2006.285053.
Full textPinto Fortkamp, Fábio, Jader Barbosa, and Jaime Lozano. "Analytical model of the magnetic field generated by nested infinite Halbach cylinders." In 16th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2016. http://dx.doi.org/10.26678/abcm.encit2016.cit2016-0220.
Full textMaranda, W., and M. Piotrowicz. "Extraction of thermal model parameters for field-installed photovoltaic module." In 2010 27th International Conference on Microelectronics (MIEL 2010). IEEE, 2010. http://dx.doi.org/10.1109/miel.2010.5490512.
Full textSaito, Hana, Mari Carmen Banuls, Krzysztof Cichy, J. Ignacio Cirac, and Karl Jansen. "Thermal evolution of the 1-flavour Schwinger model with using Matrix Product States." In The 33rd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.251.0283.
Full textReports on the topic "Thermal field model"
Doughty, C., and Aharon, Tsang, Chin-Fu Nir. Seasonal thermal energy storage in unsaturated soils: Model development and field validation. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/10176364.
Full textWang, D. Far-field model of the regional influence of effluent plumes from ocean thermal energy conversion (OTEC) plants. Office of Scientific and Technical Information (OSTI), July 1985. http://dx.doi.org/10.2172/5451995.
Full textDavidson, R. C., P. Stoltz, and C. Chen. Intense nonneutral beam propagation in a periodic solenoidal field using a macroscopic fluid model with zero thermal emittance. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/304187.
Full textClausen, Jay, Michael Musty, Anna Wagner, Susan Frankenstein, and Jason Dorvee. Modeling of a multi-month thermal IR study. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41060.
Full textVanderGheynst, Jean, Michael Raviv, Jim Stapleton, and Dror Minz. Effect of Combined Solarization and in Solum Compost Decomposition on Soil Health. United States Department of Agriculture, October 2013. http://dx.doi.org/10.32747/2013.7594388.bard.
Full textDoyle, Jesse D., Nolan R. Hoffman, and M. Kelvin Taylor. Aircraft Arrestor System Panel Joint Improvement. U.S. Army Engineer Research and Development Center, August 2021. http://dx.doi.org/10.21079/11681/41342.
Full textGreenberg, H., M. Sutton, M. Sharma, and A. Barnwell. REPOSITORY NEAR-FIELD THERMAL MODELING UPDATEINCLUDING ANALYSIS OF OPEN MODE DESIGN CONCEPTS - DRAFT REV. M. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1056623.
Full textLiu, H. H., L. Li, L. Zheng, J. E. Houseworth, and J. Rutqvist. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock. Office of Scientific and Technical Information (OSTI), June 2011. http://dx.doi.org/10.2172/1050698.
Full textBaral, Aniruddha, Jeffrey Roesler, M. Ley, Shinhyu Kang, Loren Emerson, Zane Lloyd, Braden Boyd, and Marllon Cook. High-volume Fly Ash Concrete for Pavements Findings: Volume 1. Illinois Center for Transportation, September 2021. http://dx.doi.org/10.36501/0197-9191/21-030.
Full textChen, Z., S. E. Grasby, C. Deblonde, and X. Liu. AI-enabled remote sensing data interpretation for geothermal resource evaluation as applied to the Mount Meager geothermal prospective area. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330008.
Full text