Academic literature on the topic 'THERMAL ENERGY STORAGE SYSTEM (TES)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'THERMAL ENERGY STORAGE SYSTEM (TES).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "THERMAL ENERGY STORAGE SYSTEM (TES)"

1

Pompei, Laura, Fabio Nardecchia, and Adio Miliozzi. "Current, Projected Performance and Costs of Thermal Energy Storage." Processes 11, no. 3 (February 28, 2023): 729. http://dx.doi.org/10.3390/pr11030729.

Full text
Abstract:
The technology for storing thermal energy as sensible heat, latent heat, or thermochemical energy has greatly evolved in recent years, and it is expected to grow up to about 10.1 billion US dollars by 2027. A thermal energy storage (TES) system can significantly improve industrial energy efficiency and eliminate the need for additional energy supply in commercial and residential applications. This study is a first-of-its-kind specific review of the current projected performance and costs of thermal energy storage. This paper presents an overview of the main typologies of sensible heat (SH-TES), latent heat (LH-TES), and thermochemical energy (TCS) as well as their application in European countries. With regard to future challenges, the installation of TES systems in buildings is being implemented at a rate of 5%; cogeneration application with TES is attested to 10.2%; TES installation in the industry sector accounts for 5% of the final energy consumption. From the market perspective, the share of TES is expected to be dominated by SH-TES technologies due to their residential and industrial applications. With regard to the cost, the SH-TES system is typically more affordable than the LH-TES system or the TCS system because it consists of a simple tank containing the medium and the charging/discharging equipment.
APA, Harvard, Vancouver, ISO, and other styles
2

Findik, Fehim, and Kemal Ermiş. "Thermal energy storage." Sustainable Engineering and Innovation 2, no. 2 (July 14, 2020): 66–88. http://dx.doi.org/10.37868/sei.v2i2.115.

Full text
Abstract:
Thermal energy storage (TES) is an advanced energy technology that is attracting increasing interest for thermal applications such as space and water heating, cooling, and air conditioning. TES systems have enormous potential to facilitate more effective use of thermal equipment and large-scale energy substitutions that are economic. TES appears to be the most appropriate method for correcting the mismatch that sometimes occurs between the supply and demand of energy. It is therefore a very attractive technology for meeting society’s needs and desires for more efficient and environmentally benign energy use. In this study, thermal energy storage systems, energy storage and methods, hydrogen for energy storage and technologies are reviewed.
APA, Harvard, Vancouver, ISO, and other styles
3

Demchenko, Vladimir, Alina Konyk, and Vladimir Falko. "Mobile Thermal Energy Storage." NTU "KhPI" Bulletin: Power and heat engineering processes and equipment, no. 3 (December 30, 2021): 44–50. http://dx.doi.org/10.20998/2078-774x.2021.03.06.

Full text
Abstract:
The article is devoted to topical issues related to the storage, accumulation and transportation of heat by stationary and mobile heat storage. Analysis of the current state of the district heating system indicates significant heat losses at all stages of providing the consumer with heat. The use of heat storage in heat supply systems leads to balancing the heat supply system, namely, the peak load is reduced; heat production schedules are optimized by accumulating excess energy and using it during emergency outages; heat losses caused by uneven operation of thermal equipment during heat generation are reduced; the need for primary energy and fuel consumption is reduced, as well as the amount of harmful emissions into the environment. The main focus is on mobile thermal batteries (M-TES). The use of M-TES makes it possible to build a completely new discrete heat supply system without the traditional pipeline transport of the heat carrier. The defining parameters affecting the efficiency of the M-TES are the reliability and convenience of the design, the efficiency and volume of the “working fluid”, the operating temperature of the MTA recharging and the distance of transportation from the heat source to the consumer. The article contains examples of the implementation of mobile heat accumulators in the world and in Ukraine, their technical and technological characteristics, scope and degree of efficiency. The technical indicators of the implemented project for the creation of a mobile heat accumulator located in a 20-foot container and intended for transportation by any available means of transport are given.
APA, Harvard, Vancouver, ISO, and other styles
4

Tan, Simon, and Andrew Wahlen. "Adiabatic Compressed Air Energy Storage: An analysis on the effect of thermal energy storage insulation thermal conductivity on round-trip efficiency." PAM Review Energy Science & Technology 6 (May 24, 2019): 56–72. http://dx.doi.org/10.5130/pamr.v6i0.1547.

Full text
Abstract:
Compressed Air Energy Storage (CAES) has demonstrated promising potential for widescale use in the power distribution network, especially where renewables are concerned.Current plants are inefficient when compared to other technologies such as battery and pumped hydro. Presently, the greatest round-trip efficiency of any commercial CAES plant is 54% (McIntosh Plant), while the highest energy efficiency of any experimental plant is 66-70% (ADELE Project). So far, Adiabatic CAES systems have yielded promising results with round-trip efficiencies generally ranging between 65-75%, with some small-scale system models yielding round-trip efficiencies exceeding 90%. Thus far, minimal research has been devoted to analysing the thermodynamic effects of the thermal energy storage (TES) insulation. This metastudy identifies current industry and research trends pertaining to ACAES with a focus on the TES insulation supported by model simulations. Charged standby time and insulation of the TES on overall system efficiency was determined by performing a thermodynamic analysis of an ACAES system using packed bed heat exchangers (PBHE) for TES. The results provide insight into the effect various insulators, including concrete, glass wool and silica-aerogel, have on exergy loss in the TES and overall system efficiency. TES insulation should be carefully considered and selected according to the expected duration of fully charged standby time of the ACAES system. Keywords: Compressed air energy storage; adiabatic compressed air energy storage; thermal energy storage; thermodynamic efficiency; renewable energy storage, packed bed heat exchanger
APA, Harvard, Vancouver, ISO, and other styles
5

Mao, Qianjun, Ning Liu, and Li Peng. "Recent Investigations of Phase Change Materials Use in Solar Thermal Energy Storage System." Advances in Materials Science and Engineering 2018 (December 12, 2018): 1–13. http://dx.doi.org/10.1155/2018/9410560.

Full text
Abstract:
Solar thermal energy storage (TES) is an efficient way to solve the conflict between unsteady input energy and steady output energy in concentrating solar power plant. The latent heat thermal energy storage (LHTES) system is a main method of storing thermal energy using phase change materials (PCMs). Thermal properties, that is, melting points and latent heat, are the key parameters of PCMs for the TES system. In this paper, the PCMs are classified into inorganic and organic by the chemical composition, and according to the melting point, the inorganic PCMs can be divided into three contributions: low-temperature heat storage (less than 120°C), medium-temperature heat storage (120–300°C), and high-temperature heat storage (more than 300°C). The present article focuses mainly on the recent investigations on the melting point and latent heat of PCMs via DSC setup in the solar TES systems. The results can provide a good reference for the selection and utilization of PCMs in the solar TES systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Yi, Joong Yong, Kyung Min Kim, Jongjun Lee, and Mun Sei Oh. "Exergy Analysis for Utilizing Latent Energy of Thermal Energy Storage System in District Heating." Energies 12, no. 7 (April 11, 2019): 1391. http://dx.doi.org/10.3390/en12071391.

Full text
Abstract:
The thermal energy storage (TES) system stores the district heating (DH) water when the heating load is low. Since a TES system stores heat at atmospheric pressure, the DH water temperature of 115 °C has to be lowered to less than 100 °C. Therefore, the temperature drop of the DH water results in thermal loss during storage. In addition, the DH water must have high pressure to supply heat to DH users a long distance from the CHP plant. If heat is to be stored in the TES system, a pressure drop in the throttling valve occurs. These exergy losses, which occur in the thermal storage process of the general TES system, can be analyzed by exergy analysis to identify the location, cause and the amount of loss. This study evaluated the efficiency improvement of a TES system through exergy calculation in the heat storage process. The method involves power generation technology using the organic Rankine cycle (ORC) and a hydraulic turbine. As a result, the 930 kW capacity ORC and the 270 kW capacity hydraulic turbine were considered suitable for a heat storage system that stores 3000 m3/h. In this case, each power generation facility was 50% of the thermal storage capacity, which was attributed to the variation of actual heat storage from the annual operating pattern analysis. Therefore, it was possible to produce 1200 kW of power by recovering the exergy losses. The payback period of the ORC and the hydraulic turbine will be 3.5 and 7.13 years, respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Enescu, Diana, Gianfranco Chicco, Radu Porumb, and George Seritan. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends." Energies 13, no. 2 (January 10, 2020): 340. http://dx.doi.org/10.3390/en13020340.

Full text
Abstract:
Thermal energy systems (TES) contribute to the on-going process that leads to higher integration among different energy systems, with the aim of reaching a cleaner, more flexible and sustainable use of the energy resources. This paper reviews the current literature that refers to the development and exploitation of TES-based solutions in systems connected to the electrical grid. These solutions facilitate the energy system integration to get additional flexibility for energy management, enable better use of variable renewable energy sources (RES), and contribute to the modernisation of the energy system infrastructures, the enhancement of the grid operation practices that include energy shifting, and the provision of cost-effective grid services. This paper offers a complementary view with respect to other reviews that deal with energy storage technologies, materials for TES applications, TES for buildings, and contributions of electrical energy storage for grid applications. The main aspects addressed are the characteristics, parameters and models of the TES systems, the deployment of TES in systems with variable RES, microgrids, and multi-energy networks, and the emerging trends for TES applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Biyanto, Totok R., Akhmad F. Alhikami, Gunawan Nugroho, Ridho Hantoro, Ridho Bayuaji, Hudiyo Firmanto, Joko Waluyo, and Agus Imam Sonhaji. "Thermal Energy Storage Optimization in Shopping Center Buildings." Journal of Engineering and Technological Sciences 47, no. 5 (October 30, 2015): 549–67. http://dx.doi.org/10.5614/j.eng.technol.sci.2015.47.5.7.

Full text
Abstract:
In this research, cooling system optimization using thermal energy storage (TES) in shopping center buildings was investigated. Cooling systems in commercial buildings account for up to 50% of their total energy consumption. This incurs high electricity costs related to the tariffs determined by the Indonesian government with the price during peak hours up to twice higher than during off-peak hours. Considering the problem, shifting the use of electrical load away from peak hours is desirable. This may be achieved by using a cooling system with TES. In a TES system, a chiller produces cold water to provide the required cooling load and saves it to a storage tank. Heat loss in the storage tank has to be considered because greater heat loss requires additional chiller capacity and investment costs. Optimization of the cooling system was done by minimizing the combination of chiller capacity, cooling load and heat loss using simplex linear programming. The results showed that up to 20% electricity cost savings can be achieved for a standalone shopping center building.
APA, Harvard, Vancouver, ISO, and other styles
9

Szybiak, Maciej, and Maciej Jaworski. "Design of thermal energy storage unit for Compressed Air Energy Storage system." E3S Web of Conferences 70 (2018): 01015. http://dx.doi.org/10.1051/e3sconf/20187001015.

Full text
Abstract:
The aim of this paper is to present a new concept of a high-temperature thermal energy storage (TES) for the application in the compressed air energy storage (CAES) systems. The proposed storage unit combines the advantages of pressurized containers with packed beds, e.g. of rocks, with the strengths of non-pressurized systems such as those encountered in CSP plants. Designed TES unit consists of the heat exchanger located inside a high-temperature thermocline-type vessel with molten HITEC® salt used as a heat storing material. In terms of the geometry of the designed heat exchanger, a tube-in-tube helical coil type was chosen due to its higher convective heat transfer coefficients in comparison with straight tubes. To find the most suitable case, four helical coils with different dimensions (diameter, pitch) were considered. Heat transfer and pressure drop analysis for each configuration were conducted. In particular, convective and overall heat transfer coefficients as well as friction factors were computed based on the empirical correlations. To verify the obtained results, the analysis based on numerical approach has been carried out with the use of ANSYS Fluent software for the most suitable case.
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Min-Hwi, Youngsub An, Hong-Jin Joo, Dong-Won Lee, and Jae-Ho Yun. "Self-Sufficiency and Energy Savings of Renewable Thermal Energy Systems for an Energy-Sharing Community." Energies 14, no. 14 (July 15, 2021): 4284. http://dx.doi.org/10.3390/en14144284.

Full text
Abstract:
Due to increased grid problems caused by renewable energy systems being used to realize zero energy buildings and communities, the importance of energy sharing and self-sufficiency of renewable energy also increased. In this study, the energy performance of an energy-sharing community was investigated to improve its energy efficiency and renewable energy self-sufficiency. For a case study, a smart village was selected via detailed simulation. In this study, the thermal energy for cooling, heating, and domestic hot water was produced by ground source heat pumps, which were integrated with thermal energy storage (TES) with solar energy systems. We observed that the ST system integrated with TES showed higher self-sufficiency with grid interaction than the PV and PVT systems. This was due to the heat pump system being connected to thermal energy storage, which was operated as an energy storage system. Consequently, we also found that the ST system had a lower operating energy, CO2 emissions, and operating costs compared with the PV and PVT systems.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "THERMAL ENERGY STORAGE SYSTEM (TES)"

1

Darkwa, K. "Thermal energy storage (TES) systems involving thermochemical reactions." Thesis, Cranfield University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

PISTACCHIO, STEFANO. "Experimental measurement of the Molten Salts (MS) Thermal Conductivity and verification of the Thermocline stability in Thermal Energy Storage (TES) system." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2015. http://hdl.handle.net/2108/202929.

Full text
Abstract:
A Thermal conductivity probe fo rhigh temperature(HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature ther- mal conductivity probe(AT-TCP) due to the good performance softhislast.The construction procedure and the preliminary tests are accurately described.The probe contains a PtwireasheaterandatypeKthermocouple(K-TC)as temperature sensor, and its size are so small (diameter0.6mmandlength60mm) to guaranteea length to diameter ratioofabout100.Calibration tests with glycerolfor temperatures between 0C and 60C have shown a good Agreement with literature data,within3%.First tests on aternarysalt(18%inmassof NaNO3, 52% KNO3, and30% LiNO3) at120C and 150C , have given good results:an Agreement was found with the Thermal conduc- tivity of the standard solar salt(60% NaNO3, 40% KNO3), even if the data for this last have been extrapolated,being it solidat those temperatures. Unfortunately, at the higher temperaturetested(200C), the viscosityof the salt highly decreases,and free convection starts, making the measurements unreliable. A numerica linvestigation of the performance of the storage and evolution of the ther- mocline for theOPTSFull scaleconguration and for the OPTSsystem of theEnea Casaccia facility is carriedon.The full scale conguration has a tankheightinthe order of12m,because this choice allow stop operate the systeminnatural convection regime forlow charge fraction softh e storage.In order to obtainnumerical results in a time scalesuitable with computer resources and activities, the adoption of anaxisym- metric simplication of the geometriesis pursuit. The code OpenFOAMversion2.2.0 is used to perform the simulations. Code and model settings together with the adopted computational grids,initia land boundary conditionsare described in the following sec- tions. A summary of the simulation results is then given. A steady-state numerical investigation of the MSHeatExchanger prototype developed in ENEA Casaccia is presented.This component is realized to perform the heat exchange between moltensalts(aternarymixture ) and adiathermicoil and with a moderate tem- peraturegap(38C). In order to optimize the heate xchangereciency and toobtain the greatest contact are a between uids the pipe line series of diathermicoil is designed with anhelical geometry.The moltensaltsside is aconvectionalcy lindricalgeome- try with the Greater diameter in the region where pipe line series are located while the other portion of the heater has a diameter lower than the length of the cylinder.The codeOpenFOAMversion2.2.0 is use d to perform the simulations for the discharging phase. Code and model settings together with the adopted computational grids, initial and boundary conditions are described in the following sections and summary of the simulation results is then given.
APA, Harvard, Vancouver, ISO, and other styles
3

Ruiz-Cabañas, F. Javier. "Corrosion evaluation of molten salts thermal energy storage (TES) systems in concentrated solar power plants (CSP)." Doctoral thesis, Universitat de Lleida, 2020. http://hdl.handle.net/10803/671680.

Full text
Abstract:
El protagonisme creixent de la tecnologia solar termoelèctrica entre el ventall de les energies renovables es centra en la seva capacitat d’adaptar la seva producció a la demanda energètica exigida. La gestionabilitat d’aquest tipus de centrals s’ha aconseguit amb la integració de sistemes d’emmagatzematge tèrmic en les mateixes. La major part dels sistemes d’emmagatzematge tèrmic, ja sigui els que s’utilitzen a nivell comercial com aquells que es troben en fase de desenvolupament proposen l’ús de sals inorgàniques foses com a medi d’emmagatzematge. Aquestes sals presenten l’inconvenient de la seva alta corrosivitat a altes temperatures. Per un costat, s’han analitzat els fenòmens de corrosió associats a les sals solars utilitzades a la planta pilot TES-PS10 mitjançant la instal·lació de racks de testimonis de corrosió als tancs de sals. A més, al finalitzar l’operació de la instal·lació pilot s’ha dut a terme un estudi post-mortem dels seus. Finalment, amb l’objectiu d’abaratir el cost de l’inventari de sals, s’ha analitzat a nivell de laboratori la corrosivitat de diferents mescles de nitrats de baixa puresa. El segon bloc de la tesi es centra en els sistemes d’emmagatzematge tèrmic en calor latent. Concretament, s’analitza la corrosió associada a la mescla peritèctica 46% LiOH-54% KOH proposta com a material de canvi de fase en un mòdul d’evaporació d’instal·lacions termoelèctriques de generació directa de vapor. D’aquesta forma, s’han dut a terme una sèrie d’assajos a nivell de laboratori amb l’objectiu d’avaluar el comportament envers la corrosió de diferents materials en contacte amb aquests hidròxids.
El creciente protagonismo de la tecnología solar se centra en su capacidad para adaptar su producción a la demanda energética exigida. La gestionabilidad de este tipo de centrales se ha conseguido mediante la integración de sistemas de almacenamiento térmico en sales fundidas. El uso de sales fundidas en sistemas de almacenamiento térmico presenta el hándicap de su corrosividad a alta temperatura. El primer bloque de la Tesis analiza los fenómenos de corrosión asociados a las sales solares en la planta piloto TES-PS10 mediante la instalación de racks de corrosión en los tanques de sales. Además, se ha llevado a cabo un estudio post-mortem de componentes de la instalación. Finalmente, se ha analizado a nivel de laboratorio la corrosividad de distintas mezclas de nitrato de baja pureza. El segundo bloque de la tesis se centra en los sistemas de almacenamiento en calor latente. En concreto, se analiza la corrosión asociada a la mezcla peritéctica 46% LiOH-54% KOH propuesta como material de cambio de fase en el módulo de evaporación en plantas de generación directa de vapor. De este modo, se han llevado a cabo ensayos de corrosión a nivel de laboratorio para evaluar el comportamiento a corrosión de distintos materiales en contacto con los hidróxidos.
The growing of concentrated solar power (CSP) within the different renewable energies is due to its ability to adapt the production to the required energy demand. The dispatchability of this type of plants has been achieved through the integration of molten salts thermal storage systems (TES). Molten salts have a handicap associated to their corrosiveness at high temperature. First block of this Thesis analyzes the corrosion phenomena associated with solar salts used in TES-PS10 pilot plant by installing corrosion racks in the salt tanks. Moreover, a postmortem study of different components was performed after facility shut down. Finally, in order to reduce the cost of the salt inventory in TES systems, the corrosivity of different low purity nitrates mixtures has been analyzed at laboratory scale. The second block of the Thesis focuses on latent heat storage systems. Specifically, it has been analyzed the corrosion associated with the proposed 46% LiOH-54% KOH peritectic mixture as a phase change material in the evaporation module of direct steam generation (DSG) CSP plants. Thus, corrosion tests have been performed at laboratory level to evaluate the corrosion performance of several materials in contact with such hydroxides.
APA, Harvard, Vancouver, ISO, and other styles
4

Egersand, Anton, and Emil Fransson. "THE POTENTIAL OF A LATENT HEAT THERMAL ENERGY STORAGE : An Investigation on Rocklunda's Sport Facilities." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-55539.

Full text
Abstract:
The world is ever increasing in its energy usage, making energy that is sustainable and secure harder to achieve. To fulfil the Paris agreement to limit global warming, the world needs to transition from fossil fuels toward more renewable energy sources, like wind and solar, but these sources have fluctuation in supply which often create a mismatch with demand. To combat this issue, thermal energy storage can be utilized, and one such technology is latent heat thermal energy storage. This study aimed to investigate the potential of latent heat thermal energy storage by developing a simple model of such a system and studying its impact on Rocklunda’s sport facilities. The model was developed by using MATLAB, primarily using the photovoltaic overproduction of the facilities to store as energy for the latent heat thermal energy storage. The implemented storage, based on the model’s result, had overall positive impact on the facilities. The optimized storage capacity was about 510 kWh, which throughout the storage’s lifetime would save ~4 989 MWh worth of heat by using the best performing phase change material: aluminium-silicon. The storage would also be able to utilize ~82% of the annual photovoltaic overproduction that would otherwise be unused/sold as well as reducing the heat demand by ~12% by using the heat stored via the storage. The implementation also proved to have beneficial effects on the environment as the saved heat was the equivalent of mitigating ~304 ton of CO2 emissions. Furthermore, there is a profit of ~236 000 SEK.
Reduction and Reuse of energy with interconnected Distribution and Demand (R2D2)
APA, Harvard, Vancouver, ISO, and other styles
5

Gunasekara, Saman Nimali. "Phase Equilibrium-aided Design of Phase Change Materials from Blends : For Thermal Energy Storage." Doctoral thesis, KTH, Kraft- och värmeteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-212440.

Full text
Abstract:
Climate change is no longer imminent but eminent. To combat climate change, effective, efficient and smart energy use is imperative. Thermal energy storage (TES) with phase change materials (PCMs) is one attractive choice to realize this. Besides suitable phase change temperatures and enthalpies, the PCMs should also be robust, non-toxic, environmental-friendly and cost-effective. Cost-effective PCMs can be realized in bulk blends. Blends however do not have robust phase change unless chosen articulately. This thesis links bulk blends and robust, cost-effective PCMs via the systematic design of blends as PCMs involving phase equilibrium evaluations. The key fundamental phase equilibrium knowledge vital to accurately select robust PCMs within blends is established here. A congruent melting composition is the most PCM-ideal among blends. Eutectics are nearly ideal if supercooling is absent. Any incongruent melting composition, including peritectics, are unsuitable as PCMs. A comprehensive state-of-the-art evaluation of the phase equilibrium-based PCM design exposed the underinvestigated categories: congruent melting compositions, metal alloys, polyols and fats. Here the methods and conditions essential for a comprehensive and transparent phase equilibrium assessment for designing PCMs in blends are specified. The phase diagrams of the systems erythritol-xylitol and dodecane-tridecane with PCM potential are comprehensively evaluated. The erythritol-xylitol system contains a eutectic in a partially isomorphous system unlike in a non-isomorphous system as previous literature proposed. The dodecane-tridecane system forms a probable congruent minimum-melting solid solution, but not a maximum-melting liquidus or a eutectic as was previously proposed. The sustainability aspects of a PCM-based TES system are also investigated. Erythritol becomes cost-effective if produced using glycerol from bio-diesel production. Olive oil is cost-effective and has potential PCM compositions for cold storage. A critical need exists in the standardization of methods and transparent results reporting of the phase equilibrium investigations in the PCM-context. This can be achieved e.g. through international TES collaboration platforms.
Energi är en integrerad del av samhället men energiprocesser leder till miljöbelastning, och klimatförändringar. Därför är effektiv energianvändning, ökad energieffektivitet och smart energihantering nödvändigt. Värmeenergilagring (TES) är ett attraktivt val för att bemöta detta behov, där ett lagringsalternativ med hög densitet är s.k. fasomvandlingsmaterial (PCM). Ett exempel på ett billigt, vanligt förekommande PCM är systemet vatten-is, vilket har använts av människor i tusentals år. För att tillgodose de många värme- och kylbehov som idag uppstår inom ett brett temperaturintervall, är det viktigt med innovativ design av PCM. Förutom lämplig fasförändringstemperaturer, entalpi och andra termofysikaliska egenskaper, bör PCM också ha robust fasändring, vara miljövänlig och kostnadseffektiv. För att förverkliga storskaliga TES system med PCM, är måste kostnadseffektivitet och robust funktion under många cykler bland de viktigaste utmaningarna. Kostnadseffektiva PCM kan bäst erhållas från naturliga eller industriella material i bulkskala, vilket i huvudsak leder till materialblandningar, snarare än rena ämnen. Blandningar uppvisar dock komplexa fasförändringsförlopp, underkylning och/eller inkongruent smältprocess som leder till fasseparation. Denna doktorsavhandling ger ny kunskap som möjliggör att bulkblandningar kan bli kostnadseffektiva och robusta PCM-material, med hjälp av den systematiskutvärdering av fasjämvikt och fasdiagram. Arbetet visar att detta kräver förståelse av relevanta grundläggande fasjämviktsteorier, omfattande termiska och fysikalisk-kemiska karakteriseringar, och allmänt tillämpliga teoretiska utvärderingar. Denna avhandling specificerar befintlig fasjämviktsteori för PCM-sammanhang, men sikte på att kunna välja robusta PCM blandningar med specifika egenskaper, beroende på tillämpning. Analysen visar att blandningar med en sammansättning som leder till kongruent smältande, där faser i jämvikt har samma sammansättning, är ideala bland PCM-blandningar. Kongruent smältande fasta faser som utgör föreningar eller fasta lösningar av ingående komponenter är därför ideala. Eutektiska blandningar är nästan lika bra som PCM, så länge underkylning inte förekommer. Därmed finns en stor potential för att finna och karakterisera PCM-ideala blandningar som bildar kongruent smältande föreningar eller fasta lösningar. Därigenom kan blandningar med en skarp, reversibel fasändring och utan fasseparation erhållas – egenskaper som liknar rena materialens fasändringsprocess. Vidare kan man, via fasdiagram, påvisa de blandningar som är inkongruent smältande, inklusive peritektiska blandningar, som är direkt olämpliga som PCM. Denna avhandling ger grundläggande kunskap som är en förutsättning för att designa PCM i blandningar. Genom en omfattande state-of-the-art utvärdering av fas-jämviktsbaserad PCM-design lyfter arbetet de PCM-idealiska blandningarna som hittills inte fått någon uppmärksamhet, såsom kongruenta smältande blandningar, och materialkategorierna metallegeringar, polyoler och fetter. Resultatet av arbetet visar dessutom att vissa PCM-material som ibland föreslås är direkt olämpliga då fasdiagram undersöks, bl a pga underkylning och även peritektiska system med fasseparation och degradering av kapaciteten (t ex Glauber-salt och natriumacetat-trihydrat). Denna avhandling specificerar och upprättar grundläggande teori samt tekniker, tillvägagångssätt och förhållanden som är nödvändiga för en omfattande och genomsynlig fasjämviktsbedömning, för utformning av PCM från blandningar för energilagering. Med detta som bas har följande fasdiagramtagits fram fullständigt: för erytritol-xylitol och för dodekan-tridekan, med PCM-potential för låg temperaturuppvärmning (60-120 °C) respektive frysning (-10 °C till -20 °C) utvärderas fullständigt. Erytritol-xylitol systemet har funnits vara eutektiskt i ett delvis isomorft system, snarare än ett icke-isomorft system vilket har föreslagits tidigare litteratur. Dodekan-tridekan systemet bildar ett system med kongruent smältande fast lösning (idealisk som en PCM) vid en minimumtemperatur, till skillnad från tidigare litteratur som föreslagt en maximumtemperatur, eller ett eutektiskt system. Teoretisk modellering av fasjämvikt har också genomförts för att komplettera det experimentella fasdiagrammet för systemet erytritol-xylitol. Efter granskning av de metoder som använts tidigare i PCM-litteraturen har här valts ett generiskt tillvägagångssätt (CALPHAD-metoden). Denna generiska metod kan bedöma vilken typ av material och fasändring som helst, till skillnad från en tidigare använda metoder som är specifika för materialtyper eller kemiska egenskaper. Denna teoretiska studie bekräftar termodynamiskt solvus, solidus, eutektisk punkt och erytritol-xylitol fasdiagrammet i sin helhet. Vad gäller hållbarhetsaspekter med PCM-baserad TES, lyfter denna avhandling fokus på förnybara och kostnadseffektiva material (t.ex. polyoler och fetter) som PCM. Som exempel har här undersökts erytritol och olivolja, med förnybart ursprung. Erytritol skulle kunna bli ett kostnadseffektivt PCM (163 USD/kWh), om det produceras av glycerol vilket är en biprodukt från biodiesel/bioetanolframställning. Olivolja är ännu ett kostnadseffektivt material (144 USD/kWh), och som här har påvisats innehålla potentiella PCM sammansättningar med lämpliga fasändringsegenskaper för kylatillämpningar. En övergripande slutsats från denna avhandling är att det finns ett behov av att standardisera tekniker, metoder och transparent resultatrapportering när det gäller undersökningar av fasjämvikt och fasdiagram i PCM-sammanhang. Internationella samarbetsplattformar för TES är en väg att koordinera arbetet.

QC 20170830

APA, Harvard, Vancouver, ISO, and other styles
6

Prieto, Cristina. "Advanced thermal energy storage research in demo plants for commercial systems." Doctoral thesis, Universitat de Lleida, 2016. http://hdl.handle.net/10803/399235.

Full text
Abstract:
La present tesis s’enmarca en el camp/sector de l’emmagatzematge d’energia tèrmica, concretament en el procès de disseny i optimització que comporta el desenvolupament d’una tecnologia d’emmagatzematge tèrmic. Per aquest fi s’han dissenyat, construit, operat i analitzat dues plantes prototip, la primera d’elles situada a la Universitat de Lleida amb una capacitate de 66 kWhth i la segona situada a la plataforma Solcar d’Abengoa, amb 8m5 MWhth. Al llarg d’aquesta tesis, es mostra el procès d’anàlisi, estudi i optimització realitzat per permetre desenvolupar els sistemes d’emmagatzematge tèrmic amb sals foses desde la seva etapa inicial de desenvolupament y la seva extrapolació a dissenys comercials, permetent el desenvolupament de tecnologies d’emmagatzematge tèrmic que ajudin a reduir els costs i a augmentar l’eficiència de les plantes de generació de concentració solar amb un objectiu clar: que l’electricitat d’origen solar sigui competitiva enfront a les plantes fòssils en l’horitzó 2020.
La presente tesis se encuadra en el campo del almacenamiento de energía térmica, en concreto en el proceso de diseño y optimización que conlleva el desarrollo de una tecnología de almacenamiento térmico. Para ello se han diseñado, construido, operado y analizado dos plantas prototipos, la primera de ellas sita en la Universidad de Lleida con una capacidad de 66 kWhth y la segunda sita en la plataforma Solucar de Abengoa, con 8,5 MWhth. A lo largo de esta tesis, se muestra el proceso de análisis, estudio y optimización realizado para permitir desarrollar los sistemas de almacenamiento térmico con sales fundidas desde su etapa inicial de desarrollo hasta su etapa de demostración y su extrapolación a diseños comerciales, permitiendo el desarrollo de tecnologías de almacenamiento que ayuden a reducir costes y a aumentar la eficiencia de las plantas de generación de concentración solar con un objetivo claro: que la electricidad de origen solar sea competitiva frente a las plantas fósiles en el horizonte 2020.
This thesis is framed in the field of thermal energy storage, particularly in the design and optimization process needed for the development of a thermal storage technology. For this purpose we have been designed, built, operated and analyzed two prototypes, the first one located at the University of Lleida with a capacity of 66 kWhth and the second one located at the Solucar Platform Abengoa, with 8,5 MWhth. Throughout this thesis, the process of analysis, study and optimization done allow developing thermal storage systems with molten salt from its initial stage of development to demonstration stage and their extrapolation to commercial designs. This development of the storage technologies helps to reduce costs and increase the efficiency of solar power plants concentration with a clear objective: solar electricity is competitive with fossil plants in 2020.
APA, Harvard, Vancouver, ISO, and other styles
7

NIRMALANANDHAN, VICTOR SANJIT. "HEAT TRANSFER AUGMENTATION FOR EXTERNAL ICE-ON-TUBE TES SYSTEMS USING POROUS COPPER MESH TO INCREASE VOLUMETRIC ICE PRODUCTION." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1100796827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Santo, Luca. "AA-CAES physical modelling: integration of a 1D TES code and plant performance analysis." Thesis, Uppsala universitet, Tillämpad kärnfysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-360448.

Full text
Abstract:
The focus of this thesis work was the development of an approachto couple a previosly existing Thermal Energy Storage (TES) modelwritten in C++ with a Simulink/Simscape plant model to simulate anAdvanced Adiabatic Compressed Air Energy Storage (AA-CAES) plant.After the creation and validation of such tool, the complete modelwas used to run simulations, with the aim of assessing the AA-CAESplant's performance under multiple patterns of charge anddischarge.Most of the works found in the literature only provide values ofstorage efficiency obtained from analytical approaches, whilethose that use simulation tools provide average values ofefficiencies when the plant is performing a series of identicalcycles of charge and discharge. During this thesis project,instead, simulations were performed for consecutive irregularcycles determined as the plant response to the electric grid powerrequest. The average efficiency values obtained provide thereforea better representation of how the plant would perform in realapplications.The results show that, under the assumptions made, the AA-CAESplant's overall storage efficiency is influenced very weakly byalterations of the charge-discharge patterns, and that goodperformances can be expected not only for identical chargedischargeconsucutive cycles, but for any pattern that observesthe cavern pressure limits, as long as the thermal energy storageis sized wisely.In addition, a sensitivity analysis was performed in order toassess the influence of turbomachinery efficiency on overallstorage efficiency, for a specified plant layout. The results showthat the turbine efficiency is the most affecting parameter to theplant's performance, while the impact of the main compressors'sinefficiency is mitigated by the thermal recovery that takes placein the TES.The present work confirms that AA-CAES is a promising technologyand that storage efficiencies above 70% can be achieved even inrealistic production scenarios.Finally, future steps for more accurate simulations of plants'performances and more detailed energy production scenarios areproposed.MSc ET 18007Examinator: Joakim WidénÄmnesgranskare: Ane HåkanssonHandledare:
APA, Harvard, Vancouver, ISO, and other styles
9

Xu, Ben. "Heat Transfer and Flow in Solar Energy and Bioenergy Systems." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/578616.

Full text
Abstract:
The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an effective heat transfer coefficient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl₂) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected that the proposed methods can provide useful information for engineers and researchers.
APA, Harvard, Vancouver, ISO, and other styles
10

Gravoille, Pauline. "CASE STUDY OF ACTIVE FREE COOLING WITH THERMAL ENERGY STORAGE TECHNOLOGY." Thesis, KTH, Kraft- och värmeteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-77778.

Full text
Abstract:
May 25, 2011, Reuters’ headline read: "New York State is prepared for summerelectricity demand". The NY operator forecasts for next summer a peak of 33GW, close to therecord ever reached. With soaring cooling demands, the electricity peak load represents a substantialconcern to the energy system. In the goal of peak shaving, research on alternative solutions based onThermal Energy Storage (TES), for both cooling and heating applications, has been largely performed.This thesis addresses thermal comfort applications with use of active free cooling through implementationof latent heat based TES. Active free cooling is based on the use of the freshness of a source, the outsideair for example, to cool down buildings. This work conceptualizes the implementation of TES basedcooling system with use of Phase Change Material in an in-house-built model. The principle of PhaseChange Material, or Latent Heat TES (LHTES), lies on latent energy which is the energy required for thematerial to change phase. In order to properly size this cooling system, a multi-objective optimization isadopted. This optimization, based on minimization of multi-objective functions, led to optimal designconfigurations. In parallel, the electrical consumption of the system and the volume uptake of the systemwere also considered. Through the obtained optimization studies, we identified non-linearinterdependency between the two objective functions: the cost of the system and the acceptable remainingcooling needs. By remaining cooling needs, we mean the cooling needs that the system cannot meet. As amatter of fact, sizing the system according to these cooling needs would imply a very high cost. It wasfound that for a certain amount of remaining cooling needs, the PCM-based cooling system reveals to bean interesting solution compared to conventional air conditioning in terms of electrical consumption andoverall system cost.
Best Master Thesis Award, granted by French Academic Institute
Cold Thermal Energy Storage
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "THERMAL ENERGY STORAGE SYSTEM (TES)"

1

C, Willhoite Bryon, Ommering Gert van, and Lewis Research Center, eds. Energy storage and thermal control system design status. [Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stocker, G. H. Solar heating using rocks: A solar heating system for homes using rock storage. Graham, Wash., U.S.A: Systems Co., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

E, Coles-Hamilton Carolyn, Lacy Dovie E, and United States. National Aeronautics and Space Administration., eds. Impact of thermal energy storage properties on solar dynamic space power conversion system mass. [Washington, DC]: National Aeronautics and Space Administration, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bouquet, Frank L., and G. H. Stocker. Solar Heating Using Rocks: A Solar Heating System for Homes Using Rock Storage. 3rd ed. Systems Co, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Energy Storage for Power Systems. Institution of Engineering & Technology, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "THERMAL ENERGY STORAGE SYSTEM (TES)"

1

Andújar Márquez, José Manuel, Francisca Segura Manzano, and Jesús Rey Luengo. "Thermal Energy Storage (TES): The Power of Heat." In Energy Storage Systems: Fundamentals, Classification and a Technical Comparative, 35–47. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38420-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ali, Hafiz Muhammad, Furqan Jamil, and Hamza Babar. "Thermal Energy Storage System." In Thermal Energy Storage, 13–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1131-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Garg, H. P., S. C. Mullick, and A. K. Bhargava. "Testing of Thermal Energy Storage System." In Solar Thermal Energy Storage, 591–608. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5301-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jaluria, Yogesh. "Design, Optimization and Control of a Thermal Energy Storage System." In Energy Storage Systems, 89–116. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2350-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pakhaluev, V. M., S. Ye Shcheklein, and A. V. Matveev. "Solar System with Seasonal Thermal Energy Storage." In Innovative Computing Trends and Applications, 79–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03898-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gupta, Hrishikesh, Priyanka Verma, Kirti Dhiman, Prince Chaudhary, and Neelam Khandelwal. "Analysis of Cascade Thermal Energy Storage System." In Lecture Notes in Mechanical Engineering, 131–46. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3498-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Harikrishnan, S., and A. D. Dhass. "Composite PCMs for Thermal Energy Storage System." In Thermal Transport Characteristics of Phase Change Materials and Nanofluids, 92–118. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003163633-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Soheila, Riahi, Evans Michael, Ming Liu, Rhys Jacob, and Frank Bruno. "Evolution of Melt Path in a Horizontal Shell and Tube Latent Heat Storage System for Concentrated Solar Power Plants." In Solid–Liquid Thermal Energy Storage, 257–73. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003213260-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tsang, Chin-Fu. "Thermohydraulics of an Aquifer Thermal Energy Storage System." In Advances in Transport Phenomena in Porous Media, 185–237. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3625-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kizilkan, Önder, and Ibrahim Dincer. "Evaluation of Thermal Characteristics of a Borehole Thermal Energy Storage System." In Progress in Exergy, Energy, and the Environment, 385–98. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04681-5_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "THERMAL ENERGY STORAGE SYSTEM (TES)"

1

Ma, Zhiwen, Patrick Davenport, and Janna Martinek. "Thermal Energy Storage Using Solid Particles for Long-Duration Energy Storage." In ASME 2020 14th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/es2020-1693.

Full text
Abstract:
Abstract The rapid growth of renewable energy increases the importance of economically firming the electricity supply from variable solar photovoltaic- and wind-power generators. Energy storage will be the key to manage variability and to bridge the generation gap over time scales of hours or days for high renewable grid integration. The integration of renewable power and storage of excess electricity has several significant and positive impacts including: 1) expanding the renewable energy portion of total electricity generation, 2) improving the peak-load response, and 3) coordinating the electricity supply and demand over the grid. Long-duration energy storage can potentially complement the reduction of fossil-fuel baseload generation that otherwise would risk grid security when a large portion of grid power comes from variable renewable sources. Several energy storage methods are deployed or under development, including mechanical, chemical or electrochemical, and thermal energy storage (TES). Comparing their economic potential for different scales and applications helps identify suitable technology to support high renewable grid integration. Despite the progress of TES technologies developed and deployed with concentrating solar power (CSP) systems, TES has been undervalued for its potential role in electric energy storage. This paper introduces TES methods applicable to grid energy storage and particularly focuses on solid-particle-based TES to serve the purpose of long-duration energy storage (LDES). The objective of this paper is to present a standalone particle-based TES system for electric storage and to show the potential of TES systems for LDES applications over other energy storage methods such as batteries, compressed-air energy storage, or pumped-storage hydropower.
APA, Harvard, Vancouver, ISO, and other styles
2

Baghaei Lakeh, Reza, Ian C. Villazana, Sammy Houssainy, Kevin R. Anderson, and H. Pirouz Kavehpour. "Design of a Modular Solid-Based Thermal Energy Storage for a Hybrid Compressed Air Energy Storage System." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59160.

Full text
Abstract:
The share of renewable energy sources in the power grid is showing an increasing trend world-wide. Most of the renewable energy sources are intermittent and have generation peaks that do not correlate with peak demand. The stability of the power grid is highly dependent on the balance between power generation and demand. Compressed Air Energy Storage (CAES) systems have been utilized to receive and store the electrical energy from the grid during off-peak hours and play the role of an auxiliary power plant during peak hours. Using Thermal Energy Storage (TES) systems with CAES technology is shown to increase the efficiency and reduce the cost of generated power. In this study, a modular solid-based TES system is designed to store thermal energy converted from grid power. The TES system stores the energy in the form of internal energy of the storage medium up to 900 K. A three-dimensional computational study using commercial software (ANSYS Fluent) was completed to test the performance of the modular design of the TES. It was shown that solid-state TES, using conventional concrete and an array of circular fins with embedded heaters, can be used for storing heat for a high temperature hybrid CAES (HTH-CAES) system.
APA, Harvard, Vancouver, ISO, and other styles
3

Nakhamkin, M., and R. B. Schainker. "Advanced Compressed Air Energy Storage Plants With Utilization of Thermal Energy Storage Systems." In 1986 Joint Power Generation Conference: GT Papers. American Society of Mechanical Engineers, 1986. http://dx.doi.org/10.1115/86-jpgc-gt-4.

Full text
Abstract:
This paper presents results of engineering development for utilization of thermal energy storage (TES) for Compressed Air Energy Storage (CAES) plant applications. Presented results include the following: - Turbomachinery cycle optimization for TES application - TES systems engineering and optimization - Comparative technical and economic analysis of various CAES plant concepts with TES versus a conventional CAES plant concept The paper concludes that utilization of TES is feasible, practical and economically attractive.
APA, Harvard, Vancouver, ISO, and other styles
4

Hoivik, Nils, Christopher Greiner, Eva Bellido Tirado, Juan Barragan, Pål Bergan, Geir Skeie, Pablo Blanco, and Nicolas Calvet. "Demonstration of EnergyNest thermal energy storage (TES) technology." In SOLARPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems. Author(s), 2017. http://dx.doi.org/10.1063/1.4984432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Seo, Donghyun, and Moncef Krarti. "Evaluation of Energy Savings by Optimization Control in Thermal Energy Storage System." In ASME 2006 International Solar Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/isec2006-99132.

Full text
Abstract:
By using both passive and active thermal energy storage (TES) systems, a significant portion of the on-peak cooling can be shifted to the off-peak period and thus the energy costs associated can be considerably reduced. This paper summarizes the results of a comprehensive evaluation of the performance of optimal and conventional control strategies for combined passive (i.e., pre-cooling building thermal mass) and active (i.e., charging ice storage tanks) TES systems for typical commercial buildings in the US. Specifically, the paper examines the impact of selected design and operating factors on the performance of optimal control strategies for combined passive and active TES systems. Among the factors analyzed include building shape, climate, adaptation of optimization control, TES systems control, and utility rate structure. The analysis is performed using a detailed simulation energy program (EnergyPlus) modified to incorporate TES models and various optimization algorithms. The results of the analysis indicate that optimal TES priority controls can achieve up to 35% in on-peak electricity demand reduction and up to 30% in total electrical energy cost savings.
APA, Harvard, Vancouver, ISO, and other styles
6

Shrestha, S., A. Hays, S. Thapa, D. Wood, D. Bailey, and L. Weiss. "Small-Scale Thermal Energy Harvester With Copper Foams and Thermal Energy Storage." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52406.

Full text
Abstract:
This article investigates the use of advanced, high porosity thermally conductive foams and a thermal energy storage (TES) device for small scale thermal energy harvesting. In final application, it may be employed in various real world situations that include existing systems like thermoelectric generators (TEGs) and thermal scavenging systems that provide power output from freely available thermal sources. Experimental tests were conducted using various porosity metallic copper foams ranging from 85 % to 89 % porosity. Copper foams were selected to serve as the heat exchanger innards and examined for several key attributes. These included the ability of the foams to yield capillary action with working fluids like water or 3M™ HFE7200. Thermal energy absorption by the exchanger to the working fluid was also monitored. These results were compared to other exchangers based on capillary channel fabrication techniques as previously reported by the research team. Full characterization was based on operating temperature, measured thermal input, mass transfer rate, and heat transfer capability. Preliminary investigation of a matching, small-scale TES unit designed to integrate with the heat exchanger and a future thermoelectric for energy harvesting application was also conducted. Thermal storage was accomplished via solid-liquid phase change of a paraffin wax within the TES device forming a so-called “thermal battery.” In a final design, the TES includes what is defined by thermodynamics as heat pipes. The integrations of several heat pipes, made of copper tubing and filled with working fluid, mounted vertically and immersed in the wax medium will transfer heat to the wax by means of thermal conductivity and phase transition. This represents a first of its kind in this small-scale, thermal harvesting application. The specific tests performed in this initial work included one TES unit filled with a paraffin wax medium and a second that contained several copper vertically placed tubes surrounded by the paraffin wax. The overall thermal conductivity of the phase change medium (wax) was investigated for both constructions as was the ability of each to absorb thermal energy directly. Results indicated capillary action of the working fluid was possible via incorporation of copper foams within the heat exchanger. Maximum heat flux observed in exchanger tests was 0.27 kW/m2 given an operating temperature of 76.6 °C and 2.5W thermal input. Thermal storage tests indicated a maximum thermal capture rate of 0.91 W and phase change material thermal conductivity of 1.00 W/mK for the TES device constructed with copper tubing innards. This compared favorably to the baseline wax conductivity of approximately 0.32 W/mK. Future efforts will fully incorporate both the heat exchanger and matching TES device for a complete harvesting and thermal capture system. The ability of the exchanger to provide thermal energy for storage to the “thermal battery” will be monitored.
APA, Harvard, Vancouver, ISO, and other styles
7

Tse, Louis, Gani Ganapathi, Richard Wirz, and Adrienne Lavine. "System Modeling for a Supercritical Thermal Energy Storage System." In ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/es2012-91001.

Full text
Abstract:
This paper describes a thermodynamic model that simulates the discharge cycle of a single-tank thermal energy storage (TES) system using supercritical fluid in a concentrating solar power plant. Current state-of-the-art TES design utilizes a two-tank system with molten nitrate salts; one major problem is the high cost of the fluid. The alternate design explored here involves the use of less expensive fluids at supercritical temperatures and pressures. By cycling the storage fluid between a relatively low temperature two-phase state and a high temperature supercritical state, a large excursion in internal energy can be accessed which includes both sensible heat and latent heat of vaporization. Supercritical storage allows for the consideration of fluids that are significantly cheaper than molten salts; however, a supercritical TES system requires high pressures and temperatures that necessitate a relatively high cost containment vessel that represents a large fraction of the system capital cost. To mitigate this cost, the proposed design utilizes a single-tank TES system, effectively halving the required wall material. A single-tank approach also significantly reduces the complexity of the system in comparison to the two-tank systems, which require expensive pumps and external heat exchangers. However, a single-tank approach also results in a loss of turbine power output as the storage fluid temperature declines over time during the discharge cycle. The thermodynamic model is used to evaluate system performance; in particular it predicts the reduction in energy output of the single-tank system relative to a conventional two-tank storage system. Tank wall material volume is also presented and it is shown that there is an optimum average fluid density that generates a given turbine energy output while minimizing the required tank wall material and associated capital cost. Overall, this study illustrates opportunities to further improve current solar thermal technologies. The single-tank supercritical fluid system shows great promise for decreasing the cost of thermal energy storage, and ensuring that renewable energy can become a significant part of the national and global energy portfolio.
APA, Harvard, Vancouver, ISO, and other styles
8

Qiu, Songgang, Ross Galbraith, and Maurice White. "Phase Change Material Thermal Energy Storage System Design and Optimization." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18335.

Full text
Abstract:
Thermal energy storage (TES) system integrated with concentrated solar power provides the benefits of extending power production, eliminating intermittency issues, and reducing system LOCE. Infinia Corporation is under the contract with DOE in developing TES systems. The goal for one of the DOE sponsored TES projects is to design and build a TES system and integrate it with a 3 KWe free-piston Stirling power generator. The Phase Change Material (PCM) employed for the designed TES system is a eutectic blend of NaF and NaCl which has a melt temperature of 680° C and energy storage capacity of 12 KWh. This PCM was selected due to its low cost and desired melting temperature. This melt temperature ensures the Stirling being operated at designed operating hot end temperature. The latent heat of this eutectic PCM offers 5 to 10 times the energy density of a typical molten salt. The technical challenges associated with low cost molten salt TES systems are the low thermal conductivity of the salt and large thermal expansion. To address these challenges, an array of sodium filled Heat Pipes (HP) is embedded in the PCM to enhance the heat transfer from solar receiver to PCM and from PCM to Stirling engine. The oversized dish provides sufficient thermal energy to operate a 3KWe Stirling engine at full power and to charge up the TES. The HP arrays are optimally distributed so that the solar energy is transferred directly from receiver to Stirling engine heat receiver. During the charge phase, the Stirling engine absorbs and converts the transferred solar energy to electricity and the excess thermal energy is re-directed and stored to PCM. The stored energy is transferred via distributed HP from PCM to Stirling engine heat receiver during discharge phase. The HP based PCM thermal energy storage system was designed, built, and performance tested in laboratory. The TES/engine assembly was tested in two different orientations representing the extremes of system operation when mounted on sun-tracking dish, horizontal and vertical. Horizontal represents the zero elevation at sun rise and the vertical represents the extreme of solar noon. The testing allows the examination of orientation effect on the heat pipe performance and the maximum charge and discharge rates. The total energy stored and extracted was also examined. The areas for further system refinements were identified and discussed.
APA, Harvard, Vancouver, ISO, and other styles
9

Hays, A., E. Borquist, D. Bailey, D. Wood, and L. Weiss. "Small-Scale Thermal Energy Storage With Capillary Conductivity Enhancement." In ASME 2016 10th International Conference on Energy Sustainability collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/es2016-59582.

Full text
Abstract:
Thermal energy is a leading topic of discussion in energy conservation and environmental fields. Specifically for large-scale applications solar energy and concentrated solar power (CSP) systems use techniques that include thermal energy storage systems and phase change materials to harvest energy. However, on the smaller centimeter scale, there have been historically fewer investigations of these same techniques. The main goal of this paper is to investigate thermal energy storage (TES) as applied to a small scale system for thermal energy capture. Typical large-scale TES consists of a phase change material that usually employs a wax or oil medium held within a conductive container. The system stores the energy when the wax medium undergoes a phase change. In typical applications like buildings, the system absorbs and stores incoming thermal energy during the day, and releases it back to the surrounding environment as temperatures cool at night. This paper presents a new TES unit designed to integrate with a thermoelectric for energy harvesting application in small, cm-scale applications. In this manner, the TES serves as a thermal battery and source for the thermoelectric, even when originating power supply is interrupted. A unique feature of this TES is the inclusion of internal heat pipes. These heat pipes are fabricated from copper tubing and filled with working fluid, mounted vertically, and immersed in the wax medium of the TES. This transfers heat to the wax by means of thermal conductivity enhancement as an element of the heat pipe operation. This represents a first of its kind in this small-scale, thermal harvesting application. As tested, the TES rests atop a low temperature (60 °C) heat source with a heat sink as the final setup component. The heat sink serves to simulate thermal energy rejection to a future thermoelectric device. To measure the temperature change of the device, thermocouples are placed on either side of the TES, and a third placed on the heat source to ensure that the energy input is appropriate and constant. Heat flux sensors (HFS) are placed between the heat source and the TES and between the TES and heat sink to monitor heat transferred to and from the device. The TES is tested in a variety constructions as part of this effort. Basic design of the storage volume as well as fluid fill levels within the heat pipes are considered. Varying thermal energy inputs are also studied. Temperature and heat flux data are compared to show the thermal absorption capability and operating average thermal conductivities of the TES units. The baseline average thermal conductivity of the TES is approximately 0.5 W/mK. This represents the TES with wax alone filling the internal volume. Results indicate a fully functional, heat pipe TES capable of 8.23 W/mK.
APA, Harvard, Vancouver, ISO, and other styles
10

Shinn, Mitchell, Karthik Nithyanandam, Amey Barde, and Richard Wirz. "Thermal Analysis of Elemental Sulfur in a Shell-and-Tube Configuration for Thermal Energy Storage Applications." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67389.

Full text
Abstract:
Currently, concentrated solar power (CSP) plants utilize thermal energy storage (TES) in order to store excess energy so that it can later be dispatched during periods of intermittency or during times of high energy demand. Elemental sulfur is a promising candidate storage fluid for high temperature TES systems due to its high thermal mass, moderate vapor pressure, high thermal stability, and low cost. The objective of this paper is to investigate the behavior of encapsulated sulfur in a shell and tube configuration. An experimentally validated, transient, two-dimensional numerical model of the shell and tube TES system is presented. Initial results from both experimental and numerical analysis show high heat transfer performance of sulfur. The numerical model is then used to analyze the dynamic response of the elemental sulfur based TES system for multiple charging and discharging cycles. A sensitivity analysis is performed to analyze the effect of geometry (system length), cutoff temperature, and heat transfer fluid on the overall utilization of energy stored within this system. Overall, this paper demonstrates a systematic parametric study of a novel low cost, high performance TES system based on elemental sulfur as the storage fluid that can be utilized for different high temperature applications.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "THERMAL ENERGY STORAGE SYSTEM (TES)"

1

Akbari, H., and O. Sezgen. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/7145196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chvala, William D. Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities. Office of Scientific and Technical Information (OSTI), July 2001. http://dx.doi.org/10.2172/15020978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Akbari, H., and O. Sezgen. Case studies of thermal energy storage (TES) systems: Evaluation and verification of system performance. Final report. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/10179001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Faghri, Amir, and Ranga Pitchumani. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP). Office of Scientific and Technical Information (OSTI), September 2013. http://dx.doi.org/10.2172/1094976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Barowy, Adam, Alex Klieger, Jack Regan, and Mark McKinnon. UL 9540A Installation Level Tests with Outdoor Lithium-ion Energy Storage System Mockups. UL Firefighter Safety Research Institute, April 2021. http://dx.doi.org/10.54206/102376/jemy9731.

Full text
Abstract:
This report covers results of experiments conducted to obtain data on the fire and deflagration hazards from thermal runaway and its propagation through energy storage systems (ESS). The UL 9540A test standard provides a systematic evaluation of thermal runaway and propagation in energy storage system at cell, module, unit, and installation levels. The data from this testing may be used to design fire and explosion protection systems needed for safe siting and installation of ESS. In addition to temperature, pressure, and gas measurement instruments installed inside of the container, fire service portable gas monitors were placed at locations inside and outside the storage container during the experiments to assess their ability to detect products of thermal runaway and inform fire service size-up decisions. Review section 2.2.3 Fire Service Size-up Equipment to learn more. This research demonstrates a clear need for responding firefighters to have early access to data from instrumentation installed within an ESS, particularly gas measurement instrumentation, available through a monitoring panel. Additionally, it highlights the importance of communication between responding firefighters and personnel responsible for management of the ESS, who can aid in complete evaluation of system data to develop a more clear picture of system status and potential hazards.
APA, Harvard, Vancouver, ISO, and other styles
6

Walton, M., M. C. Hoyer, S. J. Eisenreich, N. L. Holm, T. R. Holm, R. Kanivetsky, M. A. Jirsa, et al. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/5287262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lai, B. Y., and R. N. Poirier. External review of the thermal energy storage (TES) cogeneration study assumptions. Final report. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/383511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gomez, J. C. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1024524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mathur, Anoop. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES). Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1184415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, Wenhua, and Dileep Singh. Prototype Testing of Encapsulated Phase Change Material Thermal Energy Storage (EPCM-TES) for Concentrated Solar Power. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1512771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography