Academic literature on the topic 'Thermal energy storage in buildings'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Thermal energy storage in buildings.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Thermal energy storage in buildings"

1

Sipkova, Veronika, Jiri Labudek, and Otakar Galas. "Low Energy Source Synthetic Thermal Energy Storage (STES)." Advanced Materials Research 899 (February 2014): 143–46. http://dx.doi.org/10.4028/www.scientific.net/amr.899.143.

Full text
Abstract:
The team of Building environment in VŠB-Technical university of Ostrava works intensively on options in long-term accumulation of heat in underground storages. The new concept follows the Directive of the European Parliament and of the Council 2010/31/EU on the energy performance of buildings [1]. The Directive requires that energy should be extensively covered of renewable sources produced at or in the vicinity of building, where it will be consumed. The aim of the research is create thermal energy storage with model structure for complex of family house. For the storage will be used recycled materials especially recycled concrete. This system will be heat source in winter period and heat consumer in summer period.
APA, Harvard, Vancouver, ISO, and other styles
2

Henze, Gregor P. "Energy and Cost Minimal Control of Active and Passive Building Thermal Storage Inventory." Journal of Solar Energy Engineering 127, no. 3 (January 21, 2005): 343–51. http://dx.doi.org/10.1115/1.1877513.

Full text
Abstract:
In contrast to building energy conversion equipment, less improvement has been achieved in thermal energy distribution, storage and control systems in terms of energy efficiency and peak load reduction potential. Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid and time-of-use electricity rates are designed to encourage shifting of electrical loads to off-peak periods at night and on weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building’s massive structure (passive storage) or by using active thermal energy storage systems such as ice storage. Recent theoretical and experimental work showed that the simultaneous utilization of active and passive building thermal storage inventory can save significant amounts of utility costs to the building operator, yet increased electrical energy consumption may result. The article investigates the relationship between cost savings and energy consumption associated with conventional control, minimal cost and minimal energy control, while accounting for variations in fan power consumption, chiller capacity, chiller coefficient-of-performance, and part-load performance. The model-based predictive building controller is employed to either minimize electricity cost including a target demand charge or electrical energy consumption. This work shows that buildings can be operated in a demand-responsive fashion to substantially reduce utility costs with marginal increases in overall energy consumption. In the case of energy optimal control, the reference control was replicated, i.e., if only energy consumption is of concern, neither active nor passive building thermal storage should be utilized. On the other hand, cost optimal control suggests strongly utilizing both thermal storage inventories.
APA, Harvard, Vancouver, ISO, and other styles
3

Biyanto, Totok R., Akhmad F. Alhikami, Gunawan Nugroho, Ridho Hantoro, Ridho Bayuaji, Hudiyo Firmanto, Joko Waluyo, and Agus Imam Sonhaji. "Thermal Energy Storage Optimization in Shopping Center Buildings." Journal of Engineering and Technological Sciences 47, no. 5 (October 30, 2015): 549–67. http://dx.doi.org/10.5614/j.eng.technol.sci.2015.47.5.7.

Full text
Abstract:
In this research, cooling system optimization using thermal energy storage (TES) in shopping center buildings was investigated. Cooling systems in commercial buildings account for up to 50% of their total energy consumption. This incurs high electricity costs related to the tariffs determined by the Indonesian government with the price during peak hours up to twice higher than during off-peak hours. Considering the problem, shifting the use of electrical load away from peak hours is desirable. This may be achieved by using a cooling system with TES. In a TES system, a chiller produces cold water to provide the required cooling load and saves it to a storage tank. Heat loss in the storage tank has to be considered because greater heat loss requires additional chiller capacity and investment costs. Optimization of the cooling system was done by minimizing the combination of chiller capacity, cooling load and heat loss using simplex linear programming. The results showed that up to 20% electricity cost savings can be achieved for a standalone shopping center building.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhumabek, M. R., and M. S. Tungatarova. "Study of the efficiency of thermal energy storage in various types of short – term thermal energy storages." Bulletin of the National Engineering Academy of the Republic of Kazakhstan 83, no. 1 (March 15, 2022): 40–49. http://dx.doi.org/10.47533/2020.1606-146x.138.

Full text
Abstract:
Short-term thermal energy storages allow excess heat energy to be stored for a few hours or days. Currently, coal and gas-fired thermal power plants for heating and hot water are inefficient, obsolete and have high heat losses. Therefore, the high consumption of coal and gas, which are the traditional energy sources for heating, has led to severe environmental pollution and serious environmental and health problems. In this article the heat exchange processes of short-term storage of thermal energy using phasetransition material were investigated. Paraffin was considered as a phase-transition material that can be used in short-term thermal energy storages. A numerical model of the phase change process of paraffin is shown. The basic methods of latent heat energy storage were studied. Phase change paraffin for thermal energy storage can be used in many applications such as solar energy storage, air conditioning in buildings, heating of multi-storey buildings, greenhouses and hot water supply. The paraffin wax under study has several practical values. These include the phase transition temperature of paraffin, high latent heat, fast heat transfer, high density, small volume change and thermal stability. Paraffin is one of the noncombustible materials, can be found at low cost and is environmentally friendly due to the non-toxicity of the material.
APA, Harvard, Vancouver, ISO, and other styles
5

Farhat, Nouha, and Zahide Inal. "Solar thermal energy storage solutions for building application: State of the art." Heritage and Sustainable Development 1, no. 1 (June 15, 2019): 1–13. http://dx.doi.org/10.37868/hsd.v1i1.6.

Full text
Abstract:
Thermal energy storage plays an important role in fosil fuel preservation. Buildings are significant contributor to energy consumption. To redce building energy demand, novel technologies for thermal energy storage are introduced. This paper reviews these technologies with special focus on renewable energy sources such as solar energy storage systems its benefits. It for found that heat storage is mostly implemented in heat storage tanks, is suitable for space heating (low temperature heat), have capacity to reduce building energy demand.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhou, Guo, Moncef Krarti, and Gregor P. Henze. "Parametric Analysis of Active and Passive Building Thermal Storage Utilization*." Journal of Solar Energy Engineering 127, no. 1 (February 1, 2005): 37–46. http://dx.doi.org/10.1115/1.1824110.

Full text
Abstract:
Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and on weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building’s massive structure or by using active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this paper investigates the merits of harnessing both storage media concurrently in the context of optimal control for a range of selected parameters. A parametric analysis was conducted utilizing an EnergyPlus-based simulation environment to assess the effects of building mass, electrical utility rates, season and location, economizer operation, central plant size, and thermal comfort. The findings reveal that the cooling-related on-peak electrical demand and utility cost of commercial buildings can be substantially reduced by harnessing both thermal storage inventories using optimal control for a wide range of conditions.
APA, Harvard, Vancouver, ISO, and other styles
7

Koželj, Rok, Žiga Ahčin, Eva Zavrl, and Uroš Stritih. "Improved thermal energy storage for heating and cooling of buildings." E3S Web of Conferences 111 (2019): 01100. http://dx.doi.org/10.1051/e3sconf/201911101100.

Full text
Abstract:
One of the great challenges in the energy sector represents retrofit of residential buildings where 3/4 of buildings in Europe are residential. To reduce energy consumption and increase the use of renewables in existing residential buildings a holistic approach of retrofit with interconnected technological system is needed. In the present paper energy toolkit based on the synergetic interaction between technologies integrated in the system for holistic retrofit of residential buildings which is under development within HEART project (HORIZON 2020) is presented. In this project step towards self-sufficient heating and cooling of building is made with an increase in on-site consumption of self-produced energy in PV from solar energy, where produced electrical energy is used also for heat pump operation. In this case thermal energy storage plays an important role for storing heat or cold for time when solar energy is not available. Improvement of sensible thermal energy storage with implemented cylindrical modules at the top of the heat storage tank and filled with phase change material is investigated experimentally. 43 litres of paraffin with phase change temperature between 27 °C and 29 °C was used in a system, what represented 15 % of total volume of heat storage tank. The results from experiment shows that thermal energy storage unit with integrated modules filled with phase change material can supply desired level of water temperature for twice as long at smaller temperature level as sensible thermal energy storage what is the consequence of higher energy density that can be stored during phase change. The advantage of phase change materials is in thermal energy storage for applications that needs narrow temperature range of supplying and storing thermal energy what is the subject matter of consideration in the case of HEART project.
APA, Harvard, Vancouver, ISO, and other styles
8

Dincer, I., and M. A. Rosen. "Use of thermal energy storage for sustainable buildings." Proceedings of the Institution of Civil Engineers - Energy 160, no. 3 (August 2007): 113–21. http://dx.doi.org/10.1680/ener.2007.160.3.113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aziz, Nursyazwani Abdul, Nasrul Amri Mohd Amin, Mohd Shukry Abd Majid, and Izzudin Zaman. "Thermal energy storage (TES) technology for active and passive cooling in buildings: A Review." MATEC Web of Conferences 225 (2018): 03022. http://dx.doi.org/10.1051/matecconf/201822503022.

Full text
Abstract:
Thermal energy storage (TES) system is one of the outstanding technologies available contributes for achieving sustainable energy demand. The energy storage system has been proven capable of narrowing down the energy mismatch between energy supply and demand. The thermal energy storage (TES) - buildings integration is expected to minimize the energy demand shortage and also offers for better energy management in building sector. This paper presents a state of art of the active and passive TES technologies integrated in the building sector. The integration method, advantages and disadvantages of both techniques were discussed. The TES for low energy building is inevitably needed. This study prescribes that the integration of TES system for both active and passive cooling techniques are proven to be beneficial towards a better energy management in buildings.
APA, Harvard, Vancouver, ISO, and other styles
10

Sawadogo, Mohamed, Marie Duquesne, Rafik Belarbi, Ameur El Amine Hamami, and Alexandre Godin. "Review on the Integration of Phase Change Materials in Building Envelopes for Passive Latent Heat Storage." Applied Sciences 11, no. 19 (October 7, 2021): 9305. http://dx.doi.org/10.3390/app11199305.

Full text
Abstract:
Latent heat thermal energy storage systems incorporate phase change materials (PCMs) as storage materials. The high energy density of PCMs, their ability to store at nearly constant temperature, and the diversity of available materials make latent heat storage systems particularly competitive technologies for reducing energy consumption in buildings. This work reviews recent experimental and numerical studies on the integration of PCMs in building envelopes for passive energy storage. The results of the different studies show that the use of PCMs can reduce the peak temperature and smooth the thermal load. The integration of PCMs can be done on the entire building envelope (walls, roofs, windows). Despite many advances, some aspects remain to be studied, notably the long-term stability of buildings incorporating PCMs, the issues of moisture and mass transfer, and the consideration of the actual use of the building. Based on this review, we have identified possible contributions to improve the efficiency of passive systems incorporating PCMs. Thus, fatty acids and their eutectic mixtures, combined with natural insulators, such as vegetable fibers, were chosen to make shape-stabilized PCMs composites. These composites can be integrated in buildings as a passive thermal energy storage material.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Thermal energy storage in buildings"

1

Heier, Johan. "Energy Efficiency through Thermal Energy Storage : Possibilities for the Swedish Building Stock." Licentiate thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118734.

Full text
Abstract:
The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage.
Behovet av värme och kyla i byggnader utgör en betydande del av ett lands totala energianvändning och att reducera detta behov är av yttersta vikt för att nå nationella samt internationella mål för minskad energianvändning och minskade utsläpp. En viktig väg för att nå dessa mål är att öka andelen förnyelsebar energi för kylning och uppvärmning av byggnader. Det kanske största hindret med detta är det faktum att det ofta råder obalans mellan tillgången på förnyelsebar energi och behovet av värme och kyla, vilket gör att denna energi inte kan utnyttjas direkt. Detta är ett av problemen som kan lösas genom att använda termisk energilagring (TES) för att lagra värme eller kyla från när det finns tillgängligt till dess att det behövs. Denna avhandling fokuserar på kombinationen av TES och byggnader för att nå högre energieffektivitet för uppvärmning och kylning. Olika tekniker för energilagring, samt även kombinationen av TES och byggnader, har undersökts och sammanfattats genom en omfattande litteraturstudie. För att kunna identifiera byggnadstyper vanliga i Sverige gjordes även en kartläggning av det svenska byggnadsbeståndet. Inom ramen för denna avhandling resulterade kartläggningen i valet av tre typbyggnader, två småhus samt en kontorsbyggnad, utav vilka de två småhusen användes i en simuleringsfallstudie av passiv TES genom ökad termisk massa (både sensibel och latent). Den andra fallstudien som presenteras i denna avhandling är en utvärdering av ett existerande borrhålslager för säsongslagring av solvärme i ett bostadsområde. I detta fall användes verkliga mätdata i utvärderingen samt i jämförelser med tidigare utvärderingar. Litteraturstudien visade att användningen av TES öppnar upp möjligheter för minskat energibehov och minskade topplaster för värme och kyla samt även möjligheter till en ökad andel förnyelsebar energi för att täcka energibehovet. Genom att använda passiv lagring genom ökad termisk massa i byggnaden är det även möjligt att minska variationer i inomhustemperaturen och speciellt minska övertemperaturer under varma perioder; något som kan leda till att byggnader som normalt behöver aktiv kylning kan klara sig utan sådan. Analysen av kombinationen av TES och byggnadstyper bekräftade att TES har en betydande potential för ökad energieffektivitet i byggnader, men belyste även det faktum att det fortfarande krävs mycket forskning innan vissa av lagringsteknikerna kan bli kommersiellt tillgängliga. I simuleringsfallstudien drogs slutsatsen att en ökad termisk massa endast kan bidra till en liten minskning i värmebehovet, men att tiden med inomhustemperaturer över 24 °C kan minskas med upp till 20 %. Fallstudien av borrhålslagret visade att även om själva lagringssystemet fungerade som planerat så ledde värmeförluster i resten av systemet, samt vissa problem med driften av systemet, till en lägre solfraktion än beräknat. Arbetet inom denna avhandling har visat att TES redan används med framgång i många byggnadsapplikationer (t.ex. varmvattenberedare eller ackumulatortankar för lagring av solvärme) men att det fortfarande finns en stor potential i en utökad användning av TES. Det finns dock hinder såsom behovet av mer forskning för både vissa lagringstekniker samt lagringsmaterial, i synnerhet för lagring med fasändringsmaterial och termokemisk lagring.

QC 20130225

APA, Harvard, Vancouver, ISO, and other styles
2

Arce, Maldonado Pablo. "Application of passive thermal energy storage in buildings using PCM and awnings." Doctoral thesis, Universitat de Lleida, 2011. http://hdl.handle.net/10803/32001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abedin, Joynal. "Thermal energy storage in residential buildings : a study of the benefits and impacts." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/25520.

Full text
Abstract:
Residential space and water heating accounts for around 13% of the greenhouse gas emissions of the UK. Reducing this is essential for meeting the national emission reduction target of 80% by 2050 from the 1990 baseline. One of the strategies adopted for achieving this is focused around large scale shift towards electrical heating. This could lead to unsustainable disparity between the daily peak and off-peak electricity loads, large seasonal variation in electricity demands, and challenges of matching the short and long term supply with the demands. These challenges could impact the security and resilience of UK electricity supply, and needs to be addressed. Rechargeable Thermal Energy Storage (TES) in residential buildings can help overcome these challenges by enabling Heat Demand Shifts (HDS) to off-peak times, reducing the magnitude of the peak loads, and the difference between the peak and off-peak loads. To be effective a wide scale uptake of TES would be needed. For this to happen, the benefits and impacts of TES both for the demand side and the supply side have to be explored, which could vary considerably given the diverse physical, thermal, operational and occupancy characteristics of the UK housing stock. A greater understanding of the potential consequence of TES in buildings is necessary. Such knowledge could enable appropriate policy development to help drive the uptake of TES or to encourage development of alternative solutions. Through dynamic building simulation in TRNSYS, this work generated predictions of the space and water heating energy and power demands, and indoor temperature characteristics of the UK housing stock. Twelve building archetypes were created consisting of: Detached, semi-detached, mid-terrace and flat built forms with thermal insulation corresponding to the 1990 building regulation, and occupied floor areas of 70m2, 90m2 and 150m2. Typical occupancy and operational conditions were used to create twelve Base Case scenarios, and simulations performed for 60 winter days from 2nd January. HDS of 2, 3 and 4 hours from the grid peak time of 17:00 were simulated with sensible TES system sizes of 0.25m3, 0.5m3 and 0.75m3, and water storage temperatures of 75°C and 95°C. Parametric analysis were performed to determine the impacts and benefits of: thermal insulation equivalent to 1980, 1990 (Base Case), 2002 and 2010 building regulation; locations of Gatwick (Base Case) and Aberdeen; heating durations of 6, 9 (Base Case), 12 and 16 hours per day; thermostat settings of 19°C, 21°C (Base Case) and 23°C, and number of occupiers of 1 person and 3 persons (Base Case) per household. Good correlation was observed between the simulated results and published heat energy consumption data for buildings with similar thermal, physical, occupancy and operational conditions. The results allowed occupied space temperatures and overall daily and grid peak time energy consumption to be predicted for the range of building archetypes and parameter values considered, and the TES size necessary for a desired HDS to be determined. The main conclusions drawn include: The overall daily energy consumption predictions varied from 36.8kWh to 159.7kWh. During the critical grid peak time (17:00 to 21:00) the heat consumption varied from 4.2kWh to 58.7kWh, indicating the range of energy demands which could be shifted to off-peak times. On average, semi-detached, mid-terrace, and flat built forms consumed 7.0%, 13.8% and 22.7% less energy for space heating than the detached built form respectively. Thermal insulation changing from the 1990 building regulation level to the 1980 and 2010 building regulation levels could change the mean energy use by +14.7% and -19.6% respectively. A 0.25m3 TES size with 75°C water storage temperature could enable a 2 hour HDS, shifting 4.3kWh to 11.7kWh (mean 8.7kWh) to off peak times, in all 70m2 Base Case archetypes with the 60 day mean thermal comfort of 100%, but with the minimum space temperature occasionally dropping below an 18°C thermal comfort limit. A 0.5m3 TES size and water storage of 95°C could allow a 3 hour HDS, shifting 9.8kWh to 28.2kWh (mean 18.7kWh) to off peak times, in all 90m2 Base Case archetypes without thermal comfort degradation below 18°C. A 0.75m3 TES with a 95°C water temperature could provide 4 hour HDS, shifting 13.9kWh to 47.7kWh (mean 27.2kWh) to off peak times, in all 150m2 Base Case archetypes with 100% mean thermal comfort but with the 60 day minimum temperature occasionally dropping below the 18°C thermal comfort limit in the detached built form. Improving the thermal insulation of the buildings was found to be the best way to improve the effectiveness of HDS with TES, in terms of the demand shift period achievable with minimal thermal comfort impact. A 4 hour HDS with 100% thermal comfort is possible in all 90m2 floor area buildings with a 0.25m3 tank and a water storage temperature of 75°C provided that the thermal insulation is as per 2010 building regulation. Recommendations for further research include: 1) creating larger number of archetype models to reflect the housing stock; 2) using heat pumps as the heat source so that the mean effect on the grid from electric heating loads can be predicted; 3) taking into account the costs associated with taking up HDS with TES, in terms of capital expenses and space requirement for housing the TES system; 4) considering alternative methods of heat storage such as latent heat storage to enhance the storage capacity per unit volume; and 5) incorporating zonal temperature control, for example, only heating rooms that are occupied during the demand shift period, which could ensure better thermal comfort in the occupied space and extend the demand shift period.
APA, Harvard, Vancouver, ISO, and other styles
4

Al-Mosawi, Alaa Liaq Hashem. "Thermal energy storage for building-integrated photovolaic components." Thesis, University of Strathclyde, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Henning, Martin, and Endi Tollkuci. "Energy simulation model for commercial buildings Beridarebanan 4, 11 and 77, with ice thermal storage." Thesis, KTH, Energiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-256068.

Full text
Abstract:
District cooling companies enforce a large penalty based on peak demands, which current cooling methods do not address properly. Building developers are exploring alternatives methods to reduce the said peak demands. The use of Ice Thermal Storage is an nontraditional method within the Scandinavian countries, but has shown to be a method to peak shave as well as load shifting in other regions of the worlds. The goal of the thesis was to "investigate the potential of ice thermal storage for cooling demand and peak shaving for Beridarebanan 4, 11, 77". The energy simulation was accomplished using the building performance simulator software IES VE. As inputs to the simulation, building data from the renovation project and corresponding weather data were used. The resulting simulation model was validated against renovated data with differences of 3,3% and 41,9% for the heating and cooling loads, respectively. The large discrepancy within cooling was determined to be weighted heavily by cooling strategy implemented within the building. When similar cooling strategies were implemented results were consistent with one another. This validation was investigated on a building, zone, and room level to look for consistency. The resulting simulated heating and cooling demands from IES VE were input into a then created ice thermal storage controller within MS Excel. In all, with the stable electrical and district cooling prices, a payback of 12 years was calculated for a 4,5 MWh, 6 hour storage ITS system. Results also show that for a 6 hour storage capacity,the controller exceeded the 1 000 kW price tier 4 hours out of the entire year, making it an ideal storage size. Current Swedish Electrical Market incentivize peak shaving rather than energy saving, accounting for nearly 80% of the yearly savings. The margin for earning more for the energy savings has negative consequences for potentially exceeding the 1 000 kW cooling threshold.
APA, Harvard, Vancouver, ISO, and other styles
6

Mohiuddin, Mohammed Salman. "Membrane-Based Energy Recovery Ventilator Coupled with Thermal Energy Storage Using Phase Change Material for Efficient Building Energy Savings." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1404519/.

Full text
Abstract:
This research work is focused on a conceptual combination of membrane-based energy recovery ventilator (ERV) and phase change material (PCM) to provide energy savings in building heating, ventilation & air-conditioning (HVAC) systems. An ERV can recover thermal energy and moisture between the outside fresh air (OFA) entering into the building and the exhaust air (EA) leaving from the building thus reducing the energy consumption of the HVAC system for cooling and heating the spaces inside the building. The membranes were stacked parallel to each other forming adjacent channels in a counter-flow arrangement for OFA and EA streams. Heat and moisture is diffused through the membrane core. Flat-plate encapsulated PCM is arranged in OFA duct upstream/downstream of the ERV thereby allowing for further reduction in temperature by virtue of free cooling. Paraffin-based PCMs with a melting point of 24°C and 31°C is used in two different configurations where the PCM is added either before or after the ERV. Computational fluid dynamics (CFD), and heat and mass transfer modeling is employed using COMSOL Multiphysics v5.3 to perform the heat and mass transfer analysis for the membrane-based ERV and flat-plate PCMs. An 8-story office building was considered to perform building energy simulation using eQUEST v3.65 from Department of Energy (DOE). Based on the heat and mass transfer analysis, it is found that the sensible effectiveness (heat recovery) stood in the range of 65%-97% while the latent effectiveness (moisture recovery) stood at 55%-80%. Also, the highest annual energy savings achieved were 72,700 kWh in electricity consumption and 358.45 MBtu in gas consumption.
APA, Harvard, Vancouver, ISO, and other styles
7

Alkhazaleh, A. "Thermal energy storage and fire safety of building materials." Thesis, University of Bolton, 2018. http://ubir.bolton.ac.uk/1988/.

Full text
Abstract:
Energy storage using organic phase change materials (PCMs) has attracted significant attention in recent years for renewable energy utilization in building materials. PCMs are capable of storing and releasing a large amount of latent heat during their phase transitions. Paraffin (PA), a eutectic mixture (EM) of capric acid (CA) and lauric acid (LA) and butyl stearate (BS) have been selected as PCMs for this work due to their melting temperatures being close to human comfort temperature, 17 - 28 oC. Plaster (PL) as a building material is chosen due to its ease of construction into plaster boards and also because it is a good insulator against heat and sound. The most significant concern when using an organic PCM is its flammability. This research sets out to determine the effect of using PCMs in PL on the product’s flammability, and whether it is possible to use carrier materials and/or flame retardants to reduce their flammability while maintaining the thermal energy storage properties. Three techniques of incorporation of PCMs into PL are used to address this question. The first one is to immerse PL into hot melted PCMs using a vacuum impregnation method. The PCM however, could easily leak to the surface of PL, particularly when the temperature is above the melting temperature of PCM and also their high flammability evaluated using cone calorimetry was a limiting factor to pursuance of this route. The second method is a direct incorporation technique, i.e. adding PCM directly to PL. With this method also the leakage of PCMs was observed and all samples ignited, though the flammability parameters were less intense than those observed when the immersion method was used. To prevent the leakage of PCM and to improve the consistency of organic PCM with building materials, form-stable PCMs composites are used in the third method. Carrier materials, namely nanoclay (NC), diatomaceous earth (DE), expanded perlite (EP), fly ash (FA) and brick dust (BD) were selected to adsorb and retain the PCMs in their pores. SEM (scanning electron microscope) demonstrated that PCMs were uniformly adsorbed in most of the carrier materials. DSC (differential scanning calorimeter) used to measure the thermal properties of PCMs showed that when these form stable composites were added to PL, they acted as PCMs, although the latent heat values were reduced. Thermal gravimetric analysis (TGA) results demonstrates that the PCMs’ decomposition was not affected by the presence of carrier materials or PL. Cone calorimetry showed that the use of carrier materials had minimal effect on the flammability of PCMs. To evaluate the thermal energy storage performance, a small environmental chamber was used, i.e. a small test “room” of PL with dimensions of 100 mm x 100 mm x 100 mm and thickness 10 mm was set up using 6 pieces of PL. The top board of the cubic room contained PCM, and the temperature differences between the surfaces of control PL and modified PL were recorded during heating and cooling of the room. The results from heating and cooling cycles showed that the PCMs and form stable-PCM composites reduced the peak temperature and delayed the time taken to release the stored energy, the values depending on the percentage of PCMs used. To reduce the flammability of PCMs while maintaining their energy storage performance, two approaches have been undertaken: (i) use of expanded graphite (EG) as a flame retardant carrier- material and (ii) use of a liquid flame-retardant, resorcinol bis(diphenyl phosphate) (RDP). The results demonstrated that the flame retardant did not affect the energy storage performance of the PCM. While RDP was not effective on a PA containing PL sample, the flammability of a PL+BS sample was significantly reduced with the addition of EG and RDP.
APA, Harvard, Vancouver, ISO, and other styles
8

Giró, Paloma Jessica. "Characterization of polymers and Microencapsulated Phase Change Materials used for Thermal Energy Storage in buildings." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/346923.

Full text
Abstract:
The use of renewable heat decreases the consumption of fossil resources, although its usage is intermittent and usually does not match the demand. A proper thermal energy storage system design can eliminate this problem by reducing the consumption of non-renewable resources and improving energy efficiency where used. In buildings, thermal energy storage using phase change materials (PCM) is a useful tool to achieve reduction in energy consumption. These can be incorporated into passive or/and active systems. Thus, a proper selection of materials and extensive characterization for its usage in thermal energy storage is critical for new construction systems and for those already constructed. This Thesis is divided in two blocks and presented as a compendium of published articles in scientific journals indexed in Materials, Engineering, and Energy areas. The emphasis is made in the chemical, physical, thermal, mechanical and environmental characterization of PCM, MPCM (microencapsulated phase change materials), and PCS (phase change slurries). The main purpose is to perform an exhaustive characterization of this kind of materials because several scientific studies have highlighted that PCM mixed with construction materials can suffer leakage. Polymeric encapsulation is an alternative for retaining PCM inside building materials, resulting in a system named MPCM. - Macroscopic samples: the nanoindentation tecnique has been used to characterize thermoplastics that, so far, have had few precedents. As mechanical properties of materials are an important criterion for their selection and nanoindentation allows their evaluation, we have studied the hardness and elastic modulus of different polymeric materials through Loubet and Oliver & Pharr methodologies, to discern which is the most suitable concerning the viscoelastic properties. The obtained values by Oliver & Pharr method are based on the unloading curve analysis; in case of Loubet methodology, these values are a function of the penetration depth of the indentation. Also, we have studied the mechanical changes that occur when a polymer that contains a flame retardant is immersed in PCM. It has been observed that using Mg(OH)2 increases rigidity and mechanical strength while reducing the degradation effect and improving the properties against fire. This block contains two scientific published papers. - Microscopic samples: This block is based on MPCM studies. A review of publications related to PCM, MPCM and slurries (PCS) (same shell and different PCM; different shell and same PCM; same shell and same PCM, but different encapsulation ratios) was prepared. Then, the evaluation of the chemical, physical, thermal, mechanical, and environmental properties of different MPCM and PCS samples was performed, concluding that AFM is a useful tool to characterize the stiffness and Young's modulus of MPCM. Because temperature is a key parameter in PCM systems, AFM experiments were carried out at different temperatures, in order to simulate the PCM in solid and/or liquid state. PCS samples were observed using SEM device coupled to a cryogenic system. Besides, environmental properties of PCS have been studied by gas chromatography (VOC’s). In addition, PCS were cycled for the evaluation of the polymeric shell durability after pumping the sample several cycles. Also, the chemical and thermophysical properties before and after pumping the sample were compared. Finally, due to the thermal behavior results of PCS in some performed studies, and depending on the liquid or dried PCS sample, the optimum conditions by means thermogravimetric analysis were evaluated. The second block contains five scientific published articles, one article under review after its first revision, one article finished without being submitted to a journal, and one unfinished research. Finally, the contribution in the state of the art of this PhD Thesis related with thermal energy storage in buildings using PCM, MPCM, and PCS is presented.
Un correcto diseño del sistema de almacenamiento de energía térmica (TES) puede eliminar un uso discontinuo y que habitualmente no coincide con la demanda. El TES mediante materiales de cambio de fase (PCM) en climatización pasiva y activa en edificios es un instrumento útil para alcanzar un descenso del consumo de energía. La Tesis se divide en dos bloques y se presenta como compendio de artículos publicados en revistas científicas indexadas en las áreas de Materiales, Ingeniería, y Energía, haciendo émfasis en la caracterización química, fisica, térmica, mecánica y ambiental de PCM, MPCM (materiales de cambio de fase microencapsulados) y PCS (pulpas con cambio de fase). - Caracterización de diferentes termoplásticos mediante nanoindentación. a través de los métodos de Loubet y Oliver & Pharr. También se han estudiado los cambios mecánicos que se producen cuando un polímero que contiene carga ignifugante en su formulación se sumerge en PCM. Este bloque contiene dos artículos científicos. - Estudio de MPCM. Se ha llevado a cabo una revisión de publicaciones por otros autores. Se han caracterizado con AFM diferentes MPCM y PCS, a diferentes temperaturas. Se han observado muestras de PCS mediante el uso de SEM acoplado a un sistema de crionizado, y se han estudiado las propiedades medioambientales por cromatogyafía de gases. Además, se han ciclado PCS para ver la durabilidad de la pared polimérica después de ciertos ciclos de bombeo. Se han investigado las condiciones óptimas mediante análisis termogravimétrico en PCS. Este segundo bloque contiene cinco artículos científicos publicados, un artículo aceptado en primera revisión, un artículo finalizado sin enviar a revista, y un estudio en investigación. Finalmente, se presentan las conclusiones principales de la contribución de esta Tesis Doctoral en el estado del arte de los PCM, MPCM, y PCS para almacenaje de energía en edificios.
APA, Harvard, Vancouver, ISO, and other styles
9

Malekzadeh, Fatemeh. "Integration of Phase Change Materials in Commercial Buildings for Thermal Regulation and Energy Efficiency." Thesis, The University of Arizona, 2015. http://hdl.handle.net/10150/603534.

Full text
Abstract:
One of prospective procedures of absorbing thermal energy and releasing it during the required time is the application of phase change materials known as PCMs in building envelopes. High thermal energy storage (TES) materials has been a technology that effects the energy efficiency of a building by contributing in using onsite resources and reducing cooling or heating loads. Currently, many TES systems are emerging and contributing in building assemblies, however using an appropriate type of TES in a specific building and climate requires an in-depth knowledge of their properties. This research aims to provide a thorough review of a broad range of thermal energy storage technologies including their potential application in buildings. Subsequently, a comparative study and simulation between a basecase and an optimized model by PCM is thoroughly considered to understand the effect of high thermal storage building's shell on energy efficiency and indoor thermal comfort. Specifically this study proposes that the incorporation of PCM into glazing system as a high thermal capacity system will improve windows thermal performance and thermal capacity to varying climatic conditions. The generated results by eQUEST energy modeling software demonstrates approximately 25% reduction in cooling loads during the summer and 10% reduction in heating loads during the winter for optimized office building by PCM in hot arid climate of Arizona. Besides, using PCM in glazing system will reduce heat gain through the windows by conduction phenomenon. The hourly results indicates the effect of PCM as a thermal energy storage system in building envelopes for building's energy efficiency and thermal regulation. However, several problems need to be tackled before LHTES can reliably and practically be applied. We conclude with some suggestions for future work.
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Bao. "Study of an ettringite-based thermochemical energy storage for buildings." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI056.

Full text
Abstract:
Les besoins en énergie dédiés au chauffage et à l'eau chaude sanitaire dans des bâtiments, caractérisés par des pics de consommation en début et en fin de journée tout comme en hiver, représentent un défi d’importance vis-à-vis de l'utilisation des énergies renouvelables. Une des technologies les plus prometteuses, se présente sous la forme d’un système de stockage d'énergie dit thermochimique (TCES). Ce mode de stockage permet en effet de stocker différents types d'énergie sous la forme d’un potentiel chimique et est caractérisé par une absence de dissipation d'énergie. En tant que matériau de stockage thermochimique récemment étudié, l'ettringite conviendrait ainsi à une utilisation à grande échelle en raison de sa non-toxicité, de son faible coût de production et de sa haute densité énergétique à basse température de fonctionnement. Cette thèse avait pour premier objectif d’étudier les propriétés physico-chimiques de l’ettringite et les mécanismes réactionnels lors des processus d'hydratation (formation d’ettringite) et de déshydratation (formation de méta-ettringite). Les connaissances acquises lors de ces travaux de thèse, vis-à-vis de la cinétique des réactions et des diagrammes thermodynamiques (Déshydratation: Ett30.6 → Ett30 → Met12 → Met6; Hydratation: Met7.4 → Met12 →hydrate de 24H2O→ hydrates supérieurs), permettront ainsi de mieux utiliser l'ettringite pour stocker/déstocker de la chaleur (à différentes conditions isothermes et isobares). Après avoir étudié les propriétés de l'ettringite pure, trois liants cimentaires distincts pouvant être produits industriellement ont été utilisés afin de tester des teneurs en ettringite différentes mais aussi des mélanges de phases hydratées particulières. Les travaux effectués ont permis d’étudier les mécanismes de carbonatation de ces différents matériaux ettringitiques et de déduire plusieurs informations pertinentes quant à leur durabilité dans le cadre d’une utilisation en tant que TCES. Enfin, le matériau cimentaire ettringitique le plus résistant au phénomène de carbonatation a été caractérisé par différentes techniques d’analyse afin de mieux maitriser l’influence des paramètres thermo-physiques sur sa performance énergétique. Ce matériau a ensuite été in-corporé dans un réacteur à lit fixe, sous la forme d’un lit poreux de 56 mm de hauteur composé de granulés de 1 à 2 mm de diamètre. Le processus de chargement/déchargement de l'énergie a été réalisé pour étudier la réversibilité du couple ettringite/méta-ettringite dans diverses conditions expérimentales. Les essais réalisés dans le réacteur ont alors montré qu’une puissance instantanée maximale de 915 W par kg de matière hydratée initiale et une densité de déstockage d'énergie de 176 kWh/m3 pouvaient être obtenues. Ces données seront très utiles pour envisager un futur prototype (à l’échelle 1:1) d’un système de chauffage contenant de l’ettringite et destiné aux bâtiments
The high energy demands for space heating and domestic hot water in buildings, character-ized by peaks in consumption at the beginning and end of the day as well as in winter, repre-sent a major challenge in terms of the use of renewable energies. A system of thermochemical energy storage (TCES), one of the most promising accessible technologies, could store different types of energies as chemical potential without energy dissipation. As a recently studied TCES material, ettringite is suitable for large scale use due to its no-toxicity, low material cost, and high energy density at lowing operating temperature. The first objective of this thesis was to study the physicochemical properties of ettringite and the reaction mechanisms during the hydration (formation of ettringite) and dehydration (formation of meta-ettringite) processes. The knowledge obtained on the reaction kinetics and thermodynamics (Dehydration: Ett30.6 → Ett30 → Met12 → Met6; Hydration: Met7.4 → Met12 →24-hydrate → higher hydrates) allows better use of ettringite for heat storage/release (under different isothermal and isobaric conditions). After having studied the properties of pure ettringite, three different cementitious binders that are industrially producible were used to test different ettringite contents but also mixtures of particular hydrated phases. The work carried out made it possible to study the carbonation mechanisms of these different ettringite materials and to deduce some relevant information as to their durability in terms of their use in TCES. Finally, the ettringite-based material most resistant to the carbonation phenomenon has been characterized by different analysis techniques in order to better control the influence of ther-mo-physical parameters on its energy performance. This material was then incorporated into a fixed bed reactor in the form of a 56 mm high porous bed composed of granules (1–2 mm in diameter). The energy charging / discharging process carried out to study the reversibility of ettringite / meta-ettringite under various experimental conditions. The reactor tests then showed that a maximum instantaneous power of 915 W per kg of initial hydrated material and an energy-releasing density of 176 kWh/m3. These results will be very useful in designing a future prototype (in scale 1:1) containing ettringite materials for a heating system in buildings
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Thermal energy storage in buildings"

1

Lewis, Clark C. Thermal energy storage: A guide for commercial HVACR contractors. Arlington, VA: ACCA, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ding, Yulong, ed. Thermal Energy Storage. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781788019842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ali, Hafiz Muhammad, Furqan Jamil, and Hamza Babar. Thermal Energy Storage. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1131-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Canada, Energy Mines and Resources Canada. Thermal storage. Ottawa, Ont: Energy, Mines and Resources Canada, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Canada. Energy, Mines and Resources Canada. Thermal storage. Ottawa, Ont: Energy, Mines and Resources Canada, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garg, H. P., S. C. Mullick, and A. K. Bhargava. Solar Thermal Energy Storage. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5301-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Kun Sang. Underground Thermal Energy Storage. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4273-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

C, Mullick S., and Bhargava A. K, eds. Solar thermal energy storage. Dordrecht: D. Reidel, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Kun Sang. Underground Thermal Energy Storage. London: Springer London, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Garg, H. P. Solar Thermal Energy Storage. Dordrecht: Springer Netherlands, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Thermal energy storage in buildings"

1

Zhang, Y. N., R. Z. Wang, and T. X. Li. "Sorption Thermal Energy Storage." In Handbook of Energy Systems in Green Buildings, 1–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49088-4_45-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Y. N., Ruzhu Wang, and T. X. Li. "Sorption Thermal Energy Storage." In Handbook of Energy Systems in Green Buildings, 1109–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-49120-1_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Akbari, Hashem, and Atila Mertol. "Thermal Energy Storage for Cooling of Commercial Buildings." In Energy Storage Systems, 315–47. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2350-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sarbu, Ioan. "Thermal Energy Storage." In Advances in Building Services Engineering, 559–627. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64781-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Parameshwaran, R., and S. Kalaiselvam. "Thermal Energy Storage Technologies." In Nearly Zero Energy Building Refurbishment, 483–536. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5523-2_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garg, H. P., S. C. Mullick, and A. K. Bhargava. "Energy Storage in Building Materials." In Solar Thermal Energy Storage, 495–546. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5301-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Veerakumar, C., and A. Sreekumar. "Energy Conservation Potential through Thermal Energy Storage Medium in Buildings." In Sustainability through Energy-Efficient Buildings, 131–49. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315159065-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sepehri, Amin. "Introduction and Literature Review of Building Components with Passive Thermal Energy Storage Systems." In Renewable Energy for Buildings, 1–18. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08732-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gholamibozanjani, Gohar, and Mohammed Farid. "A Comparison between Passive and Active PCM Systems Applied to Buildings." In Thermal Energy Storage with Phase Change Materials, 410–29. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367567699-26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Qureshi, Waqar A., Nirmal-Kumar C. Nair, and Mohammed M. Farid. "Impact of Energy Storage in Buildings on Electricity Demand Side Management." In Thermal Energy Storage with Phase Change Materials, 176–97. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367567699-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Thermal energy storage in buildings"

1

Zhou, Guo, Moncef Krarti, and Gregor P. Henze. "Parametric Analysis of Active and Passive Building Thermal Storage Utilization." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65087.

Full text
Abstract:
Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off peak periods at night and on weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building’s massive structure or by using active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this paper investigates the merits of harnessing both storage media concurrently in the context of optimal control for a range of selected parameters. A parametric analysis was conducted utilizing an EnergyPlus-based simulation environment to assess the effects of building mass, electrical utility rates, season and location, economizer operation, central plant size, and thermal comfort. The findings reveal that the cooling-related on-peak electrical demand and utility cost of commercial buildings can be substantially reduced by harnessing both thermal storage inventories using optimal control for a wide range of conditions.
APA, Harvard, Vancouver, ISO, and other styles
2

Cui, Shuang, Madeline Hicks, Pranvera Kolari, Sumanjeet Kaur, Judith Vidal, and Roderick Jackson. "Novel Functional Thermal Energy Storage Materials for Buildings Applications." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-73862.

Full text
Abstract:
Abstract The leakage of solid-liquid phase change materials (PCMs) tremendously limits their long-term application in thermal energy storage (TES). In this work, we present durable and form-stable shape-stabilized PCMs (ss-PCMs) for TES in building envelopes. These ss-PCMs are fabricated by encapsulating polyethylene glycol (PEG) consisting of different molecular weights within mesoporous magnesium oxide and silica dioxide. For the first time, the phase transition temperature (Tt) of ss-PCMs has been fine-tuned synthetically to be comfortable to building occupants by utilizing PEG blends with molecular weights of 600 and 800 g/mol. Several parameters, including surface hydrophilicity/hydrophobicity, surface area, and PCM loading percentage, have been studied to maximize the latent heat enthalpy for high energy efficiency and maintain form stability. The best ss-PCM candidate with suitable Tt and appreciable latent heat enthalpy exhibits a repeatable phase change behavior for up to 1,000 thermal cycles without leakage, which provides a promising solution for durable TES in buildings. The Tt tunability extends its application over a wider temperature range beyond buildings.
APA, Harvard, Vancouver, ISO, and other styles
3

Henze, Gregor P. "Trade-Off Between Energy Consumption and Utility Cost in the Optimal Control of Active and Passive Building Thermal Storage Inventory." In ASME 2004 International Solar Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/isec2004-65108.

Full text
Abstract:
In contrast to building energy conversion equipment, less improvement has been achieved in thermal energy distribution, storage and control systems in terms of energy efficiency and peak load reduction potential. Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates are designed to encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building’s massive structure (passive storage) or by using active thermal energy storage systems such as ice storage. Recent theoretical and experimental work showed that the simultaneous utilization of active and passive building thermal storage inventory can save significant amounts of utility costs to the building operator, yet in many cases at the expense of increased electrical energy consumption. This article investigates an approach to ensure that a commercial building utilizing both thermal batteries does not incur excessive energy consumption. The model-based predictive building controller is modified to trade off energy cost against energy consumption. This work shows that buildings can be operated in a demand-responsive fashion to substantially reduce utility costs, however, at the expense of increased energy consumption. Placing a greater emphasis on energy consumption led to a reduction in the savings potential. In the limiting case of energy-optimal control, the reference control was replicated, i.e., if only energy consumption is of concern, neither active nor passive building thermal storage should be utilized. On the other hand, cost-optimal control suggests strongly utilizing both thermal storage inventories.
APA, Harvard, Vancouver, ISO, and other styles
4

Luerssen, Christoph, Oktoviano Gandhi, Thomas Reindl, Kok Wai, David Cheong, and Chandra Sekhar. "Levelised Cost of Thermal Energy Storage and Battery Storage to Store Solar PV Energy for Cooling Purpose." In ISES EuroSun 2018 Conference – 12th International Conference on Solar Energy for Buildings and Industry. Freiburg, Germany: International Solar Energy Society, 2018. http://dx.doi.org/10.18086/eurosun2018.04.09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jeanjean, Anaïs, Régis Olivès, Xavier Py, and Eric Vila. "Comparison of Materials for Thermal Energy Storage in Low-Energy Buildings." In ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.02.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gardner, John, Kevin Heglund, Kevin Van Den Wymelenberg, and Craig Rieger. "Understanding Flow of Energy in Buildings Using Modal Analysis Methodology." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18390.

Full text
Abstract:
It is widely understood that energy storage is the key to integrating variable generators into the grid. It has been proposed that the thermal mass of buildings could be used as a distributed energy storage solution and several researchers are making headway in this problem. However, the inability to easily determine the magnitude of the building’s effective thermal mass, and how the heating ventilation and air conditioning (HVAC) system exchanges thermal energy with it, is a significant challenge to designing systems which utilize this storage mechanism. In this paper we adapt modal analysis methods used in mechanical structures to identify the primary modes of energy transfer among thermal masses in a building. The paper describes the technique using data from an idealized building model. The approach is successfully applied to actual temperature data from a commercial building in downtown Boise, Idaho.
APA, Harvard, Vancouver, ISO, and other styles
7

Henze, Gregor P., Anthony R. Florita, Michael J. Brandemuehl, Clemens Felsmann, and Hwakong Cheng. "Advances in Near-Optimal Control of Passive Building Thermal Storage." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90143.

Full text
Abstract:
Using a simulation and optimization environment, this paper presents advances towards near-optimal building thermal mass control derived from full factorial analyses of the important parameters influencing the passive thermal storage process for a range of buildings and climate/utility rate structure combinations. Guidelines for the application of, and expected savings from, building thermal mass control strategies that can be easily implemented and result in a significant reduction in building operating costs and peak electrical demand are sought. In response to the actual utility rates imposed in the investigated cities, fundamental insights and control simplifications are derived from those buildings deemed suitable candidates. The near-optimal strategies are derived from the optimal control trajectory, consisting of four variables, and then tested for effectiveness and validated with respect to uncertainty regarding building parameters and climate variations. Due to the overriding impact of the utility rate structure on both savings and control strategy, combined with the overwhelming diversity of utility rates offered to commercial building customers, the study cannot offer universally valid control guidelines. Nevertheless, a significant number of cases, i.e. combinations of buildings, weather, and utility rate structure, have been investigated, which offer both insight and recommendations for simplified control strategies. These guidelines represent a good starting point for experimentation with building thermal mass control for a substantial range of building types, equipment, climates, and utility rates.
APA, Harvard, Vancouver, ISO, and other styles
8

Battaglia, Mattia, and Michel Haller. "Stratification in Large Thermal Storage Tanks." In ISES EuroSun 2018 Conference – 12th International Conference on Solar Energy for Buildings and Industry. Freiburg, Germany: International Solar Energy Society, 2018. http://dx.doi.org/10.18086/eurosun2018.13.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Amarasinghe, Kasun, Dumidu Wijayasekara, Howard Carey, Milos Manic, Dawei He, and Wei-Peng Chen. "Artificial neural networks based thermal energy storage control for buildings." In IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2015. http://dx.doi.org/10.1109/iecon.2015.7392953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bricka, Vincent, Frédéric Kuznik, Kevyn Johannes, and Joseph Virgone. "Evaluation of Thermal Energy Storage Potential in Low-Energy Buildings in France." In ISES Solar World Congress 2011. Freiburg, Germany: International Solar Energy Society, 2011. http://dx.doi.org/10.18086/swc.2011.15.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Thermal energy storage in buildings"

1

James, Nelson, Sumanjeet Kaur, Fredericka Brown, Marcus Bianchi, Judith Vidal, and Diana Hun. 2021 Thermal Energy Storage Systems for Buildings Workshop: Priorities and Pathways to Widespread Deployment of Thermal Energy Storage in Buildings. Office of Scientific and Technical Information (OSTI), September 2021. http://dx.doi.org/10.2172/1823025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tomlinson, J., and R. Kedl. Thermal energy storage. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5687600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

LI, Zhenning, Bo Shen, and Kyle Gluesenkamp. COST TARGETS TO ACHIEVE COMMERCIALLY VIABLE THERMAL STORAGE IN BUILDINGS. Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1838973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Drost, M. K., Z. I. Antoniak, D. R. Brown, and K. Sathyanarayana. Thermal energy storage for power generation. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5055651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Anderson, M. R., and R. O. Weijo. Potential energy savings from aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), July 1988. http://dx.doi.org/10.2172/6531749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Modera, Mark, Tengfang Xu, Helmut Feustel, Nance Matson, Charlie Huizenga, Fred Bauman, and Edward Arens. Efficient thermal energy distribution in commercial buildings - Final Report. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/760280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hall, S. Feasibility studies of aquifer thermal energy storage. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/7087673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hattrup, M. P., and R. O. Weijo. Commercialization of aquifer thermal energy storage technology. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/5830827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kung, Feitau, Stephen Frank, Jennifer Scheib, Willy Bernal Heredia, and Shanti Pless. Supervisory Control of Loads and Energy Storage in Next-Generation Zero Energy Buildings. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1325932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, D., W. Yu, W. Zhao, T. Kim, D. M. France, and R. K. Smith. High Efficiency Thermal Energy Storage System for CSP. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1500002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography